Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Gavin Shan | 4969 | 76.73% | 45 | 54.88% |
Wei Yang | 757 | 11.69% | 2 | 2.44% |
Oliver O'Halloran | 306 | 4.73% | 8 | 9.76% |
Sam Bobroff | 114 | 1.76% | 7 | 8.54% |
Alistair Popple | 98 | 1.51% | 2 | 2.44% |
Russell Currey | 82 | 1.27% | 4 | 4.88% |
Michael Ellerman | 45 | 0.69% | 2 | 2.44% |
Alexey Kardashevskiy | 36 | 0.56% | 4 | 4.88% |
Mike Qiu | 35 | 0.54% | 1 | 1.22% |
Bryant G. Ly | 28 | 0.43% | 3 | 3.66% |
Stewart Smith | 2 | 0.03% | 1 | 1.22% |
Benjamin Herrenschmidt | 2 | 0.03% | 1 | 1.22% |
Thomas Gleixner | 1 | 0.02% | 1 | 1.22% |
Linus Torvalds | 1 | 0.02% | 1 | 1.22% |
Total | 6476 | 82 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * PowerNV Platform dependent EEH operations * * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2013. */ #include <linux/atomic.h> #include <linux/debugfs.h> #include <linux/delay.h> #include <linux/export.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/list.h> #include <linux/msi.h> #include <linux/of.h> #include <linux/pci.h> #include <linux/proc_fs.h> #include <linux/rbtree.h> #include <linux/sched.h> #include <linux/seq_file.h> #include <linux/spinlock.h> #include <asm/eeh.h> #include <asm/eeh_event.h> #include <asm/firmware.h> #include <asm/io.h> #include <asm/iommu.h> #include <asm/machdep.h> #include <asm/msi_bitmap.h> #include <asm/opal.h> #include <asm/ppc-pci.h> #include <asm/pnv-pci.h> #include "powernv.h" #include "pci.h" #include "../../../../drivers/pci/pci.h" static int eeh_event_irq = -EINVAL; void pnv_pcibios_bus_add_device(struct pci_dev *pdev) { dev_dbg(&pdev->dev, "EEH: Setting up device\n"); eeh_probe_device(pdev); } static int pnv_eeh_init(void) { struct pci_controller *hose; struct pnv_phb *phb; int max_diag_size = PNV_PCI_DIAG_BUF_SIZE; if (!firmware_has_feature(FW_FEATURE_OPAL)) { pr_warn("%s: OPAL is required !\n", __func__); return -EINVAL; } /* Set probe mode */ eeh_add_flag(EEH_PROBE_MODE_DEV); /* * P7IOC blocks PCI config access to frozen PE, but PHB3 * doesn't do that. So we have to selectively enable I/O * prior to collecting error log. */ list_for_each_entry(hose, &hose_list, list_node) { phb = hose->private_data; if (phb->model == PNV_PHB_MODEL_P7IOC) eeh_add_flag(EEH_ENABLE_IO_FOR_LOG); if (phb->diag_data_size > max_diag_size) max_diag_size = phb->diag_data_size; /* * PE#0 should be regarded as valid by EEH core * if it's not the reserved one. Currently, we * have the reserved PE#255 and PE#127 for PHB3 * and P7IOC separately. So we should regard * PE#0 as valid for PHB3 and P7IOC. */ if (phb->ioda.reserved_pe_idx != 0) eeh_add_flag(EEH_VALID_PE_ZERO); break; } eeh_set_pe_aux_size(max_diag_size); ppc_md.pcibios_bus_add_device = pnv_pcibios_bus_add_device; return 0; } static irqreturn_t pnv_eeh_event(int irq, void *data) { /* * We simply send a special EEH event if EEH has been * enabled. We don't care about EEH events until we've * finished processing the outstanding ones. Event processing * gets unmasked in next_error() if EEH is enabled. */ disable_irq_nosync(irq); if (eeh_enabled()) eeh_send_failure_event(NULL); return IRQ_HANDLED; } #ifdef CONFIG_DEBUG_FS static ssize_t pnv_eeh_ei_write(struct file *filp, const char __user *user_buf, size_t count, loff_t *ppos) { struct pci_controller *hose = filp->private_data; struct eeh_pe *pe; int pe_no, type, func; unsigned long addr, mask; char buf[50]; int ret; if (!eeh_ops || !eeh_ops->err_inject) return -ENXIO; /* Copy over argument buffer */ ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count); if (!ret) return -EFAULT; /* Retrieve parameters */ ret = sscanf(buf, "%x:%x:%x:%lx:%lx", &pe_no, &type, &func, &addr, &mask); if (ret != 5) return -EINVAL; /* Retrieve PE */ pe = eeh_pe_get(hose, pe_no, 0); if (!pe) return -ENODEV; /* Do error injection */ ret = eeh_ops->err_inject(pe, type, func, addr, mask); return ret < 0 ? ret : count; } static const struct file_operations pnv_eeh_ei_fops = { .open = simple_open, .llseek = no_llseek, .write = pnv_eeh_ei_write, }; static int pnv_eeh_dbgfs_set(void *data, int offset, u64 val) { struct pci_controller *hose = data; struct pnv_phb *phb = hose->private_data; out_be64(phb->regs + offset, val); return 0; } static int pnv_eeh_dbgfs_get(void *data, int offset, u64 *val) { struct pci_controller *hose = data; struct pnv_phb *phb = hose->private_data; *val = in_be64(phb->regs + offset); return 0; } #define PNV_EEH_DBGFS_ENTRY(name, reg) \ static int pnv_eeh_dbgfs_set_##name(void *data, u64 val) \ { \ return pnv_eeh_dbgfs_set(data, reg, val); \ } \ \ static int pnv_eeh_dbgfs_get_##name(void *data, u64 *val) \ { \ return pnv_eeh_dbgfs_get(data, reg, val); \ } \ \ DEFINE_SIMPLE_ATTRIBUTE(pnv_eeh_dbgfs_ops_##name, \ pnv_eeh_dbgfs_get_##name, \ pnv_eeh_dbgfs_set_##name, \ "0x%llx\n") PNV_EEH_DBGFS_ENTRY(outb, 0xD10); PNV_EEH_DBGFS_ENTRY(inbA, 0xD90); PNV_EEH_DBGFS_ENTRY(inbB, 0xE10); #endif /* CONFIG_DEBUG_FS */ void pnv_eeh_enable_phbs(void) { struct pci_controller *hose; struct pnv_phb *phb; list_for_each_entry(hose, &hose_list, list_node) { phb = hose->private_data; /* * If EEH is enabled, we're going to rely on that. * Otherwise, we restore to conventional mechanism * to clear frozen PE during PCI config access. */ if (eeh_enabled()) phb->flags |= PNV_PHB_FLAG_EEH; else phb->flags &= ~PNV_PHB_FLAG_EEH; } } /** * pnv_eeh_post_init - EEH platform dependent post initialization * * EEH platform dependent post initialization on powernv. When * the function is called, the EEH PEs and devices should have * been built. If the I/O cache staff has been built, EEH is * ready to supply service. */ int pnv_eeh_post_init(void) { struct pci_controller *hose; struct pnv_phb *phb; int ret = 0; eeh_show_enabled(); /* Register OPAL event notifier */ eeh_event_irq = opal_event_request(ilog2(OPAL_EVENT_PCI_ERROR)); if (eeh_event_irq < 0) { pr_err("%s: Can't register OPAL event interrupt (%d)\n", __func__, eeh_event_irq); return eeh_event_irq; } ret = request_irq(eeh_event_irq, pnv_eeh_event, IRQ_TYPE_LEVEL_HIGH, "opal-eeh", NULL); if (ret < 0) { irq_dispose_mapping(eeh_event_irq); pr_err("%s: Can't request OPAL event interrupt (%d)\n", __func__, eeh_event_irq); return ret; } if (!eeh_enabled()) disable_irq(eeh_event_irq); pnv_eeh_enable_phbs(); list_for_each_entry(hose, &hose_list, list_node) { phb = hose->private_data; /* Create debugfs entries */ #ifdef CONFIG_DEBUG_FS if (phb->has_dbgfs || !phb->dbgfs) continue; phb->has_dbgfs = 1; debugfs_create_file("err_injct", 0200, phb->dbgfs, hose, &pnv_eeh_ei_fops); debugfs_create_file("err_injct_outbound", 0600, phb->dbgfs, hose, &pnv_eeh_dbgfs_ops_outb); debugfs_create_file("err_injct_inboundA", 0600, phb->dbgfs, hose, &pnv_eeh_dbgfs_ops_inbA); debugfs_create_file("err_injct_inboundB", 0600, phb->dbgfs, hose, &pnv_eeh_dbgfs_ops_inbB); #endif /* CONFIG_DEBUG_FS */ } return ret; } static int pnv_eeh_find_cap(struct pci_dn *pdn, int cap) { int pos = PCI_CAPABILITY_LIST; int cnt = 48; /* Maximal number of capabilities */ u32 status, id; if (!pdn) return 0; /* Check if the device supports capabilities */ pnv_pci_cfg_read(pdn, PCI_STATUS, 2, &status); if (!(status & PCI_STATUS_CAP_LIST)) return 0; while (cnt--) { pnv_pci_cfg_read(pdn, pos, 1, &pos); if (pos < 0x40) break; pos &= ~3; pnv_pci_cfg_read(pdn, pos + PCI_CAP_LIST_ID, 1, &id); if (id == 0xff) break; /* Found */ if (id == cap) return pos; /* Next one */ pos += PCI_CAP_LIST_NEXT; } return 0; } static int pnv_eeh_find_ecap(struct pci_dn *pdn, int cap) { struct eeh_dev *edev = pdn_to_eeh_dev(pdn); u32 header; int pos = 256, ttl = (4096 - 256) / 8; if (!edev || !edev->pcie_cap) return 0; if (pnv_pci_cfg_read(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL) return 0; else if (!header) return 0; while (ttl-- > 0) { if (PCI_EXT_CAP_ID(header) == cap && pos) return pos; pos = PCI_EXT_CAP_NEXT(header); if (pos < 256) break; if (pnv_pci_cfg_read(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL) break; } return 0; } static struct eeh_pe *pnv_eeh_get_upstream_pe(struct pci_dev *pdev) { struct pci_controller *hose = pdev->bus->sysdata; struct pnv_phb *phb = hose->private_data; struct pci_dev *parent = pdev->bus->self; #ifdef CONFIG_PCI_IOV /* for VFs we use the PF's PE as the upstream PE */ if (pdev->is_virtfn) parent = pdev->physfn; #endif /* otherwise use the PE of our parent bridge */ if (parent) { struct pnv_ioda_pe *ioda_pe = pnv_ioda_get_pe(parent); return eeh_pe_get(phb->hose, ioda_pe->pe_number, 0); } return NULL; } /** * pnv_eeh_probe - Do probe on PCI device * @pdev: pci_dev to probe * * Create, or find the existing, eeh_dev for this pci_dev. */ static struct eeh_dev *pnv_eeh_probe(struct pci_dev *pdev) { struct pci_dn *pdn = pci_get_pdn(pdev); struct pci_controller *hose = pdn->phb; struct pnv_phb *phb = hose->private_data; struct eeh_dev *edev = pdn_to_eeh_dev(pdn); struct eeh_pe *upstream_pe; uint32_t pcie_flags; int ret; int config_addr = (pdn->busno << 8) | (pdn->devfn); /* * When probing the root bridge, which doesn't have any * subordinate PCI devices. We don't have OF node for * the root bridge. So it's not reasonable to continue * the probing. */ if (!edev || edev->pe) return NULL; /* already configured? */ if (edev->pdev) { pr_debug("%s: found existing edev for %04x:%02x:%02x.%01x\n", __func__, hose->global_number, config_addr >> 8, PCI_SLOT(config_addr), PCI_FUNC(config_addr)); return edev; } /* Skip for PCI-ISA bridge */ if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) return NULL; eeh_edev_dbg(edev, "Probing device\n"); /* Initialize eeh device */ edev->mode &= 0xFFFFFF00; edev->pcix_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_PCIX); edev->pcie_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_EXP); edev->af_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_AF); edev->aer_cap = pnv_eeh_find_ecap(pdn, PCI_EXT_CAP_ID_ERR); if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_PCI) { edev->mode |= EEH_DEV_BRIDGE; if (edev->pcie_cap) { pnv_pci_cfg_read(pdn, edev->pcie_cap + PCI_EXP_FLAGS, 2, &pcie_flags); pcie_flags = (pcie_flags & PCI_EXP_FLAGS_TYPE) >> 4; if (pcie_flags == PCI_EXP_TYPE_ROOT_PORT) edev->mode |= EEH_DEV_ROOT_PORT; else if (pcie_flags == PCI_EXP_TYPE_DOWNSTREAM) edev->mode |= EEH_DEV_DS_PORT; } } edev->pe_config_addr = phb->ioda.pe_rmap[config_addr]; upstream_pe = pnv_eeh_get_upstream_pe(pdev); /* Create PE */ ret = eeh_pe_tree_insert(edev, upstream_pe); if (ret) { eeh_edev_warn(edev, "Failed to add device to PE (code %d)\n", ret); return NULL; } /* * If the PE contains any one of following adapters, the * PCI config space can't be accessed when dumping EEH log. * Otherwise, we will run into fenced PHB caused by shortage * of outbound credits in the adapter. The PCI config access * should be blocked until PE reset. MMIO access is dropped * by hardware certainly. In order to drop PCI config requests, * one more flag (EEH_PE_CFG_RESTRICTED) is introduced, which * will be checked in the backend for PE state retrival. If * the PE becomes frozen for the first time and the flag has * been set for the PE, we will set EEH_PE_CFG_BLOCKED for * that PE to block its config space. * * Broadcom BCM5718 2-ports NICs (14e4:1656) * Broadcom Austin 4-ports NICs (14e4:1657) * Broadcom Shiner 4-ports 1G NICs (14e4:168a) * Broadcom Shiner 2-ports 10G NICs (14e4:168e) */ if ((pdn->vendor_id == PCI_VENDOR_ID_BROADCOM && pdn->device_id == 0x1656) || (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM && pdn->device_id == 0x1657) || (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM && pdn->device_id == 0x168a) || (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM && pdn->device_id == 0x168e)) edev->pe->state |= EEH_PE_CFG_RESTRICTED; /* * Cache the PE primary bus, which can't be fetched when * full hotplug is in progress. In that case, all child * PCI devices of the PE are expected to be removed prior * to PE reset. */ if (!(edev->pe->state & EEH_PE_PRI_BUS)) { edev->pe->bus = pci_find_bus(hose->global_number, pdn->busno); if (edev->pe->bus) edev->pe->state |= EEH_PE_PRI_BUS; } /* * Enable EEH explicitly so that we will do EEH check * while accessing I/O stuff */ if (!eeh_has_flag(EEH_ENABLED)) { enable_irq(eeh_event_irq); pnv_eeh_enable_phbs(); eeh_add_flag(EEH_ENABLED); } /* Save memory bars */ eeh_save_bars(edev); eeh_edev_dbg(edev, "EEH enabled on device\n"); return edev; } /** * pnv_eeh_set_option - Initialize EEH or MMIO/DMA reenable * @pe: EEH PE * @option: operation to be issued * * The function is used to control the EEH functionality globally. * Currently, following options are support according to PAPR: * Enable EEH, Disable EEH, Enable MMIO and Enable DMA */ static int pnv_eeh_set_option(struct eeh_pe *pe, int option) { struct pci_controller *hose = pe->phb; struct pnv_phb *phb = hose->private_data; bool freeze_pe = false; int opt; s64 rc; switch (option) { case EEH_OPT_DISABLE: return -EPERM; case EEH_OPT_ENABLE: return 0; case EEH_OPT_THAW_MMIO: opt = OPAL_EEH_ACTION_CLEAR_FREEZE_MMIO; break; case EEH_OPT_THAW_DMA: opt = OPAL_EEH_ACTION_CLEAR_FREEZE_DMA; break; case EEH_OPT_FREEZE_PE: freeze_pe = true; opt = OPAL_EEH_ACTION_SET_FREEZE_ALL; break; default: pr_warn("%s: Invalid option %d\n", __func__, option); return -EINVAL; } /* Freeze master and slave PEs if PHB supports compound PEs */ if (freeze_pe) { if (phb->freeze_pe) { phb->freeze_pe(phb, pe->addr); return 0; } rc = opal_pci_eeh_freeze_set(phb->opal_id, pe->addr, opt); if (rc != OPAL_SUCCESS) { pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n", __func__, rc, phb->hose->global_number, pe->addr); return -EIO; } return 0; } /* Unfreeze master and slave PEs if PHB supports */ if (phb->unfreeze_pe) return phb->unfreeze_pe(phb, pe->addr, opt); rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe->addr, opt); if (rc != OPAL_SUCCESS) { pr_warn("%s: Failure %lld enable %d for PHB#%x-PE#%x\n", __func__, rc, option, phb->hose->global_number, pe->addr); return -EIO; } return 0; } static void pnv_eeh_get_phb_diag(struct eeh_pe *pe) { struct pnv_phb *phb = pe->phb->private_data; s64 rc; rc = opal_pci_get_phb_diag_data2(phb->opal_id, pe->data, phb->diag_data_size); if (rc != OPAL_SUCCESS) pr_warn("%s: Failure %lld getting PHB#%x diag-data\n", __func__, rc, pe->phb->global_number); } static int pnv_eeh_get_phb_state(struct eeh_pe *pe) { struct pnv_phb *phb = pe->phb->private_data; u8 fstate = 0; __be16 pcierr = 0; s64 rc; int result = 0; rc = opal_pci_eeh_freeze_status(phb->opal_id, pe->addr, &fstate, &pcierr, NULL); if (rc != OPAL_SUCCESS) { pr_warn("%s: Failure %lld getting PHB#%x state\n", __func__, rc, phb->hose->global_number); return EEH_STATE_NOT_SUPPORT; } /* * Check PHB state. If the PHB is frozen for the * first time, to dump the PHB diag-data. */ if (be16_to_cpu(pcierr) != OPAL_EEH_PHB_ERROR) { result = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE | EEH_STATE_MMIO_ENABLED | EEH_STATE_DMA_ENABLED); } else if (!(pe->state & EEH_PE_ISOLATED)) { eeh_pe_mark_isolated(pe); pnv_eeh_get_phb_diag(pe); if (eeh_has_flag(EEH_EARLY_DUMP_LOG)) pnv_pci_dump_phb_diag_data(pe->phb, pe->data); } return result; } static int pnv_eeh_get_pe_state(struct eeh_pe *pe) { struct pnv_phb *phb = pe->phb->private_data; u8 fstate = 0; __be16 pcierr = 0; s64 rc; int result; /* * We don't clobber hardware frozen state until PE * reset is completed. In order to keep EEH core * moving forward, we have to return operational * state during PE reset. */ if (pe->state & EEH_PE_RESET) { result = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE | EEH_STATE_MMIO_ENABLED | EEH_STATE_DMA_ENABLED); return result; } /* * Fetch PE state from hardware. If the PHB * supports compound PE, let it handle that. */ if (phb->get_pe_state) { fstate = phb->get_pe_state(phb, pe->addr); } else { rc = opal_pci_eeh_freeze_status(phb->opal_id, pe->addr, &fstate, &pcierr, NULL); if (rc != OPAL_SUCCESS) { pr_warn("%s: Failure %lld getting PHB#%x-PE%x state\n", __func__, rc, phb->hose->global_number, pe->addr); return EEH_STATE_NOT_SUPPORT; } } /* Figure out state */ switch (fstate) { case OPAL_EEH_STOPPED_NOT_FROZEN: result = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE | EEH_STATE_MMIO_ENABLED | EEH_STATE_DMA_ENABLED); break; case OPAL_EEH_STOPPED_MMIO_FREEZE: result = (EEH_STATE_DMA_ACTIVE | EEH_STATE_DMA_ENABLED); break; case OPAL_EEH_STOPPED_DMA_FREEZE: result = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED); break; case OPAL_EEH_STOPPED_MMIO_DMA_FREEZE: result = 0; break; case OPAL_EEH_STOPPED_RESET: result = EEH_STATE_RESET_ACTIVE; break; case OPAL_EEH_STOPPED_TEMP_UNAVAIL: result = EEH_STATE_UNAVAILABLE; break; case OPAL_EEH_STOPPED_PERM_UNAVAIL: result = EEH_STATE_NOT_SUPPORT; break; default: result = EEH_STATE_NOT_SUPPORT; pr_warn("%s: Invalid PHB#%x-PE#%x state %x\n", __func__, phb->hose->global_number, pe->addr, fstate); } /* * If PHB supports compound PE, to freeze all * slave PEs for consistency. * * If the PE is switching to frozen state for the * first time, to dump the PHB diag-data. */ if (!(result & EEH_STATE_NOT_SUPPORT) && !(result & EEH_STATE_UNAVAILABLE) && !(result & EEH_STATE_MMIO_ACTIVE) && !(result & EEH_STATE_DMA_ACTIVE) && !(pe->state & EEH_PE_ISOLATED)) { if (phb->freeze_pe) phb->freeze_pe(phb, pe->addr); eeh_pe_mark_isolated(pe); pnv_eeh_get_phb_diag(pe); if (eeh_has_flag(EEH_EARLY_DUMP_LOG)) pnv_pci_dump_phb_diag_data(pe->phb, pe->data); } return result; } /** * pnv_eeh_get_state - Retrieve PE state * @pe: EEH PE * @delay: delay while PE state is temporarily unavailable * * Retrieve the state of the specified PE. For IODA-compitable * platform, it should be retrieved from IODA table. Therefore, * we prefer passing down to hardware implementation to handle * it. */ static int pnv_eeh_get_state(struct eeh_pe *pe, int *delay) { int ret; if (pe->type & EEH_PE_PHB) ret = pnv_eeh_get_phb_state(pe); else ret = pnv_eeh_get_pe_state(pe); if (!delay) return ret; /* * If the PE state is temporarily unavailable, * to inform the EEH core delay for default * period (1 second) */ *delay = 0; if (ret & EEH_STATE_UNAVAILABLE) *delay = 1000; return ret; } static s64 pnv_eeh_poll(unsigned long id) { s64 rc = OPAL_HARDWARE; while (1) { rc = opal_pci_poll(id); if (rc <= 0) break; if (system_state < SYSTEM_RUNNING) udelay(1000 * rc); else msleep(rc); } return rc; } int pnv_eeh_phb_reset(struct pci_controller *hose, int option) { struct pnv_phb *phb = hose->private_data; s64 rc = OPAL_HARDWARE; pr_debug("%s: Reset PHB#%x, option=%d\n", __func__, hose->global_number, option); /* Issue PHB complete reset request */ if (option == EEH_RESET_FUNDAMENTAL || option == EEH_RESET_HOT) rc = opal_pci_reset(phb->opal_id, OPAL_RESET_PHB_COMPLETE, OPAL_ASSERT_RESET); else if (option == EEH_RESET_DEACTIVATE) rc = opal_pci_reset(phb->opal_id, OPAL_RESET_PHB_COMPLETE, OPAL_DEASSERT_RESET); if (rc < 0) goto out; /* * Poll state of the PHB until the request is done * successfully. The PHB reset is usually PHB complete * reset followed by hot reset on root bus. So we also * need the PCI bus settlement delay. */ if (rc > 0) rc = pnv_eeh_poll(phb->opal_id); if (option == EEH_RESET_DEACTIVATE) { if (system_state < SYSTEM_RUNNING) udelay(1000 * EEH_PE_RST_SETTLE_TIME); else msleep(EEH_PE_RST_SETTLE_TIME); } out: if (rc != OPAL_SUCCESS) return -EIO; return 0; } static int pnv_eeh_root_reset(struct pci_controller *hose, int option) { struct pnv_phb *phb = hose->private_data; s64 rc = OPAL_HARDWARE; pr_debug("%s: Reset PHB#%x, option=%d\n", __func__, hose->global_number, option); /* * During the reset deassert time, we needn't care * the reset scope because the firmware does nothing * for fundamental or hot reset during deassert phase. */ if (option == EEH_RESET_FUNDAMENTAL) rc = opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_FUNDAMENTAL, OPAL_ASSERT_RESET); else if (option == EEH_RESET_HOT) rc = opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_HOT, OPAL_ASSERT_RESET); else if (option == EEH_RESET_DEACTIVATE) rc = opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_HOT, OPAL_DEASSERT_RESET); if (rc < 0) goto out; /* Poll state of the PHB until the request is done */ if (rc > 0) rc = pnv_eeh_poll(phb->opal_id); if (option == EEH_RESET_DEACTIVATE) msleep(EEH_PE_RST_SETTLE_TIME); out: if (rc != OPAL_SUCCESS) return -EIO; return 0; } static int __pnv_eeh_bridge_reset(struct pci_dev *dev, int option) { struct pci_dn *pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn); struct eeh_dev *edev = pdn_to_eeh_dev(pdn); int aer = edev ? edev->aer_cap : 0; u32 ctrl; pr_debug("%s: Secondary Reset PCI bus %04x:%02x with option %d\n", __func__, pci_domain_nr(dev->bus), dev->bus->number, option); switch (option) { case EEH_RESET_FUNDAMENTAL: case EEH_RESET_HOT: /* Don't report linkDown event */ if (aer) { eeh_ops->read_config(edev, aer + PCI_ERR_UNCOR_MASK, 4, &ctrl); ctrl |= PCI_ERR_UNC_SURPDN; eeh_ops->write_config(edev, aer + PCI_ERR_UNCOR_MASK, 4, ctrl); } eeh_ops->read_config(edev, PCI_BRIDGE_CONTROL, 2, &ctrl); ctrl |= PCI_BRIDGE_CTL_BUS_RESET; eeh_ops->write_config(edev, PCI_BRIDGE_CONTROL, 2, ctrl); msleep(EEH_PE_RST_HOLD_TIME); break; case EEH_RESET_DEACTIVATE: eeh_ops->read_config(edev, PCI_BRIDGE_CONTROL, 2, &ctrl); ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; eeh_ops->write_config(edev, PCI_BRIDGE_CONTROL, 2, ctrl); msleep(EEH_PE_RST_SETTLE_TIME); /* Continue reporting linkDown event */ if (aer) { eeh_ops->read_config(edev, aer + PCI_ERR_UNCOR_MASK, 4, &ctrl); ctrl &= ~PCI_ERR_UNC_SURPDN; eeh_ops->write_config(edev, aer + PCI_ERR_UNCOR_MASK, 4, ctrl); } break; } return 0; } static int pnv_eeh_bridge_reset(struct pci_dev *pdev, int option) { struct pci_controller *hose = pci_bus_to_host(pdev->bus); struct pnv_phb *phb = hose->private_data; struct device_node *dn = pci_device_to_OF_node(pdev); uint64_t id = PCI_SLOT_ID(phb->opal_id, (pdev->bus->number << 8) | pdev->devfn); uint8_t scope; int64_t rc; /* Hot reset to the bus if firmware cannot handle */ if (!dn || !of_get_property(dn, "ibm,reset-by-firmware", NULL)) return __pnv_eeh_bridge_reset(pdev, option); pr_debug("%s: FW reset PCI bus %04x:%02x with option %d\n", __func__, pci_domain_nr(pdev->bus), pdev->bus->number, option); switch (option) { case EEH_RESET_FUNDAMENTAL: scope = OPAL_RESET_PCI_FUNDAMENTAL; break; case EEH_RESET_HOT: scope = OPAL_RESET_PCI_HOT; break; case EEH_RESET_DEACTIVATE: return 0; default: dev_dbg(&pdev->dev, "%s: Unsupported reset %d\n", __func__, option); return -EINVAL; } rc = opal_pci_reset(id, scope, OPAL_ASSERT_RESET); if (rc <= OPAL_SUCCESS) goto out; rc = pnv_eeh_poll(id); out: return (rc == OPAL_SUCCESS) ? 0 : -EIO; } void pnv_pci_reset_secondary_bus(struct pci_dev *dev) { struct pci_controller *hose; if (pci_is_root_bus(dev->bus)) { hose = pci_bus_to_host(dev->bus); pnv_eeh_root_reset(hose, EEH_RESET_HOT); pnv_eeh_root_reset(hose, EEH_RESET_DEACTIVATE); } else { pnv_eeh_bridge_reset(dev, EEH_RESET_HOT); pnv_eeh_bridge_reset(dev, EEH_RESET_DEACTIVATE); } } static void pnv_eeh_wait_for_pending(struct pci_dn *pdn, const char *type, int pos, u16 mask) { struct eeh_dev *edev = pdn->edev; int i, status = 0; /* Wait for Transaction Pending bit to be cleared */ for (i = 0; i < 4; i++) { eeh_ops->read_config(edev, pos, 2, &status); if (!(status & mask)) return; msleep((1 << i) * 100); } pr_warn("%s: Pending transaction while issuing %sFLR to %04x:%02x:%02x.%01x\n", __func__, type, pdn->phb->global_number, pdn->busno, PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn)); } static int pnv_eeh_do_flr(struct pci_dn *pdn, int option) { struct eeh_dev *edev = pdn_to_eeh_dev(pdn); u32 reg = 0; if (WARN_ON(!edev->pcie_cap)) return -ENOTTY; eeh_ops->read_config(edev, edev->pcie_cap + PCI_EXP_DEVCAP, 4, ®); if (!(reg & PCI_EXP_DEVCAP_FLR)) return -ENOTTY; switch (option) { case EEH_RESET_HOT: case EEH_RESET_FUNDAMENTAL: pnv_eeh_wait_for_pending(pdn, "", edev->pcie_cap + PCI_EXP_DEVSTA, PCI_EXP_DEVSTA_TRPND); eeh_ops->read_config(edev, edev->pcie_cap + PCI_EXP_DEVCTL, 4, ®); reg |= PCI_EXP_DEVCTL_BCR_FLR; eeh_ops->write_config(edev, edev->pcie_cap + PCI_EXP_DEVCTL, 4, reg); msleep(EEH_PE_RST_HOLD_TIME); break; case EEH_RESET_DEACTIVATE: eeh_ops->read_config(edev, edev->pcie_cap + PCI_EXP_DEVCTL, 4, ®); reg &= ~PCI_EXP_DEVCTL_BCR_FLR; eeh_ops->write_config(edev, edev->pcie_cap + PCI_EXP_DEVCTL, 4, reg); msleep(EEH_PE_RST_SETTLE_TIME); break; } return 0; } static int pnv_eeh_do_af_flr(struct pci_dn *pdn, int option) { struct eeh_dev *edev = pdn_to_eeh_dev(pdn); u32 cap = 0; if (WARN_ON(!edev->af_cap)) return -ENOTTY; eeh_ops->read_config(edev, edev->af_cap + PCI_AF_CAP, 1, &cap); if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) return -ENOTTY; switch (option) { case EEH_RESET_HOT: case EEH_RESET_FUNDAMENTAL: /* * Wait for Transaction Pending bit to clear. A word-aligned * test is used, so we use the conrol offset rather than status * and shift the test bit to match. */ pnv_eeh_wait_for_pending(pdn, "AF", edev->af_cap + PCI_AF_CTRL, PCI_AF_STATUS_TP << 8); eeh_ops->write_config(edev, edev->af_cap + PCI_AF_CTRL, 1, PCI_AF_CTRL_FLR); msleep(EEH_PE_RST_HOLD_TIME); break; case EEH_RESET_DEACTIVATE: eeh_ops->write_config(edev, edev->af_cap + PCI_AF_CTRL, 1, 0); msleep(EEH_PE_RST_SETTLE_TIME); break; } return 0; } static int pnv_eeh_reset_vf_pe(struct eeh_pe *pe, int option) { struct eeh_dev *edev; struct pci_dn *pdn; int ret; /* The VF PE should have only one child device */ edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, entry); pdn = eeh_dev_to_pdn(edev); if (!pdn) return -ENXIO; ret = pnv_eeh_do_flr(pdn, option); if (!ret) return ret; return pnv_eeh_do_af_flr(pdn, option); } /** * pnv_eeh_reset - Reset the specified PE * @pe: EEH PE * @option: reset option * * Do reset on the indicated PE. For PCI bus sensitive PE, * we need to reset the parent p2p bridge. The PHB has to * be reinitialized if the p2p bridge is root bridge. For * PCI device sensitive PE, we will try to reset the device * through FLR. For now, we don't have OPAL APIs to do HARD * reset yet, so all reset would be SOFT (HOT) reset. */ static int pnv_eeh_reset(struct eeh_pe *pe, int option) { struct pci_controller *hose = pe->phb; struct pnv_phb *phb; struct pci_bus *bus; int64_t rc; /* * For PHB reset, we always have complete reset. For those PEs whose * primary bus derived from root complex (root bus) or root port * (usually bus#1), we apply hot or fundamental reset on the root port. * For other PEs, we always have hot reset on the PE primary bus. * * Here, we have different design to pHyp, which always clear the * frozen state during PE reset. However, the good idea here from * benh is to keep frozen state before we get PE reset done completely * (until BAR restore). With the frozen state, HW drops illegal IO * or MMIO access, which can incur recrusive frozen PE during PE * reset. The side effect is that EEH core has to clear the frozen * state explicitly after BAR restore. */ if (pe->type & EEH_PE_PHB) return pnv_eeh_phb_reset(hose, option); /* * The frozen PE might be caused by PAPR error injection * registers, which are expected to be cleared after hitting * frozen PE as stated in the hardware spec. Unfortunately, * that's not true on P7IOC. So we have to clear it manually * to avoid recursive EEH errors during recovery. */ phb = hose->private_data; if (phb->model == PNV_PHB_MODEL_P7IOC && (option == EEH_RESET_HOT || option == EEH_RESET_FUNDAMENTAL)) { rc = opal_pci_reset(phb->opal_id, OPAL_RESET_PHB_ERROR, OPAL_ASSERT_RESET); if (rc != OPAL_SUCCESS) { pr_warn("%s: Failure %lld clearing error injection registers\n", __func__, rc); return -EIO; } } if (pe->type & EEH_PE_VF) return pnv_eeh_reset_vf_pe(pe, option); bus = eeh_pe_bus_get(pe); if (!bus) { pr_err("%s: Cannot find PCI bus for PHB#%x-PE#%x\n", __func__, pe->phb->global_number, pe->addr); return -EIO; } if (pci_is_root_bus(bus)) return pnv_eeh_root_reset(hose, option); /* * For hot resets try use the generic PCI error recovery reset * functions. These correctly handles the case where the secondary * bus is behind a hotplug slot and it will use the slot provided * reset methods to prevent spurious hotplug events during the reset. * * Fundemental resets need to be handled internally to EEH since the * PCI core doesn't really have a concept of a fundemental reset, * mainly because there's no standard way to generate one. Only a * few devices require an FRESET so it should be fine. */ if (option != EEH_RESET_FUNDAMENTAL) { /* * NB: Skiboot and pnv_eeh_bridge_reset() also no-op the * de-assert step. It's like the OPAL reset API was * poorly designed or something... */ if (option == EEH_RESET_DEACTIVATE) return 0; rc = pci_bus_error_reset(bus->self); if (!rc) return 0; } /* otherwise, use the generic bridge reset. this might call into FW */ if (pci_is_root_bus(bus->parent)) return pnv_eeh_root_reset(hose, option); return pnv_eeh_bridge_reset(bus->self, option); } /** * pnv_eeh_get_log - Retrieve error log * @pe: EEH PE * @severity: temporary or permanent error log * @drv_log: driver log to be combined with retrieved error log * @len: length of driver log * * Retrieve the temporary or permanent error from the PE. */ static int pnv_eeh_get_log(struct eeh_pe *pe, int severity, char *drv_log, unsigned long len) { if (!eeh_has_flag(EEH_EARLY_DUMP_LOG)) pnv_pci_dump_phb_diag_data(pe->phb, pe->data); return 0; } /** * pnv_eeh_configure_bridge - Configure PCI bridges in the indicated PE * @pe: EEH PE * * The function will be called to reconfigure the bridges included * in the specified PE so that the mulfunctional PE would be recovered * again. */ static int pnv_eeh_configure_bridge(struct eeh_pe *pe) { return 0; } /** * pnv_pe_err_inject - Inject specified error to the indicated PE * @pe: the indicated PE * @type: error type * @func: specific error type * @addr: address * @mask: address mask * * The routine is called to inject specified error, which is * determined by @type and @func, to the indicated PE for * testing purpose. */ static int pnv_eeh_err_inject(struct eeh_pe *pe, int type, int func, unsigned long addr, unsigned long mask) { struct pci_controller *hose = pe->phb; struct pnv_phb *phb = hose->private_data; s64 rc; if (type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR && type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR64) { pr_warn("%s: Invalid error type %d\n", __func__, type); return -ERANGE; } if (func < OPAL_ERR_INJECT_FUNC_IOA_LD_MEM_ADDR || func > OPAL_ERR_INJECT_FUNC_IOA_DMA_WR_TARGET) { pr_warn("%s: Invalid error function %d\n", __func__, func); return -ERANGE; } /* Firmware supports error injection ? */ if (!opal_check_token(OPAL_PCI_ERR_INJECT)) { pr_warn("%s: Firmware doesn't support error injection\n", __func__); return -ENXIO; } /* Do error injection */ rc = opal_pci_err_inject(phb->opal_id, pe->addr, type, func, addr, mask); if (rc != OPAL_SUCCESS) { pr_warn("%s: Failure %lld injecting error " "%d-%d to PHB#%x-PE#%x\n", __func__, rc, type, func, hose->global_number, pe->addr); return -EIO; } return 0; } static inline bool pnv_eeh_cfg_blocked(struct pci_dn *pdn) { struct eeh_dev *edev = pdn_to_eeh_dev(pdn); if (!edev || !edev->pe) return false; /* * We will issue FLR or AF FLR to all VFs, which are contained * in VF PE. It relies on the EEH PCI config accessors. So we * can't block them during the window. */ if (edev->physfn && (edev->pe->state & EEH_PE_RESET)) return false; if (edev->pe->state & EEH_PE_CFG_BLOCKED) return true; return false; } static int pnv_eeh_read_config(struct eeh_dev *edev, int where, int size, u32 *val) { struct pci_dn *pdn = eeh_dev_to_pdn(edev); if (!pdn) return PCIBIOS_DEVICE_NOT_FOUND; if (pnv_eeh_cfg_blocked(pdn)) { *val = 0xFFFFFFFF; return PCIBIOS_SET_FAILED; } return pnv_pci_cfg_read(pdn, where, size, val); } static int pnv_eeh_write_config(struct eeh_dev *edev, int where, int size, u32 val) { struct pci_dn *pdn = eeh_dev_to_pdn(edev); if (!pdn) return PCIBIOS_DEVICE_NOT_FOUND; if (pnv_eeh_cfg_blocked(pdn)) return PCIBIOS_SET_FAILED; return pnv_pci_cfg_write(pdn, where, size, val); } static void pnv_eeh_dump_hub_diag_common(struct OpalIoP7IOCErrorData *data) { /* GEM */ if (data->gemXfir || data->gemRfir || data->gemRirqfir || data->gemMask || data->gemRwof) pr_info(" GEM: %016llx %016llx %016llx %016llx %016llx\n", be64_to_cpu(data->gemXfir), be64_to_cpu(data->gemRfir), be64_to_cpu(data->gemRirqfir), be64_to_cpu(data->gemMask), be64_to_cpu(data->gemRwof)); /* LEM */ if (data->lemFir || data->lemErrMask || data->lemAction0 || data->lemAction1 || data->lemWof) pr_info(" LEM: %016llx %016llx %016llx %016llx %016llx\n", be64_to_cpu(data->lemFir), be64_to_cpu(data->lemErrMask), be64_to_cpu(data->lemAction0), be64_to_cpu(data->lemAction1), be64_to_cpu(data->lemWof)); } static void pnv_eeh_get_and_dump_hub_diag(struct pci_controller *hose) { struct pnv_phb *phb = hose->private_data; struct OpalIoP7IOCErrorData *data = (struct OpalIoP7IOCErrorData*)phb->diag_data; long rc; rc = opal_pci_get_hub_diag_data(phb->hub_id, data, sizeof(*data)); if (rc != OPAL_SUCCESS) { pr_warn("%s: Failed to get HUB#%llx diag-data (%ld)\n", __func__, phb->hub_id, rc); return; } switch (be16_to_cpu(data->type)) { case OPAL_P7IOC_DIAG_TYPE_RGC: pr_info("P7IOC diag-data for RGC\n\n"); pnv_eeh_dump_hub_diag_common(data); if (data->rgc.rgcStatus || data->rgc.rgcLdcp) pr_info(" RGC: %016llx %016llx\n", be64_to_cpu(data->rgc.rgcStatus), be64_to_cpu(data->rgc.rgcLdcp)); break; case OPAL_P7IOC_DIAG_TYPE_BI: pr_info("P7IOC diag-data for BI %s\n\n", data->bi.biDownbound ? "Downbound" : "Upbound"); pnv_eeh_dump_hub_diag_common(data); if (data->bi.biLdcp0 || data->bi.biLdcp1 || data->bi.biLdcp2 || data->bi.biFenceStatus) pr_info(" BI: %016llx %016llx %016llx %016llx\n", be64_to_cpu(data->bi.biLdcp0), be64_to_cpu(data->bi.biLdcp1), be64_to_cpu(data->bi.biLdcp2), be64_to_cpu(data->bi.biFenceStatus)); break; case OPAL_P7IOC_DIAG_TYPE_CI: pr_info("P7IOC diag-data for CI Port %d\n\n", data->ci.ciPort); pnv_eeh_dump_hub_diag_common(data); if (data->ci.ciPortStatus || data->ci.ciPortLdcp) pr_info(" CI: %016llx %016llx\n", be64_to_cpu(data->ci.ciPortStatus), be64_to_cpu(data->ci.ciPortLdcp)); break; case OPAL_P7IOC_DIAG_TYPE_MISC: pr_info("P7IOC diag-data for MISC\n\n"); pnv_eeh_dump_hub_diag_common(data); break; case OPAL_P7IOC_DIAG_TYPE_I2C: pr_info("P7IOC diag-data for I2C\n\n"); pnv_eeh_dump_hub_diag_common(data); break; default: pr_warn("%s: Invalid type of HUB#%llx diag-data (%d)\n", __func__, phb->hub_id, data->type); } } static int pnv_eeh_get_pe(struct pci_controller *hose, u16 pe_no, struct eeh_pe **pe) { struct pnv_phb *phb = hose->private_data; struct pnv_ioda_pe *pnv_pe; struct eeh_pe *dev_pe; /* * If PHB supports compound PE, to fetch * the master PE because slave PE is invisible * to EEH core. */ pnv_pe = &phb->ioda.pe_array[pe_no]; if (pnv_pe->flags & PNV_IODA_PE_SLAVE) { pnv_pe = pnv_pe->master; WARN_ON(!pnv_pe || !(pnv_pe->flags & PNV_IODA_PE_MASTER)); pe_no = pnv_pe->pe_number; } /* Find the PE according to PE# */ dev_pe = eeh_pe_get(hose, pe_no, 0); if (!dev_pe) return -EEXIST; /* Freeze the (compound) PE */ *pe = dev_pe; if (!(dev_pe->state & EEH_PE_ISOLATED)) phb->freeze_pe(phb, pe_no); /* * At this point, we're sure the (compound) PE should * have been frozen. However, we still need poke until * hitting the frozen PE on top level. */ dev_pe = dev_pe->parent; while (dev_pe && !(dev_pe->type & EEH_PE_PHB)) { int ret; ret = eeh_ops->get_state(dev_pe, NULL); if (ret <= 0 || eeh_state_active(ret)) { dev_pe = dev_pe->parent; continue; } /* Frozen parent PE */ *pe = dev_pe; if (!(dev_pe->state & EEH_PE_ISOLATED)) phb->freeze_pe(phb, dev_pe->addr); /* Next one */ dev_pe = dev_pe->parent; } return 0; } /** * pnv_eeh_next_error - Retrieve next EEH error to handle * @pe: Affected PE * * The function is expected to be called by EEH core while it gets * special EEH event (without binding PE). The function calls to * OPAL APIs for next error to handle. The informational error is * handled internally by platform. However, the dead IOC, dead PHB, * fenced PHB and frozen PE should be handled by EEH core eventually. */ static int pnv_eeh_next_error(struct eeh_pe **pe) { struct pci_controller *hose; struct pnv_phb *phb; struct eeh_pe *phb_pe, *parent_pe; __be64 frozen_pe_no; __be16 err_type, severity; long rc; int state, ret = EEH_NEXT_ERR_NONE; /* * While running here, it's safe to purge the event queue. The * event should still be masked. */ eeh_remove_event(NULL, false); list_for_each_entry(hose, &hose_list, list_node) { /* * If the subordinate PCI buses of the PHB has been * removed or is exactly under error recovery, we * needn't take care of it any more. */ phb = hose->private_data; phb_pe = eeh_phb_pe_get(hose); if (!phb_pe || (phb_pe->state & EEH_PE_ISOLATED)) continue; rc = opal_pci_next_error(phb->opal_id, &frozen_pe_no, &err_type, &severity); if (rc != OPAL_SUCCESS) { pr_devel("%s: Invalid return value on " "PHB#%x (0x%lx) from opal_pci_next_error", __func__, hose->global_number, rc); continue; } /* If the PHB doesn't have error, stop processing */ if (be16_to_cpu(err_type) == OPAL_EEH_NO_ERROR || be16_to_cpu(severity) == OPAL_EEH_SEV_NO_ERROR) { pr_devel("%s: No error found on PHB#%x\n", __func__, hose->global_number); continue; } /* * Processing the error. We're expecting the error with * highest priority reported upon multiple errors on the * specific PHB. */ pr_devel("%s: Error (%d, %d, %llu) on PHB#%x\n", __func__, be16_to_cpu(err_type), be16_to_cpu(severity), be64_to_cpu(frozen_pe_no), hose->global_number); switch (be16_to_cpu(err_type)) { case OPAL_EEH_IOC_ERROR: if (be16_to_cpu(severity) == OPAL_EEH_SEV_IOC_DEAD) { pr_err("EEH: dead IOC detected\n"); ret = EEH_NEXT_ERR_DEAD_IOC; } else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) { pr_info("EEH: IOC informative error " "detected\n"); pnv_eeh_get_and_dump_hub_diag(hose); ret = EEH_NEXT_ERR_NONE; } break; case OPAL_EEH_PHB_ERROR: if (be16_to_cpu(severity) == OPAL_EEH_SEV_PHB_DEAD) { *pe = phb_pe; pr_err("EEH: dead PHB#%x detected, " "location: %s\n", hose->global_number, eeh_pe_loc_get(phb_pe)); ret = EEH_NEXT_ERR_DEAD_PHB; } else if (be16_to_cpu(severity) == OPAL_EEH_SEV_PHB_FENCED) { *pe = phb_pe; pr_err("EEH: Fenced PHB#%x detected, " "location: %s\n", hose->global_number, eeh_pe_loc_get(phb_pe)); ret = EEH_NEXT_ERR_FENCED_PHB; } else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) { pr_info("EEH: PHB#%x informative error " "detected, location: %s\n", hose->global_number, eeh_pe_loc_get(phb_pe)); pnv_eeh_get_phb_diag(phb_pe); pnv_pci_dump_phb_diag_data(hose, phb_pe->data); ret = EEH_NEXT_ERR_NONE; } break; case OPAL_EEH_PE_ERROR: /* * If we can't find the corresponding PE, we * just try to unfreeze. */ if (pnv_eeh_get_pe(hose, be64_to_cpu(frozen_pe_no), pe)) { pr_info("EEH: Clear non-existing PHB#%x-PE#%llx\n", hose->global_number, be64_to_cpu(frozen_pe_no)); pr_info("EEH: PHB location: %s\n", eeh_pe_loc_get(phb_pe)); /* Dump PHB diag-data */ rc = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data, phb->diag_data_size); if (rc == OPAL_SUCCESS) pnv_pci_dump_phb_diag_data(hose, phb->diag_data); /* Try best to clear it */ opal_pci_eeh_freeze_clear(phb->opal_id, be64_to_cpu(frozen_pe_no), OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); ret = EEH_NEXT_ERR_NONE; } else if ((*pe)->state & EEH_PE_ISOLATED || eeh_pe_passed(*pe)) { ret = EEH_NEXT_ERR_NONE; } else { pr_err("EEH: Frozen PE#%x " "on PHB#%x detected\n", (*pe)->addr, (*pe)->phb->global_number); pr_err("EEH: PE location: %s, " "PHB location: %s\n", eeh_pe_loc_get(*pe), eeh_pe_loc_get(phb_pe)); ret = EEH_NEXT_ERR_FROZEN_PE; } break; default: pr_warn("%s: Unexpected error type %d\n", __func__, be16_to_cpu(err_type)); } /* * EEH core will try recover from fenced PHB or * frozen PE. In the time for frozen PE, EEH core * enable IO path for that before collecting logs, * but it ruins the site. So we have to dump the * log in advance here. */ if ((ret == EEH_NEXT_ERR_FROZEN_PE || ret == EEH_NEXT_ERR_FENCED_PHB) && !((*pe)->state & EEH_PE_ISOLATED)) { eeh_pe_mark_isolated(*pe); pnv_eeh_get_phb_diag(*pe); if (eeh_has_flag(EEH_EARLY_DUMP_LOG)) pnv_pci_dump_phb_diag_data((*pe)->phb, (*pe)->data); } /* * We probably have the frozen parent PE out there and * we need have to handle frozen parent PE firstly. */ if (ret == EEH_NEXT_ERR_FROZEN_PE) { parent_pe = (*pe)->parent; while (parent_pe) { /* Hit the ceiling ? */ if (parent_pe->type & EEH_PE_PHB) break; /* Frozen parent PE ? */ state = eeh_ops->get_state(parent_pe, NULL); if (state > 0 && !eeh_state_active(state)) *pe = parent_pe; /* Next parent level */ parent_pe = parent_pe->parent; } /* We possibly migrate to another PE */ eeh_pe_mark_isolated(*pe); } /* * If we have no errors on the specific PHB or only * informative error there, we continue poking it. * Otherwise, we need actions to be taken by upper * layer. */ if (ret > EEH_NEXT_ERR_INF) break; } /* Unmask the event */ if (ret == EEH_NEXT_ERR_NONE && eeh_enabled()) enable_irq(eeh_event_irq); return ret; } static int pnv_eeh_restore_config(struct eeh_dev *edev) { struct pnv_phb *phb; s64 ret = 0; if (!edev) return -EEXIST; if (edev->physfn) return 0; phb = edev->controller->private_data; ret = opal_pci_reinit(phb->opal_id, OPAL_REINIT_PCI_DEV, edev->bdfn); if (ret) { pr_warn("%s: Can't reinit PCI dev 0x%x (%lld)\n", __func__, edev->bdfn, ret); return -EIO; } return ret; } static struct eeh_ops pnv_eeh_ops = { .name = "powernv", .init = pnv_eeh_init, .probe = pnv_eeh_probe, .set_option = pnv_eeh_set_option, .get_state = pnv_eeh_get_state, .reset = pnv_eeh_reset, .get_log = pnv_eeh_get_log, .configure_bridge = pnv_eeh_configure_bridge, .err_inject = pnv_eeh_err_inject, .read_config = pnv_eeh_read_config, .write_config = pnv_eeh_write_config, .next_error = pnv_eeh_next_error, .restore_config = pnv_eeh_restore_config, .notify_resume = NULL }; #ifdef CONFIG_PCI_IOV static void pnv_pci_fixup_vf_mps(struct pci_dev *pdev) { struct pci_dn *pdn = pci_get_pdn(pdev); int parent_mps; if (!pdev->is_virtfn) return; /* Synchronize MPS for VF and PF */ parent_mps = pcie_get_mps(pdev->physfn); if ((128 << pdev->pcie_mpss) >= parent_mps) pcie_set_mps(pdev, parent_mps); pdn->mps = pcie_get_mps(pdev); } DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pnv_pci_fixup_vf_mps); #endif /* CONFIG_PCI_IOV */ /** * eeh_powernv_init - Register platform dependent EEH operations * * EEH initialization on powernv platform. This function should be * called before any EEH related functions. */ static int __init eeh_powernv_init(void) { int ret = -EINVAL; ret = eeh_ops_register(&pnv_eeh_ops); if (!ret) pr_info("EEH: PowerNV platform initialized\n"); else pr_info("EEH: Failed to initialize PowerNV platform (%d)\n", ret); return ret; } machine_early_initcall(powernv, eeh_powernv_init);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1