Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Gavin Shan | 4477 | 30.17% | 63 | 30.29% |
Oliver O'Halloran | 4385 | 29.55% | 21 | 10.10% |
Benjamin Herrenschmidt | 1790 | 12.06% | 17 | 8.17% |
Wei Yang | 1153 | 7.77% | 11 | 5.29% |
Guo Chao | 835 | 5.63% | 1 | 0.48% |
Alexey Kardashevskiy | 670 | 4.52% | 36 | 17.31% |
Alistair Popple | 419 | 2.82% | 7 | 3.37% |
Frederic Barrat | 347 | 2.34% | 6 | 2.88% |
Russell Currey | 158 | 1.06% | 5 | 2.40% |
Joe Perches | 131 | 0.88% | 3 | 1.44% |
Ian Munsie | 89 | 0.60% | 2 | 0.96% |
Thadeu Lima de Souza Cascardo | 85 | 0.57% | 1 | 0.48% |
Mike Rapoport | 57 | 0.38% | 4 | 1.92% |
Andrew Donnellan | 52 | 0.35% | 1 | 0.48% |
Daniel Axtens | 35 | 0.24% | 4 | 1.92% |
Guilherme G. Piccoli | 32 | 0.22% | 1 | 0.48% |
Suresh E. Warrier | 21 | 0.14% | 1 | 0.48% |
Christoph Hellwig | 18 | 0.12% | 2 | 0.96% |
Yongji Xie | 17 | 0.11% | 1 | 0.48% |
Bryant G. Ly | 12 | 0.08% | 1 | 0.48% |
Michael Neuling | 11 | 0.07% | 2 | 0.96% |
Julia Lawall | 8 | 0.05% | 1 | 0.48% |
Michael Ellerman | 6 | 0.04% | 2 | 0.96% |
Rob Herring | 5 | 0.03% | 1 | 0.48% |
Nishanth Aravamudan | 4 | 0.03% | 2 | 0.96% |
Christophe Leroy | 4 | 0.03% | 2 | 0.96% |
Hari Vyas | 3 | 0.02% | 1 | 0.48% |
Thomas Gleixner | 2 | 0.01% | 1 | 0.48% |
Yue haibing | 2 | 0.01% | 1 | 0.48% |
SF Markus Elfring | 2 | 0.01% | 1 | 0.48% |
Anton Blanchard | 2 | 0.01% | 1 | 0.48% |
Stewart Smith | 1 | 0.01% | 1 | 0.48% |
Yinghai Lu | 1 | 0.01% | 1 | 0.48% |
Björn Helgaas | 1 | 0.01% | 1 | 0.48% |
Alastair D'Silva | 1 | 0.01% | 1 | 0.48% |
Masahiro Yamada | 1 | 0.01% | 1 | 0.48% |
Total | 14837 | 208 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Support PCI/PCIe on PowerNV platforms * * Copyright 2011 Benjamin Herrenschmidt, IBM Corp. */ #undef DEBUG #include <linux/kernel.h> #include <linux/pci.h> #include <linux/crash_dump.h> #include <linux/delay.h> #include <linux/string.h> #include <linux/init.h> #include <linux/memblock.h> #include <linux/irq.h> #include <linux/io.h> #include <linux/msi.h> #include <linux/iommu.h> #include <linux/rculist.h> #include <linux/sizes.h> #include <asm/sections.h> #include <asm/io.h> #include <asm/prom.h> #include <asm/pci-bridge.h> #include <asm/machdep.h> #include <asm/msi_bitmap.h> #include <asm/ppc-pci.h> #include <asm/opal.h> #include <asm/iommu.h> #include <asm/tce.h> #include <asm/xics.h> #include <asm/debugfs.h> #include <asm/firmware.h> #include <asm/pnv-pci.h> #include <asm/mmzone.h> #include <misc/cxl-base.h> #include "powernv.h" #include "pci.h" #include "../../../../drivers/pci/pci.h" #define PNV_IODA1_M64_NUM 16 /* Number of M64 BARs */ #define PNV_IODA1_M64_SEGS 8 /* Segments per M64 BAR */ #define PNV_IODA1_DMA32_SEGSIZE 0x10000000 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU_NVLINK", "NPU_OCAPI" }; static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable); static void pnv_pci_configure_bus(struct pci_bus *bus); void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level, const char *fmt, ...) { struct va_format vaf; va_list args; char pfix[32]; va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; if (pe->flags & PNV_IODA_PE_DEV) strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix)); else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) sprintf(pfix, "%04x:%02x ", pci_domain_nr(pe->pbus), pe->pbus->number); #ifdef CONFIG_PCI_IOV else if (pe->flags & PNV_IODA_PE_VF) sprintf(pfix, "%04x:%02x:%2x.%d", pci_domain_nr(pe->parent_dev->bus), (pe->rid & 0xff00) >> 8, PCI_SLOT(pe->rid), PCI_FUNC(pe->rid)); #endif /* CONFIG_PCI_IOV*/ printk("%spci %s: [PE# %.2x] %pV", level, pfix, pe->pe_number, &vaf); va_end(args); } static bool pnv_iommu_bypass_disabled __read_mostly; static bool pci_reset_phbs __read_mostly; static int __init iommu_setup(char *str) { if (!str) return -EINVAL; while (*str) { if (!strncmp(str, "nobypass", 8)) { pnv_iommu_bypass_disabled = true; pr_info("PowerNV: IOMMU bypass window disabled.\n"); break; } str += strcspn(str, ","); if (*str == ',') str++; } return 0; } early_param("iommu", iommu_setup); static int __init pci_reset_phbs_setup(char *str) { pci_reset_phbs = true; return 0; } early_param("ppc_pci_reset_phbs", pci_reset_phbs_setup); static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no) { s64 rc; phb->ioda.pe_array[pe_no].phb = phb; phb->ioda.pe_array[pe_no].pe_number = pe_no; phb->ioda.pe_array[pe_no].dma_setup_done = false; /* * Clear the PE frozen state as it might be put into frozen state * in the last PCI remove path. It's not harmful to do so when the * PE is already in unfrozen state. */ rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED) pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n", __func__, rc, phb->hose->global_number, pe_no); return &phb->ioda.pe_array[pe_no]; } static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no) { if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) { pr_warn("%s: Invalid PE %x on PHB#%x\n", __func__, pe_no, phb->hose->global_number); return; } mutex_lock(&phb->ioda.pe_alloc_mutex); if (test_and_set_bit(pe_no, phb->ioda.pe_alloc)) pr_debug("%s: PE %x was reserved on PHB#%x\n", __func__, pe_no, phb->hose->global_number); mutex_unlock(&phb->ioda.pe_alloc_mutex); pnv_ioda_init_pe(phb, pe_no); } struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb, int count) { struct pnv_ioda_pe *ret = NULL; int run = 0, pe, i; mutex_lock(&phb->ioda.pe_alloc_mutex); /* scan backwards for a run of @count cleared bits */ for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) { if (test_bit(pe, phb->ioda.pe_alloc)) { run = 0; continue; } run++; if (run == count) break; } if (run != count) goto out; for (i = pe; i < pe + count; i++) { set_bit(i, phb->ioda.pe_alloc); pnv_ioda_init_pe(phb, i); } ret = &phb->ioda.pe_array[pe]; out: mutex_unlock(&phb->ioda.pe_alloc_mutex); return ret; } void pnv_ioda_free_pe(struct pnv_ioda_pe *pe) { struct pnv_phb *phb = pe->phb; unsigned int pe_num = pe->pe_number; WARN_ON(pe->pdev); WARN_ON(pe->npucomp); /* NPUs for nvlink are not supposed to be freed */ kfree(pe->npucomp); memset(pe, 0, sizeof(struct pnv_ioda_pe)); mutex_lock(&phb->ioda.pe_alloc_mutex); clear_bit(pe_num, phb->ioda.pe_alloc); mutex_unlock(&phb->ioda.pe_alloc_mutex); } /* The default M64 BAR is shared by all PEs */ static int pnv_ioda2_init_m64(struct pnv_phb *phb) { const char *desc; struct resource *r; s64 rc; /* Configure the default M64 BAR */ rc = opal_pci_set_phb_mem_window(phb->opal_id, OPAL_M64_WINDOW_TYPE, phb->ioda.m64_bar_idx, phb->ioda.m64_base, 0, /* unused */ phb->ioda.m64_size); if (rc != OPAL_SUCCESS) { desc = "configuring"; goto fail; } /* Enable the default M64 BAR */ rc = opal_pci_phb_mmio_enable(phb->opal_id, OPAL_M64_WINDOW_TYPE, phb->ioda.m64_bar_idx, OPAL_ENABLE_M64_SPLIT); if (rc != OPAL_SUCCESS) { desc = "enabling"; goto fail; } /* * Exclude the segments for reserved and root bus PE, which * are first or last two PEs. */ r = &phb->hose->mem_resources[1]; if (phb->ioda.reserved_pe_idx == 0) r->start += (2 * phb->ioda.m64_segsize); else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) r->end -= (2 * phb->ioda.m64_segsize); else pr_warn(" Cannot strip M64 segment for reserved PE#%x\n", phb->ioda.reserved_pe_idx); return 0; fail: pr_warn(" Failure %lld %s M64 BAR#%d\n", rc, desc, phb->ioda.m64_bar_idx); opal_pci_phb_mmio_enable(phb->opal_id, OPAL_M64_WINDOW_TYPE, phb->ioda.m64_bar_idx, OPAL_DISABLE_M64); return -EIO; } static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev, unsigned long *pe_bitmap) { struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus); struct resource *r; resource_size_t base, sgsz, start, end; int segno, i; base = phb->ioda.m64_base; sgsz = phb->ioda.m64_segsize; for (i = 0; i <= PCI_ROM_RESOURCE; i++) { r = &pdev->resource[i]; if (!r->parent || !pnv_pci_is_m64(phb, r)) continue; start = ALIGN_DOWN(r->start - base, sgsz); end = ALIGN(r->end - base, sgsz); for (segno = start / sgsz; segno < end / sgsz; segno++) { if (pe_bitmap) set_bit(segno, pe_bitmap); else pnv_ioda_reserve_pe(phb, segno); } } } static int pnv_ioda1_init_m64(struct pnv_phb *phb) { struct resource *r; int index; /* * There are 16 M64 BARs, each of which has 8 segments. So * there are as many M64 segments as the maximum number of * PEs, which is 128. */ for (index = 0; index < PNV_IODA1_M64_NUM; index++) { unsigned long base, segsz = phb->ioda.m64_segsize; int64_t rc; base = phb->ioda.m64_base + index * PNV_IODA1_M64_SEGS * segsz; rc = opal_pci_set_phb_mem_window(phb->opal_id, OPAL_M64_WINDOW_TYPE, index, base, 0, PNV_IODA1_M64_SEGS * segsz); if (rc != OPAL_SUCCESS) { pr_warn(" Error %lld setting M64 PHB#%x-BAR#%d\n", rc, phb->hose->global_number, index); goto fail; } rc = opal_pci_phb_mmio_enable(phb->opal_id, OPAL_M64_WINDOW_TYPE, index, OPAL_ENABLE_M64_SPLIT); if (rc != OPAL_SUCCESS) { pr_warn(" Error %lld enabling M64 PHB#%x-BAR#%d\n", rc, phb->hose->global_number, index); goto fail; } } for (index = 0; index < phb->ioda.total_pe_num; index++) { int64_t rc; /* * P7IOC supports M64DT, which helps mapping M64 segment * to one particular PE#. However, PHB3 has fixed mapping * between M64 segment and PE#. In order to have same logic * for P7IOC and PHB3, we enforce fixed mapping between M64 * segment and PE# on P7IOC. */ rc = opal_pci_map_pe_mmio_window(phb->opal_id, index, OPAL_M64_WINDOW_TYPE, index / PNV_IODA1_M64_SEGS, index % PNV_IODA1_M64_SEGS); if (rc != OPAL_SUCCESS) { pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n", __func__, rc, phb->hose->global_number, index); goto fail; } } /* * Exclude the segments for reserved and root bus PE, which * are first or last two PEs. */ r = &phb->hose->mem_resources[1]; if (phb->ioda.reserved_pe_idx == 0) r->start += (2 * phb->ioda.m64_segsize); else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) r->end -= (2 * phb->ioda.m64_segsize); else WARN(1, "Wrong reserved PE#%x on PHB#%x\n", phb->ioda.reserved_pe_idx, phb->hose->global_number); return 0; fail: for ( ; index >= 0; index--) opal_pci_phb_mmio_enable(phb->opal_id, OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64); return -EIO; } static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus, unsigned long *pe_bitmap, bool all) { struct pci_dev *pdev; list_for_each_entry(pdev, &bus->devices, bus_list) { pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap); if (all && pdev->subordinate) pnv_ioda_reserve_m64_pe(pdev->subordinate, pe_bitmap, all); } } static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all) { struct pnv_phb *phb = pci_bus_to_pnvhb(bus); struct pnv_ioda_pe *master_pe, *pe; unsigned long size, *pe_alloc; int i; /* Root bus shouldn't use M64 */ if (pci_is_root_bus(bus)) return NULL; /* Allocate bitmap */ size = ALIGN(phb->ioda.total_pe_num / 8, sizeof(unsigned long)); pe_alloc = kzalloc(size, GFP_KERNEL); if (!pe_alloc) { pr_warn("%s: Out of memory !\n", __func__); return NULL; } /* Figure out reserved PE numbers by the PE */ pnv_ioda_reserve_m64_pe(bus, pe_alloc, all); /* * the current bus might not own M64 window and that's all * contributed by its child buses. For the case, we needn't * pick M64 dependent PE#. */ if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) { kfree(pe_alloc); return NULL; } /* * Figure out the master PE and put all slave PEs to master * PE's list to form compound PE. */ master_pe = NULL; i = -1; while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) < phb->ioda.total_pe_num) { pe = &phb->ioda.pe_array[i]; phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number; if (!master_pe) { pe->flags |= PNV_IODA_PE_MASTER; INIT_LIST_HEAD(&pe->slaves); master_pe = pe; } else { pe->flags |= PNV_IODA_PE_SLAVE; pe->master = master_pe; list_add_tail(&pe->list, &master_pe->slaves); } } kfree(pe_alloc); return master_pe; } static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb) { struct pci_controller *hose = phb->hose; struct device_node *dn = hose->dn; struct resource *res; u32 m64_range[2], i; const __be32 *r; u64 pci_addr; if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) { pr_info(" Not support M64 window\n"); return; } if (!firmware_has_feature(FW_FEATURE_OPAL)) { pr_info(" Firmware too old to support M64 window\n"); return; } r = of_get_property(dn, "ibm,opal-m64-window", NULL); if (!r) { pr_info(" No <ibm,opal-m64-window> on %pOF\n", dn); return; } /* * Find the available M64 BAR range and pickup the last one for * covering the whole 64-bits space. We support only one range. */ if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges", m64_range, 2)) { /* In absence of the property, assume 0..15 */ m64_range[0] = 0; m64_range[1] = 16; } /* We only support 64 bits in our allocator */ if (m64_range[1] > 63) { pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n", __func__, m64_range[1], phb->hose->global_number); m64_range[1] = 63; } /* Empty range, no m64 */ if (m64_range[1] <= m64_range[0]) { pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n", __func__, phb->hose->global_number); return; } /* Configure M64 informations */ res = &hose->mem_resources[1]; res->name = dn->full_name; res->start = of_translate_address(dn, r + 2); res->end = res->start + of_read_number(r + 4, 2) - 1; res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH); pci_addr = of_read_number(r, 2); hose->mem_offset[1] = res->start - pci_addr; phb->ioda.m64_size = resource_size(res); phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num; phb->ioda.m64_base = pci_addr; /* This lines up nicely with the display from processing OF ranges */ pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n", res->start, res->end, pci_addr, m64_range[0], m64_range[0] + m64_range[1] - 1); /* Mark all M64 used up by default */ phb->ioda.m64_bar_alloc = (unsigned long)-1; /* Use last M64 BAR to cover M64 window */ m64_range[1]--; phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1]; pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx); /* Mark remaining ones free */ for (i = m64_range[0]; i < m64_range[1]; i++) clear_bit(i, &phb->ioda.m64_bar_alloc); /* * Setup init functions for M64 based on IODA version, IODA3 uses * the IODA2 code. */ if (phb->type == PNV_PHB_IODA1) phb->init_m64 = pnv_ioda1_init_m64; else phb->init_m64 = pnv_ioda2_init_m64; } static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no) { struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no]; struct pnv_ioda_pe *slave; s64 rc; /* Fetch master PE */ if (pe->flags & PNV_IODA_PE_SLAVE) { pe = pe->master; if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER))) return; pe_no = pe->pe_number; } /* Freeze master PE */ rc = opal_pci_eeh_freeze_set(phb->opal_id, pe_no, OPAL_EEH_ACTION_SET_FREEZE_ALL); if (rc != OPAL_SUCCESS) { pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n", __func__, rc, phb->hose->global_number, pe_no); return; } /* Freeze slave PEs */ if (!(pe->flags & PNV_IODA_PE_MASTER)) return; list_for_each_entry(slave, &pe->slaves, list) { rc = opal_pci_eeh_freeze_set(phb->opal_id, slave->pe_number, OPAL_EEH_ACTION_SET_FREEZE_ALL); if (rc != OPAL_SUCCESS) pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n", __func__, rc, phb->hose->global_number, slave->pe_number); } } static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt) { struct pnv_ioda_pe *pe, *slave; s64 rc; /* Find master PE */ pe = &phb->ioda.pe_array[pe_no]; if (pe->flags & PNV_IODA_PE_SLAVE) { pe = pe->master; WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)); pe_no = pe->pe_number; } /* Clear frozen state for master PE */ rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt); if (rc != OPAL_SUCCESS) { pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n", __func__, rc, opt, phb->hose->global_number, pe_no); return -EIO; } if (!(pe->flags & PNV_IODA_PE_MASTER)) return 0; /* Clear frozen state for slave PEs */ list_for_each_entry(slave, &pe->slaves, list) { rc = opal_pci_eeh_freeze_clear(phb->opal_id, slave->pe_number, opt); if (rc != OPAL_SUCCESS) { pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n", __func__, rc, opt, phb->hose->global_number, slave->pe_number); return -EIO; } } return 0; } static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no) { struct pnv_ioda_pe *slave, *pe; u8 fstate = 0, state; __be16 pcierr = 0; s64 rc; /* Sanity check on PE number */ if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num) return OPAL_EEH_STOPPED_PERM_UNAVAIL; /* * Fetch the master PE and the PE instance might be * not initialized yet. */ pe = &phb->ioda.pe_array[pe_no]; if (pe->flags & PNV_IODA_PE_SLAVE) { pe = pe->master; WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)); pe_no = pe->pe_number; } /* Check the master PE */ rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no, &state, &pcierr, NULL); if (rc != OPAL_SUCCESS) { pr_warn("%s: Failure %lld getting " "PHB#%x-PE#%x state\n", __func__, rc, phb->hose->global_number, pe_no); return OPAL_EEH_STOPPED_TEMP_UNAVAIL; } /* Check the slave PE */ if (!(pe->flags & PNV_IODA_PE_MASTER)) return state; list_for_each_entry(slave, &pe->slaves, list) { rc = opal_pci_eeh_freeze_status(phb->opal_id, slave->pe_number, &fstate, &pcierr, NULL); if (rc != OPAL_SUCCESS) { pr_warn("%s: Failure %lld getting " "PHB#%x-PE#%x state\n", __func__, rc, phb->hose->global_number, slave->pe_number); return OPAL_EEH_STOPPED_TEMP_UNAVAIL; } /* * Override the result based on the ascending * priority. */ if (fstate > state) state = fstate; } return state; } struct pnv_ioda_pe *pnv_pci_bdfn_to_pe(struct pnv_phb *phb, u16 bdfn) { int pe_number = phb->ioda.pe_rmap[bdfn]; if (pe_number == IODA_INVALID_PE) return NULL; return &phb->ioda.pe_array[pe_number]; } struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev) { struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus); struct pci_dn *pdn = pci_get_pdn(dev); if (!pdn) return NULL; if (pdn->pe_number == IODA_INVALID_PE) return NULL; return &phb->ioda.pe_array[pdn->pe_number]; } static int pnv_ioda_set_one_peltv(struct pnv_phb *phb, struct pnv_ioda_pe *parent, struct pnv_ioda_pe *child, bool is_add) { const char *desc = is_add ? "adding" : "removing"; uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN : OPAL_REMOVE_PE_FROM_DOMAIN; struct pnv_ioda_pe *slave; long rc; /* Parent PE affects child PE */ rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number, child->pe_number, op); if (rc != OPAL_SUCCESS) { pe_warn(child, "OPAL error %ld %s to parent PELTV\n", rc, desc); return -ENXIO; } if (!(child->flags & PNV_IODA_PE_MASTER)) return 0; /* Compound case: parent PE affects slave PEs */ list_for_each_entry(slave, &child->slaves, list) { rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number, slave->pe_number, op); if (rc != OPAL_SUCCESS) { pe_warn(slave, "OPAL error %ld %s to parent PELTV\n", rc, desc); return -ENXIO; } } return 0; } static int pnv_ioda_set_peltv(struct pnv_phb *phb, struct pnv_ioda_pe *pe, bool is_add) { struct pnv_ioda_pe *slave; struct pci_dev *pdev = NULL; int ret; /* * Clear PE frozen state. If it's master PE, we need * clear slave PE frozen state as well. */ if (is_add) { opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number, OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); if (pe->flags & PNV_IODA_PE_MASTER) { list_for_each_entry(slave, &pe->slaves, list) opal_pci_eeh_freeze_clear(phb->opal_id, slave->pe_number, OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); } } /* * Associate PE in PELT. We need add the PE into the * corresponding PELT-V as well. Otherwise, the error * originated from the PE might contribute to other * PEs. */ ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add); if (ret) return ret; /* For compound PEs, any one affects all of them */ if (pe->flags & PNV_IODA_PE_MASTER) { list_for_each_entry(slave, &pe->slaves, list) { ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add); if (ret) return ret; } } if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS)) pdev = pe->pbus->self; else if (pe->flags & PNV_IODA_PE_DEV) pdev = pe->pdev->bus->self; #ifdef CONFIG_PCI_IOV else if (pe->flags & PNV_IODA_PE_VF) pdev = pe->parent_dev; #endif /* CONFIG_PCI_IOV */ while (pdev) { struct pci_dn *pdn = pci_get_pdn(pdev); struct pnv_ioda_pe *parent; if (pdn && pdn->pe_number != IODA_INVALID_PE) { parent = &phb->ioda.pe_array[pdn->pe_number]; ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add); if (ret) return ret; } pdev = pdev->bus->self; } return 0; } static void pnv_ioda_unset_peltv(struct pnv_phb *phb, struct pnv_ioda_pe *pe, struct pci_dev *parent) { int64_t rc; while (parent) { struct pci_dn *pdn = pci_get_pdn(parent); if (pdn && pdn->pe_number != IODA_INVALID_PE) { rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number, pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN); /* XXX What to do in case of error ? */ } parent = parent->bus->self; } opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number, OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); /* Disassociate PE in PELT */ rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number, pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN); if (rc) pe_warn(pe, "OPAL error %lld remove self from PELTV\n", rc); } int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe) { struct pci_dev *parent; uint8_t bcomp, dcomp, fcomp; int64_t rc; long rid_end, rid; /* Currently, we just deconfigure VF PE. Bus PE will always there.*/ if (pe->pbus) { int count; dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER; fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER; parent = pe->pbus->self; if (pe->flags & PNV_IODA_PE_BUS_ALL) count = resource_size(&pe->pbus->busn_res); else count = 1; switch(count) { case 1: bcomp = OpalPciBusAll; break; case 2: bcomp = OpalPciBus7Bits; break; case 4: bcomp = OpalPciBus6Bits; break; case 8: bcomp = OpalPciBus5Bits; break; case 16: bcomp = OpalPciBus4Bits; break; case 32: bcomp = OpalPciBus3Bits; break; default: dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n", count); /* Do an exact match only */ bcomp = OpalPciBusAll; } rid_end = pe->rid + (count << 8); } else { #ifdef CONFIG_PCI_IOV if (pe->flags & PNV_IODA_PE_VF) parent = pe->parent_dev; else #endif parent = pe->pdev->bus->self; bcomp = OpalPciBusAll; dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER; fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER; rid_end = pe->rid + 1; } /* Clear the reverse map */ for (rid = pe->rid; rid < rid_end; rid++) phb->ioda.pe_rmap[rid] = IODA_INVALID_PE; /* * Release from all parents PELT-V. NPUs don't have a PELTV * table */ if (phb->type != PNV_PHB_NPU_NVLINK && phb->type != PNV_PHB_NPU_OCAPI) pnv_ioda_unset_peltv(phb, pe, parent); rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid, bcomp, dcomp, fcomp, OPAL_UNMAP_PE); if (rc) pe_err(pe, "OPAL error %lld trying to setup PELT table\n", rc); pe->pbus = NULL; pe->pdev = NULL; #ifdef CONFIG_PCI_IOV pe->parent_dev = NULL; #endif return 0; } int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe) { struct pci_dev *parent; uint8_t bcomp, dcomp, fcomp; long rc, rid_end, rid; /* Bus validation ? */ if (pe->pbus) { int count; dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER; fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER; parent = pe->pbus->self; if (pe->flags & PNV_IODA_PE_BUS_ALL) count = resource_size(&pe->pbus->busn_res); else count = 1; switch(count) { case 1: bcomp = OpalPciBusAll; break; case 2: bcomp = OpalPciBus7Bits; break; case 4: bcomp = OpalPciBus6Bits; break; case 8: bcomp = OpalPciBus5Bits; break; case 16: bcomp = OpalPciBus4Bits; break; case 32: bcomp = OpalPciBus3Bits; break; default: dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n", count); /* Do an exact match only */ bcomp = OpalPciBusAll; } rid_end = pe->rid + (count << 8); } else { #ifdef CONFIG_PCI_IOV if (pe->flags & PNV_IODA_PE_VF) parent = pe->parent_dev; else #endif /* CONFIG_PCI_IOV */ parent = pe->pdev->bus->self; bcomp = OpalPciBusAll; dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER; fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER; rid_end = pe->rid + 1; } /* * Associate PE in PELT. We need add the PE into the * corresponding PELT-V as well. Otherwise, the error * originated from the PE might contribute to other * PEs. */ rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid, bcomp, dcomp, fcomp, OPAL_MAP_PE); if (rc) { pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc); return -ENXIO; } /* * Configure PELTV. NPUs don't have a PELTV table so skip * configuration on them. */ if (phb->type != PNV_PHB_NPU_NVLINK && phb->type != PNV_PHB_NPU_OCAPI) pnv_ioda_set_peltv(phb, pe, true); /* Setup reverse map */ for (rid = pe->rid; rid < rid_end; rid++) phb->ioda.pe_rmap[rid] = pe->pe_number; /* Setup one MVTs on IODA1 */ if (phb->type != PNV_PHB_IODA1) { pe->mve_number = 0; goto out; } pe->mve_number = pe->pe_number; rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number); if (rc != OPAL_SUCCESS) { pe_err(pe, "OPAL error %ld setting up MVE %x\n", rc, pe->mve_number); pe->mve_number = -1; } else { rc = opal_pci_set_mve_enable(phb->opal_id, pe->mve_number, OPAL_ENABLE_MVE); if (rc) { pe_err(pe, "OPAL error %ld enabling MVE %x\n", rc, pe->mve_number); pe->mve_number = -1; } } out: return 0; } static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev) { struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus); struct pci_dn *pdn = pci_get_pdn(dev); struct pnv_ioda_pe *pe; if (!pdn) { pr_err("%s: Device tree node not associated properly\n", pci_name(dev)); return NULL; } if (pdn->pe_number != IODA_INVALID_PE) return NULL; pe = pnv_ioda_alloc_pe(phb, 1); if (!pe) { pr_warn("%s: Not enough PE# available, disabling device\n", pci_name(dev)); return NULL; } /* NOTE: We don't get a reference for the pointer in the PE * data structure, both the device and PE structures should be * destroyed at the same time. However, removing nvlink * devices will need some work. * * At some point we want to remove the PDN completely anyways */ pdn->pe_number = pe->pe_number; pe->flags = PNV_IODA_PE_DEV; pe->pdev = dev; pe->pbus = NULL; pe->mve_number = -1; pe->rid = dev->bus->number << 8 | pdn->devfn; pe->device_count++; pe_info(pe, "Associated device to PE\n"); if (pnv_ioda_configure_pe(phb, pe)) { /* XXX What do we do here ? */ pnv_ioda_free_pe(pe); pdn->pe_number = IODA_INVALID_PE; pe->pdev = NULL; return NULL; } /* Put PE to the list */ mutex_lock(&phb->ioda.pe_list_mutex); list_add_tail(&pe->list, &phb->ioda.pe_list); mutex_unlock(&phb->ioda.pe_list_mutex); return pe; } /* * There're 2 types of PCI bus sensitive PEs: One that is compromised of * single PCI bus. Another one that contains the primary PCI bus and its * subordinate PCI devices and buses. The second type of PE is normally * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports. */ static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all) { struct pnv_phb *phb = pci_bus_to_pnvhb(bus); struct pnv_ioda_pe *pe = NULL; unsigned int pe_num; /* * In partial hotplug case, the PE instance might be still alive. * We should reuse it instead of allocating a new one. */ pe_num = phb->ioda.pe_rmap[bus->number << 8]; if (WARN_ON(pe_num != IODA_INVALID_PE)) { pe = &phb->ioda.pe_array[pe_num]; return NULL; } /* PE number for root bus should have been reserved */ if (pci_is_root_bus(bus)) pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx]; /* Check if PE is determined by M64 */ if (!pe) pe = pnv_ioda_pick_m64_pe(bus, all); /* The PE number isn't pinned by M64 */ if (!pe) pe = pnv_ioda_alloc_pe(phb, 1); if (!pe) { pr_warn("%s: Not enough PE# available for PCI bus %04x:%02x\n", __func__, pci_domain_nr(bus), bus->number); return NULL; } pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS); pe->pbus = bus; pe->pdev = NULL; pe->mve_number = -1; pe->rid = bus->busn_res.start << 8; if (all) pe_info(pe, "Secondary bus %pad..%pad associated with PE#%x\n", &bus->busn_res.start, &bus->busn_res.end, pe->pe_number); else pe_info(pe, "Secondary bus %pad associated with PE#%x\n", &bus->busn_res.start, pe->pe_number); if (pnv_ioda_configure_pe(phb, pe)) { /* XXX What do we do here ? */ pnv_ioda_free_pe(pe); pe->pbus = NULL; return NULL; } /* Put PE to the list */ list_add_tail(&pe->list, &phb->ioda.pe_list); return pe; } static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev) { int pe_num, found_pe = false, rc; long rid; struct pnv_ioda_pe *pe; struct pci_dev *gpu_pdev; struct pci_dn *npu_pdn; struct pnv_phb *phb = pci_bus_to_pnvhb(npu_pdev->bus); /* * Intentionally leak a reference on the npu device (for * nvlink only; this is not an opencapi path) to make sure it * never goes away, as it's been the case all along and some * work is needed otherwise. */ pci_dev_get(npu_pdev); /* * Due to a hardware errata PE#0 on the NPU is reserved for * error handling. This means we only have three PEs remaining * which need to be assigned to four links, implying some * links must share PEs. * * To achieve this we assign PEs such that NPUs linking the * same GPU get assigned the same PE. */ gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev); for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) { pe = &phb->ioda.pe_array[pe_num]; if (!pe->pdev) continue; if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) { /* * This device has the same peer GPU so should * be assigned the same PE as the existing * peer NPU. */ dev_info(&npu_pdev->dev, "Associating to existing PE %x\n", pe_num); npu_pdn = pci_get_pdn(npu_pdev); rid = npu_pdev->bus->number << 8 | npu_pdn->devfn; npu_pdn->pe_number = pe_num; phb->ioda.pe_rmap[rid] = pe->pe_number; pe->device_count++; /* Map the PE to this link */ rc = opal_pci_set_pe(phb->opal_id, pe_num, rid, OpalPciBusAll, OPAL_COMPARE_RID_DEVICE_NUMBER, OPAL_COMPARE_RID_FUNCTION_NUMBER, OPAL_MAP_PE); WARN_ON(rc != OPAL_SUCCESS); found_pe = true; break; } } if (!found_pe) /* * Could not find an existing PE so allocate a new * one. */ return pnv_ioda_setup_dev_PE(npu_pdev); else return pe; } static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus) { struct pci_dev *pdev; list_for_each_entry(pdev, &bus->devices, bus_list) pnv_ioda_setup_npu_PE(pdev); } static void pnv_pci_ioda_setup_nvlink(void) { struct pci_controller *hose; struct pnv_phb *phb; struct pnv_ioda_pe *pe; list_for_each_entry(hose, &hose_list, list_node) { phb = hose->private_data; if (phb->type == PNV_PHB_NPU_NVLINK) { /* PE#0 is needed for error reporting */ pnv_ioda_reserve_pe(phb, 0); pnv_ioda_setup_npu_PEs(hose->bus); if (phb->model == PNV_PHB_MODEL_NPU2) WARN_ON_ONCE(pnv_npu2_init(hose)); } } list_for_each_entry(hose, &hose_list, list_node) { phb = hose->private_data; if (phb->type != PNV_PHB_IODA2) continue; list_for_each_entry(pe, &phb->ioda.pe_list, list) pnv_npu2_map_lpar(pe, MSR_DR | MSR_PR | MSR_HV); } #ifdef CONFIG_IOMMU_API /* setup iommu groups so we can do nvlink pass-thru */ pnv_pci_npu_setup_iommu_groups(); #endif } static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe); static void pnv_pci_ioda_dma_dev_setup(struct pci_dev *pdev) { struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus); struct pci_dn *pdn = pci_get_pdn(pdev); struct pnv_ioda_pe *pe; /* Check if the BDFN for this device is associated with a PE yet */ pe = pnv_pci_bdfn_to_pe(phb, pdev->devfn | (pdev->bus->number << 8)); if (!pe) { /* VF PEs should be pre-configured in pnv_pci_sriov_enable() */ if (WARN_ON(pdev->is_virtfn)) return; pnv_pci_configure_bus(pdev->bus); pe = pnv_pci_bdfn_to_pe(phb, pdev->devfn | (pdev->bus->number << 8)); pci_info(pdev, "Configured PE#%x\n", pe ? pe->pe_number : 0xfffff); /* * If we can't setup the IODA PE something has gone horribly * wrong and we can't enable DMA for the device. */ if (WARN_ON(!pe)) return; } else { pci_info(pdev, "Added to existing PE#%x\n", pe->pe_number); } /* * We assume that bridges *probably* don't need to do any DMA so we can * skip allocating a TCE table, etc unless we get a non-bridge device. */ if (!pe->dma_setup_done && !pci_is_bridge(pdev)) { switch (phb->type) { case PNV_PHB_IODA1: pnv_pci_ioda1_setup_dma_pe(phb, pe); break; case PNV_PHB_IODA2: pnv_pci_ioda2_setup_dma_pe(phb, pe); break; default: pr_warn("%s: No DMA for PHB#%x (type %d)\n", __func__, phb->hose->global_number, phb->type); } } if (pdn) pdn->pe_number = pe->pe_number; pe->device_count++; WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops); pdev->dev.archdata.dma_offset = pe->tce_bypass_base; set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]); /* PEs with a DMA weight of zero won't have a group */ if (pe->table_group.group) iommu_add_device(&pe->table_group, &pdev->dev); } /* * Reconfigure TVE#0 to be usable as 64-bit DMA space. * * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses. * Devices can only access more than that if bit 59 of the PCI address is set * by hardware, which indicates TVE#1 should be used instead of TVE#0. * Many PCI devices are not capable of addressing that many bits, and as a * result are limited to the 4GB of virtual memory made available to 32-bit * devices in TVE#0. * * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit * devices by configuring the virtual memory past the first 4GB inaccessible * by 64-bit DMAs. This should only be used by devices that want more than * 4GB, and only on PEs that have no 32-bit devices. * * Currently this will only work on PHB3 (POWER8). */ static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe) { u64 window_size, table_size, tce_count, addr; struct page *table_pages; u64 tce_order = 28; /* 256MB TCEs */ __be64 *tces; s64 rc; /* * Window size needs to be a power of two, but needs to account for * shifting memory by the 4GB offset required to skip 32bit space. */ window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32)); tce_count = window_size >> tce_order; table_size = tce_count << 3; if (table_size < PAGE_SIZE) table_size = PAGE_SIZE; table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL, get_order(table_size)); if (!table_pages) goto err; tces = page_address(table_pages); if (!tces) goto err; memset(tces, 0, table_size); for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) { tces[(addr + (1ULL << 32)) >> tce_order] = cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE); } rc = opal_pci_map_pe_dma_window(pe->phb->opal_id, pe->pe_number, /* reconfigure window 0 */ (pe->pe_number << 1) + 0, 1, __pa(tces), table_size, 1 << tce_order); if (rc == OPAL_SUCCESS) { pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n"); return 0; } err: pe_err(pe, "Error configuring 64-bit DMA bypass\n"); return -EIO; } static bool pnv_pci_ioda_iommu_bypass_supported(struct pci_dev *pdev, u64 dma_mask) { struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus); struct pci_dn *pdn = pci_get_pdn(pdev); struct pnv_ioda_pe *pe; if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE)) return false; pe = &phb->ioda.pe_array[pdn->pe_number]; if (pe->tce_bypass_enabled) { u64 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1; if (dma_mask >= top) return true; } /* * If the device can't set the TCE bypass bit but still wants * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to * bypass the 32-bit region and be usable for 64-bit DMAs. * The device needs to be able to address all of this space. */ if (dma_mask >> 32 && dma_mask > (memory_hotplug_max() + (1ULL << 32)) && /* pe->pdev should be set if it's a single device, pe->pbus if not */ (pe->device_count == 1 || !pe->pbus) && phb->model == PNV_PHB_MODEL_PHB3) { /* Configure the bypass mode */ s64 rc = pnv_pci_ioda_dma_64bit_bypass(pe); if (rc) return false; /* 4GB offset bypasses 32-bit space */ pdev->dev.archdata.dma_offset = (1ULL << 32); return true; } return false; } static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb, bool real_mode) { return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) : (phb->regs + 0x210); } static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl, unsigned long index, unsigned long npages, bool rm) { struct iommu_table_group_link *tgl = list_first_entry_or_null( &tbl->it_group_list, struct iommu_table_group_link, next); struct pnv_ioda_pe *pe = container_of(tgl->table_group, struct pnv_ioda_pe, table_group); __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm); unsigned long start, end, inc; start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset); end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset + npages - 1); /* p7ioc-style invalidation, 2 TCEs per write */ start |= (1ull << 63); end |= (1ull << 63); inc = 16; end |= inc - 1; /* round up end to be different than start */ mb(); /* Ensure above stores are visible */ while (start <= end) { if (rm) __raw_rm_writeq_be(start, invalidate); else __raw_writeq_be(start, invalidate); start += inc; } /* * The iommu layer will do another mb() for us on build() * and we don't care on free() */ } static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index, long npages, unsigned long uaddr, enum dma_data_direction direction, unsigned long attrs) { int ret = pnv_tce_build(tbl, index, npages, uaddr, direction, attrs); if (!ret) pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false); return ret; } #ifdef CONFIG_IOMMU_API /* Common for IODA1 and IODA2 */ static int pnv_ioda_tce_xchg_no_kill(struct iommu_table *tbl, long index, unsigned long *hpa, enum dma_data_direction *direction, bool realmode) { return pnv_tce_xchg(tbl, index, hpa, direction, !realmode); } #endif static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index, long npages) { pnv_tce_free(tbl, index, npages); pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false); } static struct iommu_table_ops pnv_ioda1_iommu_ops = { .set = pnv_ioda1_tce_build, #ifdef CONFIG_IOMMU_API .xchg_no_kill = pnv_ioda_tce_xchg_no_kill, .tce_kill = pnv_pci_p7ioc_tce_invalidate, .useraddrptr = pnv_tce_useraddrptr, #endif .clear = pnv_ioda1_tce_free, .get = pnv_tce_get, }; #define PHB3_TCE_KILL_INVAL_ALL PPC_BIT(0) #define PHB3_TCE_KILL_INVAL_PE PPC_BIT(1) #define PHB3_TCE_KILL_INVAL_ONE PPC_BIT(2) static void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm) { __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm); const unsigned long val = PHB3_TCE_KILL_INVAL_ALL; mb(); /* Ensure previous TCE table stores are visible */ if (rm) __raw_rm_writeq_be(val, invalidate); else __raw_writeq_be(val, invalidate); } static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe) { /* 01xb - invalidate TCEs that match the specified PE# */ __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false); unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF); mb(); /* Ensure above stores are visible */ __raw_writeq_be(val, invalidate); } static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm, unsigned shift, unsigned long index, unsigned long npages) { __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm); unsigned long start, end, inc; /* We'll invalidate DMA address in PE scope */ start = PHB3_TCE_KILL_INVAL_ONE; start |= (pe->pe_number & 0xFF); end = start; /* Figure out the start, end and step */ start |= (index << shift); end |= ((index + npages - 1) << shift); inc = (0x1ull << shift); mb(); while (start <= end) { if (rm) __raw_rm_writeq_be(start, invalidate); else __raw_writeq_be(start, invalidate); start += inc; } } static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe) { struct pnv_phb *phb = pe->phb; if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs) pnv_pci_phb3_tce_invalidate_pe(pe); else opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE, pe->pe_number, 0, 0, 0); } static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl, unsigned long index, unsigned long npages, bool rm) { struct iommu_table_group_link *tgl; list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) { struct pnv_ioda_pe *pe = container_of(tgl->table_group, struct pnv_ioda_pe, table_group); struct pnv_phb *phb = pe->phb; unsigned int shift = tbl->it_page_shift; /* * NVLink1 can use the TCE kill register directly as * it's the same as PHB3. NVLink2 is different and * should go via the OPAL call. */ if (phb->model == PNV_PHB_MODEL_NPU) { /* * The NVLink hardware does not support TCE kill * per TCE entry so we have to invalidate * the entire cache for it. */ pnv_pci_phb3_tce_invalidate_entire(phb, rm); continue; } if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs) pnv_pci_phb3_tce_invalidate(pe, rm, shift, index, npages); else opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PAGES, pe->pe_number, 1u << shift, index << shift, npages); } } void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm) { if (phb->model == PNV_PHB_MODEL_NPU || phb->model == PNV_PHB_MODEL_PHB3) pnv_pci_phb3_tce_invalidate_entire(phb, rm); else opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL, 0, 0, 0, 0); } static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index, long npages, unsigned long uaddr, enum dma_data_direction direction, unsigned long attrs) { int ret = pnv_tce_build(tbl, index, npages, uaddr, direction, attrs); if (!ret) pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false); return ret; } static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index, long npages) { pnv_tce_free(tbl, index, npages); pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false); } static struct iommu_table_ops pnv_ioda2_iommu_ops = { .set = pnv_ioda2_tce_build, #ifdef CONFIG_IOMMU_API .xchg_no_kill = pnv_ioda_tce_xchg_no_kill, .tce_kill = pnv_pci_ioda2_tce_invalidate, .useraddrptr = pnv_tce_useraddrptr, #endif .clear = pnv_ioda2_tce_free, .get = pnv_tce_get, .free = pnv_pci_ioda2_table_free_pages, }; static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data) { unsigned int *weight = (unsigned int *)data; /* This is quite simplistic. The "base" weight of a device * is 10. 0 means no DMA is to be accounted for it. */ if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL) return 0; if (dev->class == PCI_CLASS_SERIAL_USB_UHCI || dev->class == PCI_CLASS_SERIAL_USB_OHCI || dev->class == PCI_CLASS_SERIAL_USB_EHCI) *weight += 3; else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID) *weight += 15; else *weight += 10; return 0; } static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe) { unsigned int weight = 0; /* SRIOV VF has same DMA32 weight as its PF */ #ifdef CONFIG_PCI_IOV if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) { pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight); return weight; } #endif if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) { pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight); } else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) { struct pci_dev *pdev; list_for_each_entry(pdev, &pe->pbus->devices, bus_list) pnv_pci_ioda_dev_dma_weight(pdev, &weight); } else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) { pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight); } return weight; } static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe) { struct page *tce_mem = NULL; struct iommu_table *tbl; unsigned int weight, total_weight = 0; unsigned int tce32_segsz, base, segs, avail, i; int64_t rc; void *addr; /* XXX FIXME: Handle 64-bit only DMA devices */ /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */ /* XXX FIXME: Allocate multi-level tables on PHB3 */ weight = pnv_pci_ioda_pe_dma_weight(pe); if (!weight) return; pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight, &total_weight); segs = (weight * phb->ioda.dma32_count) / total_weight; if (!segs) segs = 1; /* * Allocate contiguous DMA32 segments. We begin with the expected * number of segments. With one more attempt, the number of DMA32 * segments to be allocated is decreased by one until one segment * is allocated successfully. */ do { for (base = 0; base <= phb->ioda.dma32_count - segs; base++) { for (avail = 0, i = base; i < base + segs; i++) { if (phb->ioda.dma32_segmap[i] == IODA_INVALID_PE) avail++; } if (avail == segs) goto found; } } while (--segs); if (!segs) { pe_warn(pe, "No available DMA32 segments\n"); return; } found: tbl = pnv_pci_table_alloc(phb->hose->node); if (WARN_ON(!tbl)) return; iommu_register_group(&pe->table_group, phb->hose->global_number, pe->pe_number); pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group); /* Grab a 32-bit TCE table */ pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n", weight, total_weight, base, segs); pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n", base * PNV_IODA1_DMA32_SEGSIZE, (base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1); /* XXX Currently, we allocate one big contiguous table for the * TCEs. We only really need one chunk per 256M of TCE space * (ie per segment) but that's an optimization for later, it * requires some added smarts with our get/put_tce implementation * * Each TCE page is 4KB in size and each TCE entry occupies 8 * bytes */ tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3); tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL, get_order(tce32_segsz * segs)); if (!tce_mem) { pe_err(pe, " Failed to allocate a 32-bit TCE memory\n"); goto fail; } addr = page_address(tce_mem); memset(addr, 0, tce32_segsz * segs); /* Configure HW */ for (i = 0; i < segs; i++) { rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number, base + i, 1, __pa(addr) + tce32_segsz * i, tce32_segsz, IOMMU_PAGE_SIZE_4K); if (rc) { pe_err(pe, " Failed to configure 32-bit TCE table, err %lld\n", rc); goto fail; } } /* Setup DMA32 segment mapping */ for (i = base; i < base + segs; i++) phb->ioda.dma32_segmap[i] = pe->pe_number; /* Setup linux iommu table */ pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs, base * PNV_IODA1_DMA32_SEGSIZE, IOMMU_PAGE_SHIFT_4K); tbl->it_ops = &pnv_ioda1_iommu_ops; pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift; pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift; iommu_init_table(tbl, phb->hose->node, 0, 0); pe->dma_setup_done = true; return; fail: /* XXX Failure: Try to fallback to 64-bit only ? */ if (tce_mem) __free_pages(tce_mem, get_order(tce32_segsz * segs)); if (tbl) { pnv_pci_unlink_table_and_group(tbl, &pe->table_group); iommu_tce_table_put(tbl); } } static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group, int num, struct iommu_table *tbl) { struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, table_group); struct pnv_phb *phb = pe->phb; int64_t rc; const unsigned long size = tbl->it_indirect_levels ? tbl->it_level_size : tbl->it_size; const __u64 start_addr = tbl->it_offset << tbl->it_page_shift; const __u64 win_size = tbl->it_size << tbl->it_page_shift; pe_info(pe, "Setting up window#%d %llx..%llx pg=%lx\n", num, start_addr, start_addr + win_size - 1, IOMMU_PAGE_SIZE(tbl)); /* * Map TCE table through TVT. The TVE index is the PE number * shifted by 1 bit for 32-bits DMA space. */ rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number, (pe->pe_number << 1) + num, tbl->it_indirect_levels + 1, __pa(tbl->it_base), size << 3, IOMMU_PAGE_SIZE(tbl)); if (rc) { pe_err(pe, "Failed to configure TCE table, err %lld\n", rc); return rc; } pnv_pci_link_table_and_group(phb->hose->node, num, tbl, &pe->table_group); pnv_pci_ioda2_tce_invalidate_pe(pe); return 0; } static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable) { uint16_t window_id = (pe->pe_number << 1 ) + 1; int64_t rc; pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis"); if (enable) { phys_addr_t top = memblock_end_of_DRAM(); top = roundup_pow_of_two(top); rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id, pe->pe_number, window_id, pe->tce_bypass_base, top); } else { rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id, pe->pe_number, window_id, pe->tce_bypass_base, 0); } if (rc) pe_err(pe, "OPAL error %lld configuring bypass window\n", rc); else pe->tce_bypass_enabled = enable; } static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group, int num, __u32 page_shift, __u64 window_size, __u32 levels, bool alloc_userspace_copy, struct iommu_table **ptbl) { struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, table_group); int nid = pe->phb->hose->node; __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start; long ret; struct iommu_table *tbl; tbl = pnv_pci_table_alloc(nid); if (!tbl) return -ENOMEM; tbl->it_ops = &pnv_ioda2_iommu_ops; ret = pnv_pci_ioda2_table_alloc_pages(nid, bus_offset, page_shift, window_size, levels, alloc_userspace_copy, tbl); if (ret) { iommu_tce_table_put(tbl); return ret; } *ptbl = tbl; return 0; } static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe) { struct iommu_table *tbl = NULL; long rc; unsigned long res_start, res_end; /* * crashkernel= specifies the kdump kernel's maximum memory at * some offset and there is no guaranteed the result is a power * of 2, which will cause errors later. */ const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max()); /* * In memory constrained environments, e.g. kdump kernel, the * DMA window can be larger than available memory, which will * cause errors later. */ const u64 maxblock = 1UL << (PAGE_SHIFT + MAX_ORDER - 1); /* * We create the default window as big as we can. The constraint is * the max order of allocation possible. The TCE table is likely to * end up being multilevel and with on-demand allocation in place, * the initial use is not going to be huge as the default window aims * to support crippled devices (i.e. not fully 64bit DMAble) only. */ /* iommu_table::it_map uses 1 bit per IOMMU page, hence 8 */ const u64 window_size = min((maxblock * 8) << PAGE_SHIFT, max_memory); /* Each TCE level cannot exceed maxblock so go multilevel if needed */ unsigned long tces_order = ilog2(window_size >> PAGE_SHIFT); unsigned long tcelevel_order = ilog2(maxblock >> 3); unsigned int levels = tces_order / tcelevel_order; if (tces_order % tcelevel_order) levels += 1; /* * We try to stick to default levels (which is >1 at the moment) in * order to save memory by relying on on-demain TCE level allocation. */ levels = max_t(unsigned int, levels, POWERNV_IOMMU_DEFAULT_LEVELS); rc = pnv_pci_ioda2_create_table(&pe->table_group, 0, PAGE_SHIFT, window_size, levels, false, &tbl); if (rc) { pe_err(pe, "Failed to create 32-bit TCE table, err %ld", rc); return rc; } /* We use top part of 32bit space for MMIO so exclude it from DMA */ res_start = 0; res_end = 0; if (window_size > pe->phb->ioda.m32_pci_base) { res_start = pe->phb->ioda.m32_pci_base >> tbl->it_page_shift; res_end = min(window_size, SZ_4G) >> tbl->it_page_shift; } iommu_init_table(tbl, pe->phb->hose->node, res_start, res_end); rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl); if (rc) { pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n", rc); iommu_tce_table_put(tbl); return rc; } if (!pnv_iommu_bypass_disabled) pnv_pci_ioda2_set_bypass(pe, true); /* * Set table base for the case of IOMMU DMA use. Usually this is done * from dma_dev_setup() which is not called when a device is returned * from VFIO so do it here. */ if (pe->pdev) set_iommu_table_base(&pe->pdev->dev, tbl); return 0; } static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group, int num) { struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, table_group); struct pnv_phb *phb = pe->phb; long ret; pe_info(pe, "Removing DMA window #%d\n", num); ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number, (pe->pe_number << 1) + num, 0/* levels */, 0/* table address */, 0/* table size */, 0/* page size */); if (ret) pe_warn(pe, "Unmapping failed, ret = %ld\n", ret); else pnv_pci_ioda2_tce_invalidate_pe(pe); pnv_pci_unlink_table_and_group(table_group->tables[num], table_group); return ret; } #ifdef CONFIG_IOMMU_API unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift, __u64 window_size, __u32 levels) { unsigned long bytes = 0; const unsigned window_shift = ilog2(window_size); unsigned entries_shift = window_shift - page_shift; unsigned table_shift = entries_shift + 3; unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift); unsigned long direct_table_size; if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) || !is_power_of_2(window_size)) return 0; /* Calculate a direct table size from window_size and levels */ entries_shift = (entries_shift + levels - 1) / levels; table_shift = entries_shift + 3; table_shift = max_t(unsigned, table_shift, PAGE_SHIFT); direct_table_size = 1UL << table_shift; for ( ; levels; --levels) { bytes += ALIGN(tce_table_size, direct_table_size); tce_table_size /= direct_table_size; tce_table_size <<= 3; tce_table_size = max_t(unsigned long, tce_table_size, direct_table_size); } return bytes + bytes; /* one for HW table, one for userspace copy */ } static long pnv_pci_ioda2_create_table_userspace( struct iommu_table_group *table_group, int num, __u32 page_shift, __u64 window_size, __u32 levels, struct iommu_table **ptbl) { long ret = pnv_pci_ioda2_create_table(table_group, num, page_shift, window_size, levels, true, ptbl); if (!ret) (*ptbl)->it_allocated_size = pnv_pci_ioda2_get_table_size( page_shift, window_size, levels); return ret; } static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, struct pci_bus *bus) { struct pci_dev *dev; list_for_each_entry(dev, &bus->devices, bus_list) { set_iommu_table_base(&dev->dev, pe->table_group.tables[0]); dev->dev.archdata.dma_offset = pe->tce_bypass_base; if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate) pnv_ioda_setup_bus_dma(pe, dev->subordinate); } } static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group) { struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, table_group); /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */ struct iommu_table *tbl = pe->table_group.tables[0]; pnv_pci_ioda2_set_bypass(pe, false); pnv_pci_ioda2_unset_window(&pe->table_group, 0); if (pe->pbus) pnv_ioda_setup_bus_dma(pe, pe->pbus); else if (pe->pdev) set_iommu_table_base(&pe->pdev->dev, NULL); iommu_tce_table_put(tbl); } static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group) { struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, table_group); pnv_pci_ioda2_setup_default_config(pe); if (pe->pbus) pnv_ioda_setup_bus_dma(pe, pe->pbus); } static struct iommu_table_group_ops pnv_pci_ioda2_ops = { .get_table_size = pnv_pci_ioda2_get_table_size, .create_table = pnv_pci_ioda2_create_table_userspace, .set_window = pnv_pci_ioda2_set_window, .unset_window = pnv_pci_ioda2_unset_window, .take_ownership = pnv_ioda2_take_ownership, .release_ownership = pnv_ioda2_release_ownership, }; #endif void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe) { int64_t rc; /* TVE #1 is selected by PCI address bit 59 */ pe->tce_bypass_base = 1ull << 59; /* The PE will reserve all possible 32-bits space */ pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n", phb->ioda.m32_pci_base); /* Setup linux iommu table */ pe->table_group.tce32_start = 0; pe->table_group.tce32_size = phb->ioda.m32_pci_base; pe->table_group.max_dynamic_windows_supported = IOMMU_TABLE_GROUP_MAX_TABLES; pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS; pe->table_group.pgsizes = pnv_ioda_parse_tce_sizes(phb); rc = pnv_pci_ioda2_setup_default_config(pe); if (rc) return; #ifdef CONFIG_IOMMU_API pe->table_group.ops = &pnv_pci_ioda2_ops; iommu_register_group(&pe->table_group, phb->hose->global_number, pe->pe_number); #endif pe->dma_setup_done = true; } int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq) { struct pnv_phb *phb = container_of(chip, struct pnv_phb, ioda.irq_chip); return opal_pci_msi_eoi(phb->opal_id, hw_irq); } static void pnv_ioda2_msi_eoi(struct irq_data *d) { int64_t rc; unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); struct irq_chip *chip = irq_data_get_irq_chip(d); rc = pnv_opal_pci_msi_eoi(chip, hw_irq); WARN_ON_ONCE(rc); icp_native_eoi(d); } void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq) { struct irq_data *idata; struct irq_chip *ichip; /* The MSI EOI OPAL call is only needed on PHB3 */ if (phb->model != PNV_PHB_MODEL_PHB3) return; if (!phb->ioda.irq_chip_init) { /* * First time we setup an MSI IRQ, we need to setup the * corresponding IRQ chip to route correctly. */ idata = irq_get_irq_data(virq); ichip = irq_data_get_irq_chip(idata); phb->ioda.irq_chip_init = 1; phb->ioda.irq_chip = *ichip; phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi; } irq_set_chip(virq, &phb->ioda.irq_chip); } /* * Returns true iff chip is something that we could call * pnv_opal_pci_msi_eoi for. */ bool is_pnv_opal_msi(struct irq_chip *chip) { return chip->irq_eoi == pnv_ioda2_msi_eoi; } EXPORT_SYMBOL_GPL(is_pnv_opal_msi); static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev, unsigned int hwirq, unsigned int virq, unsigned int is_64, struct msi_msg *msg) { struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev); unsigned int xive_num = hwirq - phb->msi_base; __be32 data; int rc; /* No PE assigned ? bail out ... no MSI for you ! */ if (pe == NULL) return -ENXIO; /* Check if we have an MVE */ if (pe->mve_number < 0) return -ENXIO; /* Force 32-bit MSI on some broken devices */ if (dev->no_64bit_msi) is_64 = 0; /* Assign XIVE to PE */ rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num); if (rc) { pr_warn("%s: OPAL error %d setting XIVE %d PE\n", pci_name(dev), rc, xive_num); return -EIO; } if (is_64) { __be64 addr64; rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1, &addr64, &data); if (rc) { pr_warn("%s: OPAL error %d getting 64-bit MSI data\n", pci_name(dev), rc); return -EIO; } msg->address_hi = be64_to_cpu(addr64) >> 32; msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful; } else { __be32 addr32; rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1, &addr32, &data); if (rc) { pr_warn("%s: OPAL error %d getting 32-bit MSI data\n", pci_name(dev), rc); return -EIO; } msg->address_hi = 0; msg->address_lo = be32_to_cpu(addr32); } msg->data = be32_to_cpu(data); pnv_set_msi_irq_chip(phb, virq); pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d)," " address=%x_%08x data=%x PE# %x\n", pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num, msg->address_hi, msg->address_lo, data, pe->pe_number); return 0; } static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { unsigned int count; const __be32 *prop = of_get_property(phb->hose->dn, "ibm,opal-msi-ranges", NULL); if (!prop) { /* BML Fallback */ prop = of_get_property(phb->hose->dn, "msi-ranges", NULL); } if (!prop) return; phb->msi_base = be32_to_cpup(prop); count = be32_to_cpup(prop + 1); if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) { pr_err("PCI %d: Failed to allocate MSI bitmap !\n", phb->hose->global_number); return; } phb->msi_setup = pnv_pci_ioda_msi_setup; phb->msi32_support = 1; pr_info(" Allocated bitmap for %d MSIs (base IRQ 0x%x)\n", count, phb->msi_base); } static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe, struct resource *res) { struct pnv_phb *phb = pe->phb; struct pci_bus_region region; int index; int64_t rc; if (!res || !res->flags || res->start > res->end) return; if (res->flags & IORESOURCE_IO) { region.start = res->start - phb->ioda.io_pci_base; region.end = res->end - phb->ioda.io_pci_base; index = region.start / phb->ioda.io_segsize; while (index < phb->ioda.total_pe_num && region.start <= region.end) { phb->ioda.io_segmap[index] = pe->pe_number; rc = opal_pci_map_pe_mmio_window(phb->opal_id, pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index); if (rc != OPAL_SUCCESS) { pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n", __func__, rc, index, pe->pe_number); break; } region.start += phb->ioda.io_segsize; index++; } } else if ((res->flags & IORESOURCE_MEM) && !pnv_pci_is_m64(phb, res)) { region.start = res->start - phb->hose->mem_offset[0] - phb->ioda.m32_pci_base; region.end = res->end - phb->hose->mem_offset[0] - phb->ioda.m32_pci_base; index = region.start / phb->ioda.m32_segsize; while (index < phb->ioda.total_pe_num && region.start <= region.end) { phb->ioda.m32_segmap[index] = pe->pe_number; rc = opal_pci_map_pe_mmio_window(phb->opal_id, pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index); if (rc != OPAL_SUCCESS) { pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x", __func__, rc, index, pe->pe_number); break; } region.start += phb->ioda.m32_segsize; index++; } } } /* * This function is supposed to be called on basis of PE from top * to bottom style. So the the I/O or MMIO segment assigned to * parent PE could be overridden by its child PEs if necessary. */ static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe) { struct pci_dev *pdev; int i; /* * NOTE: We only care PCI bus based PE for now. For PCI * device based PE, for example SRIOV sensitive VF should * be figured out later. */ BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))); list_for_each_entry(pdev, &pe->pbus->devices, bus_list) { for (i = 0; i <= PCI_ROM_RESOURCE; i++) pnv_ioda_setup_pe_res(pe, &pdev->resource[i]); /* * If the PE contains all subordinate PCI buses, the * windows of the child bridges should be mapped to * the PE as well. */ if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev)) continue; for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) pnv_ioda_setup_pe_res(pe, &pdev->resource[PCI_BRIDGE_RESOURCES + i]); } } #ifdef CONFIG_DEBUG_FS static int pnv_pci_diag_data_set(void *data, u64 val) { struct pnv_phb *phb = data; s64 ret; /* Retrieve the diag data from firmware */ ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data, phb->diag_data_size); if (ret != OPAL_SUCCESS) return -EIO; /* Print the diag data to the kernel log */ pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data); return 0; } DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_diag_data_fops, NULL, pnv_pci_diag_data_set, "%llu\n"); static int pnv_pci_ioda_pe_dump(void *data, u64 val) { struct pnv_phb *phb = data; int pe_num; for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) { struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_num]; if (!test_bit(pe_num, phb->ioda.pe_alloc)) continue; pe_warn(pe, "rid: %04x dev count: %2d flags: %s%s%s%s%s%s\n", pe->rid, pe->device_count, (pe->flags & PNV_IODA_PE_DEV) ? "dev " : "", (pe->flags & PNV_IODA_PE_BUS) ? "bus " : "", (pe->flags & PNV_IODA_PE_BUS_ALL) ? "all " : "", (pe->flags & PNV_IODA_PE_MASTER) ? "master " : "", (pe->flags & PNV_IODA_PE_SLAVE) ? "slave " : "", (pe->flags & PNV_IODA_PE_VF) ? "vf " : ""); } return 0; } DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_ioda_pe_dump_fops, NULL, pnv_pci_ioda_pe_dump, "%llu\n"); #endif /* CONFIG_DEBUG_FS */ static void pnv_pci_ioda_create_dbgfs(void) { #ifdef CONFIG_DEBUG_FS struct pci_controller *hose, *tmp; struct pnv_phb *phb; char name[16]; list_for_each_entry_safe(hose, tmp, &hose_list, list_node) { phb = hose->private_data; /* Notify initialization of PHB done */ phb->initialized = 1; sprintf(name, "PCI%04x", hose->global_number); phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root); debugfs_create_file_unsafe("dump_diag_regs", 0200, phb->dbgfs, phb, &pnv_pci_diag_data_fops); debugfs_create_file_unsafe("dump_ioda_pe_state", 0200, phb->dbgfs, phb, &pnv_pci_ioda_pe_dump_fops); } #endif /* CONFIG_DEBUG_FS */ } static void pnv_pci_enable_bridge(struct pci_bus *bus) { struct pci_dev *dev = bus->self; struct pci_bus *child; /* Empty bus ? bail */ if (list_empty(&bus->devices)) return; /* * If there's a bridge associated with that bus enable it. This works * around races in the generic code if the enabling is done during * parallel probing. This can be removed once those races have been * fixed. */ if (dev) { int rc = pci_enable_device(dev); if (rc) pci_err(dev, "Error enabling bridge (%d)\n", rc); pci_set_master(dev); } /* Perform the same to child busses */ list_for_each_entry(child, &bus->children, node) pnv_pci_enable_bridge(child); } static void pnv_pci_enable_bridges(void) { struct pci_controller *hose; list_for_each_entry(hose, &hose_list, list_node) pnv_pci_enable_bridge(hose->bus); } static void pnv_pci_ioda_fixup(void) { pnv_pci_ioda_setup_nvlink(); pnv_pci_ioda_create_dbgfs(); pnv_pci_enable_bridges(); #ifdef CONFIG_EEH pnv_eeh_post_init(); #endif } /* * Returns the alignment for I/O or memory windows for P2P * bridges. That actually depends on how PEs are segmented. * For now, we return I/O or M32 segment size for PE sensitive * P2P bridges. Otherwise, the default values (4KiB for I/O, * 1MiB for memory) will be returned. * * The current PCI bus might be put into one PE, which was * create against the parent PCI bridge. For that case, we * needn't enlarge the alignment so that we can save some * resources. */ static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus, unsigned long type) { struct pnv_phb *phb = pci_bus_to_pnvhb(bus); int num_pci_bridges = 0; struct pci_dev *bridge; bridge = bus->self; while (bridge) { if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) { num_pci_bridges++; if (num_pci_bridges >= 2) return 1; } bridge = bridge->bus->self; } /* * We fall back to M32 if M64 isn't supported. We enforce the M64 * alignment for any 64-bit resource, PCIe doesn't care and * bridges only do 64-bit prefetchable anyway. */ if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type)) return phb->ioda.m64_segsize; if (type & IORESOURCE_MEM) return phb->ioda.m32_segsize; return phb->ioda.io_segsize; } /* * We are updating root port or the upstream port of the * bridge behind the root port with PHB's windows in order * to accommodate the changes on required resources during * PCI (slot) hotplug, which is connected to either root * port or the downstream ports of PCIe switch behind the * root port. */ static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus, unsigned long type) { struct pci_controller *hose = pci_bus_to_host(bus); struct pnv_phb *phb = hose->private_data; struct pci_dev *bridge = bus->self; struct resource *r, *w; bool msi_region = false; int i; /* Check if we need apply fixup to the bridge's windows */ if (!pci_is_root_bus(bridge->bus) && !pci_is_root_bus(bridge->bus->self->bus)) return; /* Fixup the resources */ for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) { r = &bridge->resource[PCI_BRIDGE_RESOURCES + i]; if (!r->flags || !r->parent) continue; w = NULL; if (r->flags & type & IORESOURCE_IO) w = &hose->io_resource; else if (pnv_pci_is_m64(phb, r) && (type & IORESOURCE_PREFETCH) && phb->ioda.m64_segsize) w = &hose->mem_resources[1]; else if (r->flags & type & IORESOURCE_MEM) { w = &hose->mem_resources[0]; msi_region = true; } r->start = w->start; r->end = w->end; /* The 64KB 32-bits MSI region shouldn't be included in * the 32-bits bridge window. Otherwise, we can see strange * issues. One of them is EEH error observed on Garrison. * * Exclude top 1MB region which is the minimal alignment of * 32-bits bridge window. */ if (msi_region) { r->end += 0x10000; r->end -= 0x100000; } } } static void pnv_pci_configure_bus(struct pci_bus *bus) { struct pci_dev *bridge = bus->self; struct pnv_ioda_pe *pe; bool all = (bridge && pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE); dev_info(&bus->dev, "Configuring PE for bus\n"); /* Don't assign PE to PCI bus, which doesn't have subordinate devices */ if (WARN_ON(list_empty(&bus->devices))) return; /* Reserve PEs according to used M64 resources */ pnv_ioda_reserve_m64_pe(bus, NULL, all); /* * Assign PE. We might run here because of partial hotplug. * For the case, we just pick up the existing PE and should * not allocate resources again. */ pe = pnv_ioda_setup_bus_PE(bus, all); if (!pe) return; pnv_ioda_setup_pe_seg(pe); } static resource_size_t pnv_pci_default_alignment(void) { return PAGE_SIZE; } /* Prevent enabling devices for which we couldn't properly * assign a PE */ static bool pnv_pci_enable_device_hook(struct pci_dev *dev) { struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus); struct pci_dn *pdn; /* The function is probably called while the PEs have * not be created yet. For example, resource reassignment * during PCI probe period. We just skip the check if * PEs isn't ready. */ if (!phb->initialized) return true; pdn = pci_get_pdn(dev); if (!pdn || pdn->pe_number == IODA_INVALID_PE) return false; return true; } static bool pnv_ocapi_enable_device_hook(struct pci_dev *dev) { struct pci_controller *hose = pci_bus_to_host(dev->bus); struct pnv_phb *phb = hose->private_data; struct pci_dn *pdn; struct pnv_ioda_pe *pe; if (!phb->initialized) return true; pdn = pci_get_pdn(dev); if (!pdn) return false; if (pdn->pe_number == IODA_INVALID_PE) { pe = pnv_ioda_setup_dev_PE(dev); if (!pe) return false; } return true; } static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group, int num) { struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, table_group); struct pnv_phb *phb = pe->phb; unsigned int idx; long rc; pe_info(pe, "Removing DMA window #%d\n", num); for (idx = 0; idx < phb->ioda.dma32_count; idx++) { if (phb->ioda.dma32_segmap[idx] != pe->pe_number) continue; rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number, idx, 0, 0ul, 0ul, 0ul); if (rc != OPAL_SUCCESS) { pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n", rc, idx); return rc; } phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE; } pnv_pci_unlink_table_and_group(table_group->tables[num], table_group); return OPAL_SUCCESS; } static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe) { struct iommu_table *tbl = pe->table_group.tables[0]; int64_t rc; if (!pe->dma_setup_done) return; rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0); if (rc != OPAL_SUCCESS) return; pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false); if (pe->table_group.group) { iommu_group_put(pe->table_group.group); WARN_ON(pe->table_group.group); } free_pages(tbl->it_base, get_order(tbl->it_size << 3)); iommu_tce_table_put(tbl); } void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe) { struct iommu_table *tbl = pe->table_group.tables[0]; int64_t rc; if (!pe->dma_setup_done) return; rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0); if (rc) pe_warn(pe, "OPAL error %lld release DMA window\n", rc); pnv_pci_ioda2_set_bypass(pe, false); if (pe->table_group.group) { iommu_group_put(pe->table_group.group); WARN_ON(pe->table_group.group); } iommu_tce_table_put(tbl); } static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe, unsigned short win, unsigned int *map) { struct pnv_phb *phb = pe->phb; int idx; int64_t rc; for (idx = 0; idx < phb->ioda.total_pe_num; idx++) { if (map[idx] != pe->pe_number) continue; rc = opal_pci_map_pe_mmio_window(phb->opal_id, phb->ioda.reserved_pe_idx, win, 0, idx); if (rc != OPAL_SUCCESS) pe_warn(pe, "Error %lld unmapping (%d) segment#%d\n", rc, win, idx); map[idx] = IODA_INVALID_PE; } } static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe) { struct pnv_phb *phb = pe->phb; if (phb->type == PNV_PHB_IODA1) { pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE, phb->ioda.io_segmap); pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE, phb->ioda.m32_segmap); /* M64 is pre-configured by pnv_ioda1_init_m64() */ } else if (phb->type == PNV_PHB_IODA2) { pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE, phb->ioda.m32_segmap); } } static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe) { struct pnv_phb *phb = pe->phb; struct pnv_ioda_pe *slave, *tmp; pe_info(pe, "Releasing PE\n"); mutex_lock(&phb->ioda.pe_list_mutex); list_del(&pe->list); mutex_unlock(&phb->ioda.pe_list_mutex); switch (phb->type) { case PNV_PHB_IODA1: pnv_pci_ioda1_release_pe_dma(pe); break; case PNV_PHB_IODA2: pnv_pci_ioda2_release_pe_dma(pe); break; case PNV_PHB_NPU_OCAPI: break; default: WARN_ON(1); } pnv_ioda_release_pe_seg(pe); pnv_ioda_deconfigure_pe(pe->phb, pe); /* Release slave PEs in the compound PE */ if (pe->flags & PNV_IODA_PE_MASTER) { list_for_each_entry_safe(slave, tmp, &pe->slaves, list) { list_del(&slave->list); pnv_ioda_free_pe(slave); } } /* * The PE for root bus can be removed because of hotplug in EEH * recovery for fenced PHB error. We need to mark the PE dead so * that it can be populated again in PCI hot add path. The PE * shouldn't be destroyed as it's the global reserved resource. */ if (phb->ioda.root_pe_idx == pe->pe_number) return; pnv_ioda_free_pe(pe); } static void pnv_pci_release_device(struct pci_dev *pdev) { struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus); struct pci_dn *pdn = pci_get_pdn(pdev); struct pnv_ioda_pe *pe; /* The VF PE state is torn down when sriov_disable() is called */ if (pdev->is_virtfn) return; if (!pdn || pdn->pe_number == IODA_INVALID_PE) return; #ifdef CONFIG_PCI_IOV /* * FIXME: Try move this to sriov_disable(). It's here since we allocate * the iov state at probe time since we need to fiddle with the IOV * resources. */ if (pdev->is_physfn) kfree(pdev->dev.archdata.iov_data); #endif /* * PCI hotplug can happen as part of EEH error recovery. The @pdn * isn't removed and added afterwards in this scenario. We should * set the PE number in @pdn to an invalid one. Otherwise, the PE's * device count is decreased on removing devices while failing to * be increased on adding devices. It leads to unbalanced PE's device * count and eventually make normal PCI hotplug path broken. */ pe = &phb->ioda.pe_array[pdn->pe_number]; pdn->pe_number = IODA_INVALID_PE; WARN_ON(--pe->device_count < 0); if (pe->device_count == 0) pnv_ioda_release_pe(pe); } static void pnv_npu_disable_device(struct pci_dev *pdev) { struct eeh_dev *edev = pci_dev_to_eeh_dev(pdev); struct eeh_pe *eehpe = edev ? edev->pe : NULL; if (eehpe && eeh_ops && eeh_ops->reset) eeh_ops->reset(eehpe, EEH_RESET_HOT); } static void pnv_pci_ioda_shutdown(struct pci_controller *hose) { struct pnv_phb *phb = hose->private_data; opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET); } static void pnv_pci_ioda_dma_bus_setup(struct pci_bus *bus) { struct pnv_phb *phb = pci_bus_to_pnvhb(bus); struct pnv_ioda_pe *pe; list_for_each_entry(pe, &phb->ioda.pe_list, list) { if (!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))) continue; if (!pe->pbus) continue; if (bus->number == ((pe->rid >> 8) & 0xFF)) { pe->pbus = bus; break; } } } static const struct pci_controller_ops pnv_pci_ioda_controller_ops = { .dma_dev_setup = pnv_pci_ioda_dma_dev_setup, .dma_bus_setup = pnv_pci_ioda_dma_bus_setup, .iommu_bypass_supported = pnv_pci_ioda_iommu_bypass_supported, .setup_msi_irqs = pnv_setup_msi_irqs, .teardown_msi_irqs = pnv_teardown_msi_irqs, .enable_device_hook = pnv_pci_enable_device_hook, .release_device = pnv_pci_release_device, .window_alignment = pnv_pci_window_alignment, .setup_bridge = pnv_pci_fixup_bridge_resources, .reset_secondary_bus = pnv_pci_reset_secondary_bus, .shutdown = pnv_pci_ioda_shutdown, }; static const struct pci_controller_ops pnv_npu_ioda_controller_ops = { .setup_msi_irqs = pnv_setup_msi_irqs, .teardown_msi_irqs = pnv_teardown_msi_irqs, .enable_device_hook = pnv_pci_enable_device_hook, .window_alignment = pnv_pci_window_alignment, .reset_secondary_bus = pnv_pci_reset_secondary_bus, .shutdown = pnv_pci_ioda_shutdown, .disable_device = pnv_npu_disable_device, }; static const struct pci_controller_ops pnv_npu_ocapi_ioda_controller_ops = { .enable_device_hook = pnv_ocapi_enable_device_hook, .release_device = pnv_pci_release_device, .window_alignment = pnv_pci_window_alignment, .reset_secondary_bus = pnv_pci_reset_secondary_bus, .shutdown = pnv_pci_ioda_shutdown, }; static void __init pnv_pci_init_ioda_phb(struct device_node *np, u64 hub_id, int ioda_type) { struct pci_controller *hose; struct pnv_phb *phb; unsigned long size, m64map_off, m32map_off, pemap_off; unsigned long iomap_off = 0, dma32map_off = 0; struct pnv_ioda_pe *root_pe; struct resource r; const __be64 *prop64; const __be32 *prop32; int len; unsigned int segno; u64 phb_id; void *aux; long rc; if (!of_device_is_available(np)) return; pr_info("Initializing %s PHB (%pOF)\n", pnv_phb_names[ioda_type], np); prop64 = of_get_property(np, "ibm,opal-phbid", NULL); if (!prop64) { pr_err(" Missing \"ibm,opal-phbid\" property !\n"); return; } phb_id = be64_to_cpup(prop64); pr_debug(" PHB-ID : 0x%016llx\n", phb_id); phb = memblock_alloc(sizeof(*phb), SMP_CACHE_BYTES); if (!phb) panic("%s: Failed to allocate %zu bytes\n", __func__, sizeof(*phb)); /* Allocate PCI controller */ phb->hose = hose = pcibios_alloc_controller(np); if (!phb->hose) { pr_err(" Can't allocate PCI controller for %pOF\n", np); memblock_free(__pa(phb), sizeof(struct pnv_phb)); return; } spin_lock_init(&phb->lock); prop32 = of_get_property(np, "bus-range", &len); if (prop32 && len == 8) { hose->first_busno = be32_to_cpu(prop32[0]); hose->last_busno = be32_to_cpu(prop32[1]); } else { pr_warn(" Broken <bus-range> on %pOF\n", np); hose->first_busno = 0; hose->last_busno = 0xff; } hose->private_data = phb; phb->hub_id = hub_id; phb->opal_id = phb_id; phb->type = ioda_type; mutex_init(&phb->ioda.pe_alloc_mutex); /* Detect specific models for error handling */ if (of_device_is_compatible(np, "ibm,p7ioc-pciex")) phb->model = PNV_PHB_MODEL_P7IOC; else if (of_device_is_compatible(np, "ibm,power8-pciex")) phb->model = PNV_PHB_MODEL_PHB3; else if (of_device_is_compatible(np, "ibm,power8-npu-pciex")) phb->model = PNV_PHB_MODEL_NPU; else if (of_device_is_compatible(np, "ibm,power9-npu-pciex")) phb->model = PNV_PHB_MODEL_NPU2; else phb->model = PNV_PHB_MODEL_UNKNOWN; /* Initialize diagnostic data buffer */ prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL); if (prop32) phb->diag_data_size = be32_to_cpup(prop32); else phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE; phb->diag_data = memblock_alloc(phb->diag_data_size, SMP_CACHE_BYTES); if (!phb->diag_data) panic("%s: Failed to allocate %u bytes\n", __func__, phb->diag_data_size); /* Parse 32-bit and IO ranges (if any) */ pci_process_bridge_OF_ranges(hose, np, !hose->global_number); /* Get registers */ if (!of_address_to_resource(np, 0, &r)) { phb->regs_phys = r.start; phb->regs = ioremap(r.start, resource_size(&r)); if (phb->regs == NULL) pr_err(" Failed to map registers !\n"); } /* Initialize more IODA stuff */ phb->ioda.total_pe_num = 1; prop32 = of_get_property(np, "ibm,opal-num-pes", NULL); if (prop32) phb->ioda.total_pe_num = be32_to_cpup(prop32); prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL); if (prop32) phb->ioda.reserved_pe_idx = be32_to_cpup(prop32); /* Invalidate RID to PE# mapping */ for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++) phb->ioda.pe_rmap[segno] = IODA_INVALID_PE; /* Parse 64-bit MMIO range */ pnv_ioda_parse_m64_window(phb); phb->ioda.m32_size = resource_size(&hose->mem_resources[0]); /* FW Has already off top 64k of M32 space (MSI space) */ phb->ioda.m32_size += 0x10000; phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num; phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0]; phb->ioda.io_size = hose->pci_io_size; phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num; phb->ioda.io_pci_base = 0; /* XXX calculate this ? */ /* Calculate how many 32-bit TCE segments we have */ phb->ioda.dma32_count = phb->ioda.m32_pci_base / PNV_IODA1_DMA32_SEGSIZE; /* Allocate aux data & arrays. We don't have IO ports on PHB3 */ size = ALIGN(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8, sizeof(unsigned long)); m64map_off = size; size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]); m32map_off = size; size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]); if (phb->type == PNV_PHB_IODA1) { iomap_off = size; size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]); dma32map_off = size; size += phb->ioda.dma32_count * sizeof(phb->ioda.dma32_segmap[0]); } pemap_off = size; size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe); aux = memblock_alloc(size, SMP_CACHE_BYTES); if (!aux) panic("%s: Failed to allocate %lu bytes\n", __func__, size); phb->ioda.pe_alloc = aux; phb->ioda.m64_segmap = aux + m64map_off; phb->ioda.m32_segmap = aux + m32map_off; for (segno = 0; segno < phb->ioda.total_pe_num; segno++) { phb->ioda.m64_segmap[segno] = IODA_INVALID_PE; phb->ioda.m32_segmap[segno] = IODA_INVALID_PE; } if (phb->type == PNV_PHB_IODA1) { phb->ioda.io_segmap = aux + iomap_off; for (segno = 0; segno < phb->ioda.total_pe_num; segno++) phb->ioda.io_segmap[segno] = IODA_INVALID_PE; phb->ioda.dma32_segmap = aux + dma32map_off; for (segno = 0; segno < phb->ioda.dma32_count; segno++) phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE; } phb->ioda.pe_array = aux + pemap_off; /* * Choose PE number for root bus, which shouldn't have * M64 resources consumed by its child devices. To pick * the PE number adjacent to the reserved one if possible. */ pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx); if (phb->ioda.reserved_pe_idx == 0) { phb->ioda.root_pe_idx = 1; pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx); } else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) { phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1; pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx); } else { /* otherwise just allocate one */ root_pe = pnv_ioda_alloc_pe(phb, 1); phb->ioda.root_pe_idx = root_pe->pe_number; } INIT_LIST_HEAD(&phb->ioda.pe_list); mutex_init(&phb->ioda.pe_list_mutex); /* Calculate how many 32-bit TCE segments we have */ phb->ioda.dma32_count = phb->ioda.m32_pci_base / PNV_IODA1_DMA32_SEGSIZE; #if 0 /* We should really do that ... */ rc = opal_pci_set_phb_mem_window(opal->phb_id, window_type, window_num, starting_real_address, starting_pci_address, segment_size); #endif pr_info(" %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n", phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx, phb->ioda.m32_size, phb->ioda.m32_segsize); if (phb->ioda.m64_size) pr_info(" M64: 0x%lx [segment=0x%lx]\n", phb->ioda.m64_size, phb->ioda.m64_segsize); if (phb->ioda.io_size) pr_info(" IO: 0x%x [segment=0x%x]\n", phb->ioda.io_size, phb->ioda.io_segsize); phb->hose->ops = &pnv_pci_ops; phb->get_pe_state = pnv_ioda_get_pe_state; phb->freeze_pe = pnv_ioda_freeze_pe; phb->unfreeze_pe = pnv_ioda_unfreeze_pe; /* Setup MSI support */ pnv_pci_init_ioda_msis(phb); /* * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here * to let the PCI core do resource assignment. It's supposed * that the PCI core will do correct I/O and MMIO alignment * for the P2P bridge bars so that each PCI bus (excluding * the child P2P bridges) can form individual PE. */ ppc_md.pcibios_fixup = pnv_pci_ioda_fixup; switch (phb->type) { case PNV_PHB_NPU_NVLINK: hose->controller_ops = pnv_npu_ioda_controller_ops; break; case PNV_PHB_NPU_OCAPI: hose->controller_ops = pnv_npu_ocapi_ioda_controller_ops; break; default: hose->controller_ops = pnv_pci_ioda_controller_ops; } ppc_md.pcibios_default_alignment = pnv_pci_default_alignment; #ifdef CONFIG_PCI_IOV ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov; ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment; ppc_md.pcibios_sriov_enable = pnv_pcibios_sriov_enable; ppc_md.pcibios_sriov_disable = pnv_pcibios_sriov_disable; #endif pci_add_flags(PCI_REASSIGN_ALL_RSRC); /* Reset IODA tables to a clean state */ rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET); if (rc) pr_warn(" OPAL Error %ld performing IODA table reset !\n", rc); /* * If we're running in kdump kernel, the previous kernel never * shutdown PCI devices correctly. We already got IODA table * cleaned out. So we have to issue PHB reset to stop all PCI * transactions from previous kernel. The ppc_pci_reset_phbs * kernel parameter will force this reset too. Additionally, * if the IODA reset above failed then use a bigger hammer. * This can happen if we get a PHB fatal error in very early * boot. */ if (is_kdump_kernel() || pci_reset_phbs || rc) { pr_info(" Issue PHB reset ...\n"); pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL); pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE); } /* Remove M64 resource if we can't configure it successfully */ if (!phb->init_m64 || phb->init_m64(phb)) hose->mem_resources[1].flags = 0; } void __init pnv_pci_init_ioda2_phb(struct device_node *np) { pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2); } void __init pnv_pci_init_npu_phb(struct device_node *np) { pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_NVLINK); } void __init pnv_pci_init_npu2_opencapi_phb(struct device_node *np) { pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_OCAPI); } static void pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev *dev) { struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus); if (!machine_is(powernv)) return; if (phb->type == PNV_PHB_NPU_OCAPI) dev->cfg_size = PCI_CFG_SPACE_EXP_SIZE; } DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pnv_npu2_opencapi_cfg_size_fixup); void __init pnv_pci_init_ioda_hub(struct device_node *np) { struct device_node *phbn; const __be64 *prop64; u64 hub_id; pr_info("Probing IODA IO-Hub %pOF\n", np); prop64 = of_get_property(np, "ibm,opal-hubid", NULL); if (!prop64) { pr_err(" Missing \"ibm,opal-hubid\" property !\n"); return; } hub_id = be64_to_cpup(prop64); pr_devel(" HUB-ID : 0x%016llx\n", hub_id); /* Count child PHBs */ for_each_child_of_node(np, phbn) { /* Look for IODA1 PHBs */ if (of_device_is_compatible(phbn, "ibm,ioda-phb")) pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1); } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1