Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Christian Bornträger | 1840 | 21.89% | 13 | 10.00% |
David Hildenbrand | 1544 | 18.37% | 22 | 16.92% |
Thomas Huth | 1098 | 13.06% | 18 | 13.85% |
Cornelia Huck | 887 | 10.55% | 7 | 5.38% |
Heiko Carstens | 812 | 9.66% | 30 | 23.08% |
Claudio Imbrenda | 479 | 5.70% | 3 | 2.31% |
Janosch Frank | 443 | 5.27% | 8 | 6.15% |
Pierre Morel | 367 | 4.37% | 1 | 0.77% |
Fan Zhang | 255 | 3.03% | 2 | 1.54% |
Konstantin Weitz | 187 | 2.22% | 1 | 0.77% |
Ekaterina Tumanova | 139 | 1.65% | 2 | 1.54% |
Alexander Yarygin | 103 | 1.23% | 2 | 1.54% |
Dominik Dingel | 70 | 0.83% | 4 | 3.08% |
Guenther Hutzl | 52 | 0.62% | 1 | 0.77% |
Jens Freimann | 34 | 0.40% | 2 | 1.54% |
Michael Müller | 30 | 0.36% | 2 | 1.54% |
Martin Schwidefsky | 24 | 0.29% | 4 | 3.08% |
Michel Lespinasse | 17 | 0.20% | 2 | 1.54% |
Farhan Ali | 13 | 0.15% | 1 | 0.77% |
Mike Rapoport | 3 | 0.04% | 1 | 0.77% |
Tejun Heo | 3 | 0.04% | 1 | 0.77% |
Ingo Molnar | 3 | 0.04% | 1 | 0.77% |
Greg Kroah-Hartman | 1 | 0.01% | 1 | 0.77% |
Hendrik Brueckner | 1 | 0.01% | 1 | 0.77% |
Total | 8405 | 130 |
// SPDX-License-Identifier: GPL-2.0 /* * handling privileged instructions * * Copyright IBM Corp. 2008, 2020 * * Author(s): Carsten Otte <cotte@de.ibm.com> * Christian Borntraeger <borntraeger@de.ibm.com> */ #include <linux/kvm.h> #include <linux/gfp.h> #include <linux/errno.h> #include <linux/compat.h> #include <linux/mm_types.h> #include <linux/pgtable.h> #include <asm/asm-offsets.h> #include <asm/facility.h> #include <asm/current.h> #include <asm/debug.h> #include <asm/ebcdic.h> #include <asm/sysinfo.h> #include <asm/page-states.h> #include <asm/gmap.h> #include <asm/io.h> #include <asm/ptrace.h> #include <asm/sclp.h> #include <asm/ap.h> #include "gaccess.h" #include "kvm-s390.h" #include "trace.h" static int handle_ri(struct kvm_vcpu *vcpu) { vcpu->stat.instruction_ri++; if (test_kvm_facility(vcpu->kvm, 64)) { VCPU_EVENT(vcpu, 3, "%s", "ENABLE: RI (lazy)"); vcpu->arch.sie_block->ecb3 |= ECB3_RI; kvm_s390_retry_instr(vcpu); return 0; } else return kvm_s390_inject_program_int(vcpu, PGM_OPERATION); } int kvm_s390_handle_aa(struct kvm_vcpu *vcpu) { if ((vcpu->arch.sie_block->ipa & 0xf) <= 4) return handle_ri(vcpu); else return -EOPNOTSUPP; } static int handle_gs(struct kvm_vcpu *vcpu) { vcpu->stat.instruction_gs++; if (test_kvm_facility(vcpu->kvm, 133)) { VCPU_EVENT(vcpu, 3, "%s", "ENABLE: GS (lazy)"); preempt_disable(); __ctl_set_bit(2, 4); current->thread.gs_cb = (struct gs_cb *)&vcpu->run->s.regs.gscb; restore_gs_cb(current->thread.gs_cb); preempt_enable(); vcpu->arch.sie_block->ecb |= ECB_GS; vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT; vcpu->arch.gs_enabled = 1; kvm_s390_retry_instr(vcpu); return 0; } else return kvm_s390_inject_program_int(vcpu, PGM_OPERATION); } int kvm_s390_handle_e3(struct kvm_vcpu *vcpu) { int code = vcpu->arch.sie_block->ipb & 0xff; if (code == 0x49 || code == 0x4d) return handle_gs(vcpu); else return -EOPNOTSUPP; } /* Handle SCK (SET CLOCK) interception */ static int handle_set_clock(struct kvm_vcpu *vcpu) { struct kvm_s390_vm_tod_clock gtod = { 0 }; int rc; u8 ar; u64 op2; vcpu->stat.instruction_sck++; if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); op2 = kvm_s390_get_base_disp_s(vcpu, &ar); if (op2 & 7) /* Operand must be on a doubleword boundary */ return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); rc = read_guest(vcpu, op2, ar, >od.tod, sizeof(gtod.tod)); if (rc) return kvm_s390_inject_prog_cond(vcpu, rc); VCPU_EVENT(vcpu, 3, "SCK: setting guest TOD to 0x%llx", gtod.tod); kvm_s390_set_tod_clock(vcpu->kvm, >od); kvm_s390_set_psw_cc(vcpu, 0); return 0; } static int handle_set_prefix(struct kvm_vcpu *vcpu) { u64 operand2; u32 address; int rc; u8 ar; vcpu->stat.instruction_spx++; if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); operand2 = kvm_s390_get_base_disp_s(vcpu, &ar); /* must be word boundary */ if (operand2 & 3) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); /* get the value */ rc = read_guest(vcpu, operand2, ar, &address, sizeof(address)); if (rc) return kvm_s390_inject_prog_cond(vcpu, rc); address &= 0x7fffe000u; /* * Make sure the new value is valid memory. We only need to check the * first page, since address is 8k aligned and memory pieces are always * at least 1MB aligned and have at least a size of 1MB. */ if (kvm_is_error_gpa(vcpu->kvm, address)) return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING); kvm_s390_set_prefix(vcpu, address); trace_kvm_s390_handle_prefix(vcpu, 1, address); return 0; } static int handle_store_prefix(struct kvm_vcpu *vcpu) { u64 operand2; u32 address; int rc; u8 ar; vcpu->stat.instruction_stpx++; if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); operand2 = kvm_s390_get_base_disp_s(vcpu, &ar); /* must be word boundary */ if (operand2 & 3) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); address = kvm_s390_get_prefix(vcpu); /* get the value */ rc = write_guest(vcpu, operand2, ar, &address, sizeof(address)); if (rc) return kvm_s390_inject_prog_cond(vcpu, rc); VCPU_EVENT(vcpu, 3, "STPX: storing prefix 0x%x into 0x%llx", address, operand2); trace_kvm_s390_handle_prefix(vcpu, 0, address); return 0; } static int handle_store_cpu_address(struct kvm_vcpu *vcpu) { u16 vcpu_id = vcpu->vcpu_id; u64 ga; int rc; u8 ar; vcpu->stat.instruction_stap++; if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); ga = kvm_s390_get_base_disp_s(vcpu, &ar); if (ga & 1) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); rc = write_guest(vcpu, ga, ar, &vcpu_id, sizeof(vcpu_id)); if (rc) return kvm_s390_inject_prog_cond(vcpu, rc); VCPU_EVENT(vcpu, 3, "STAP: storing cpu address (%u) to 0x%llx", vcpu_id, ga); trace_kvm_s390_handle_stap(vcpu, ga); return 0; } int kvm_s390_skey_check_enable(struct kvm_vcpu *vcpu) { int rc; trace_kvm_s390_skey_related_inst(vcpu); /* Already enabled? */ if (vcpu->arch.skey_enabled) return 0; rc = s390_enable_skey(); VCPU_EVENT(vcpu, 3, "enabling storage keys for guest: %d", rc); if (rc) return rc; if (kvm_s390_test_cpuflags(vcpu, CPUSTAT_KSS)) kvm_s390_clear_cpuflags(vcpu, CPUSTAT_KSS); if (!vcpu->kvm->arch.use_skf) vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE; else vcpu->arch.sie_block->ictl &= ~(ICTL_ISKE | ICTL_SSKE | ICTL_RRBE); vcpu->arch.skey_enabled = true; return 0; } static int try_handle_skey(struct kvm_vcpu *vcpu) { int rc; rc = kvm_s390_skey_check_enable(vcpu); if (rc) return rc; if (vcpu->kvm->arch.use_skf) { /* with storage-key facility, SIE interprets it for us */ kvm_s390_retry_instr(vcpu); VCPU_EVENT(vcpu, 4, "%s", "retrying storage key operation"); return -EAGAIN; } return 0; } static int handle_iske(struct kvm_vcpu *vcpu) { unsigned long gaddr, vmaddr; unsigned char key; int reg1, reg2; bool unlocked; int rc; vcpu->stat.instruction_iske++; if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); rc = try_handle_skey(vcpu); if (rc) return rc != -EAGAIN ? rc : 0; kvm_s390_get_regs_rre(vcpu, ®1, ®2); gaddr = vcpu->run->s.regs.gprs[reg2] & PAGE_MASK; gaddr = kvm_s390_logical_to_effective(vcpu, gaddr); gaddr = kvm_s390_real_to_abs(vcpu, gaddr); vmaddr = gfn_to_hva(vcpu->kvm, gpa_to_gfn(gaddr)); if (kvm_is_error_hva(vmaddr)) return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING); retry: unlocked = false; mmap_read_lock(current->mm); rc = get_guest_storage_key(current->mm, vmaddr, &key); if (rc) { rc = fixup_user_fault(current->mm, vmaddr, FAULT_FLAG_WRITE, &unlocked); if (!rc) { mmap_read_unlock(current->mm); goto retry; } } mmap_read_unlock(current->mm); if (rc == -EFAULT) return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING); if (rc < 0) return rc; vcpu->run->s.regs.gprs[reg1] &= ~0xff; vcpu->run->s.regs.gprs[reg1] |= key; return 0; } static int handle_rrbe(struct kvm_vcpu *vcpu) { unsigned long vmaddr, gaddr; int reg1, reg2; bool unlocked; int rc; vcpu->stat.instruction_rrbe++; if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); rc = try_handle_skey(vcpu); if (rc) return rc != -EAGAIN ? rc : 0; kvm_s390_get_regs_rre(vcpu, ®1, ®2); gaddr = vcpu->run->s.regs.gprs[reg2] & PAGE_MASK; gaddr = kvm_s390_logical_to_effective(vcpu, gaddr); gaddr = kvm_s390_real_to_abs(vcpu, gaddr); vmaddr = gfn_to_hva(vcpu->kvm, gpa_to_gfn(gaddr)); if (kvm_is_error_hva(vmaddr)) return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING); retry: unlocked = false; mmap_read_lock(current->mm); rc = reset_guest_reference_bit(current->mm, vmaddr); if (rc < 0) { rc = fixup_user_fault(current->mm, vmaddr, FAULT_FLAG_WRITE, &unlocked); if (!rc) { mmap_read_unlock(current->mm); goto retry; } } mmap_read_unlock(current->mm); if (rc == -EFAULT) return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING); if (rc < 0) return rc; kvm_s390_set_psw_cc(vcpu, rc); return 0; } #define SSKE_NQ 0x8 #define SSKE_MR 0x4 #define SSKE_MC 0x2 #define SSKE_MB 0x1 static int handle_sske(struct kvm_vcpu *vcpu) { unsigned char m3 = vcpu->arch.sie_block->ipb >> 28; unsigned long start, end; unsigned char key, oldkey; int reg1, reg2; bool unlocked; int rc; vcpu->stat.instruction_sske++; if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); rc = try_handle_skey(vcpu); if (rc) return rc != -EAGAIN ? rc : 0; if (!test_kvm_facility(vcpu->kvm, 8)) m3 &= ~SSKE_MB; if (!test_kvm_facility(vcpu->kvm, 10)) m3 &= ~(SSKE_MC | SSKE_MR); if (!test_kvm_facility(vcpu->kvm, 14)) m3 &= ~SSKE_NQ; kvm_s390_get_regs_rre(vcpu, ®1, ®2); key = vcpu->run->s.regs.gprs[reg1] & 0xfe; start = vcpu->run->s.regs.gprs[reg2] & PAGE_MASK; start = kvm_s390_logical_to_effective(vcpu, start); if (m3 & SSKE_MB) { /* start already designates an absolute address */ end = (start + _SEGMENT_SIZE) & ~(_SEGMENT_SIZE - 1); } else { start = kvm_s390_real_to_abs(vcpu, start); end = start + PAGE_SIZE; } while (start != end) { unsigned long vmaddr = gfn_to_hva(vcpu->kvm, gpa_to_gfn(start)); unlocked = false; if (kvm_is_error_hva(vmaddr)) return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING); mmap_read_lock(current->mm); rc = cond_set_guest_storage_key(current->mm, vmaddr, key, &oldkey, m3 & SSKE_NQ, m3 & SSKE_MR, m3 & SSKE_MC); if (rc < 0) { rc = fixup_user_fault(current->mm, vmaddr, FAULT_FLAG_WRITE, &unlocked); rc = !rc ? -EAGAIN : rc; } mmap_read_unlock(current->mm); if (rc == -EFAULT) return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING); if (rc < 0) return rc; start += PAGE_SIZE; } if (m3 & (SSKE_MC | SSKE_MR)) { if (m3 & SSKE_MB) { /* skey in reg1 is unpredictable */ kvm_s390_set_psw_cc(vcpu, 3); } else { kvm_s390_set_psw_cc(vcpu, rc); vcpu->run->s.regs.gprs[reg1] &= ~0xff00UL; vcpu->run->s.regs.gprs[reg1] |= (u64) oldkey << 8; } } if (m3 & SSKE_MB) { if (psw_bits(vcpu->arch.sie_block->gpsw).eaba == PSW_BITS_AMODE_64BIT) vcpu->run->s.regs.gprs[reg2] &= ~PAGE_MASK; else vcpu->run->s.regs.gprs[reg2] &= ~0xfffff000UL; end = kvm_s390_logical_to_effective(vcpu, end); vcpu->run->s.regs.gprs[reg2] |= end; } return 0; } static int handle_ipte_interlock(struct kvm_vcpu *vcpu) { vcpu->stat.instruction_ipte_interlock++; if (psw_bits(vcpu->arch.sie_block->gpsw).pstate) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); wait_event(vcpu->kvm->arch.ipte_wq, !ipte_lock_held(vcpu)); kvm_s390_retry_instr(vcpu); VCPU_EVENT(vcpu, 4, "%s", "retrying ipte interlock operation"); return 0; } static int handle_test_block(struct kvm_vcpu *vcpu) { gpa_t addr; int reg2; vcpu->stat.instruction_tb++; if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); kvm_s390_get_regs_rre(vcpu, NULL, ®2); addr = vcpu->run->s.regs.gprs[reg2] & PAGE_MASK; addr = kvm_s390_logical_to_effective(vcpu, addr); if (kvm_s390_check_low_addr_prot_real(vcpu, addr)) return kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm); addr = kvm_s390_real_to_abs(vcpu, addr); if (kvm_is_error_gpa(vcpu->kvm, addr)) return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING); /* * We don't expect errors on modern systems, and do not care * about storage keys (yet), so let's just clear the page. */ if (kvm_clear_guest(vcpu->kvm, addr, PAGE_SIZE)) return -EFAULT; kvm_s390_set_psw_cc(vcpu, 0); vcpu->run->s.regs.gprs[0] = 0; return 0; } static int handle_tpi(struct kvm_vcpu *vcpu) { struct kvm_s390_interrupt_info *inti; unsigned long len; u32 tpi_data[3]; int rc; u64 addr; u8 ar; vcpu->stat.instruction_tpi++; addr = kvm_s390_get_base_disp_s(vcpu, &ar); if (addr & 3) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); inti = kvm_s390_get_io_int(vcpu->kvm, vcpu->arch.sie_block->gcr[6], 0); if (!inti) { kvm_s390_set_psw_cc(vcpu, 0); return 0; } tpi_data[0] = inti->io.subchannel_id << 16 | inti->io.subchannel_nr; tpi_data[1] = inti->io.io_int_parm; tpi_data[2] = inti->io.io_int_word; if (addr) { /* * Store the two-word I/O interruption code into the * provided area. */ len = sizeof(tpi_data) - 4; rc = write_guest(vcpu, addr, ar, &tpi_data, len); if (rc) { rc = kvm_s390_inject_prog_cond(vcpu, rc); goto reinject_interrupt; } } else { /* * Store the three-word I/O interruption code into * the appropriate lowcore area. */ len = sizeof(tpi_data); if (write_guest_lc(vcpu, __LC_SUBCHANNEL_ID, &tpi_data, len)) { /* failed writes to the low core are not recoverable */ rc = -EFAULT; goto reinject_interrupt; } } /* irq was successfully handed to the guest */ kfree(inti); kvm_s390_set_psw_cc(vcpu, 1); return 0; reinject_interrupt: /* * If we encounter a problem storing the interruption code, the * instruction is suppressed from the guest's view: reinject the * interrupt. */ if (kvm_s390_reinject_io_int(vcpu->kvm, inti)) { kfree(inti); rc = -EFAULT; } /* don't set the cc, a pgm irq was injected or we drop to user space */ return rc ? -EFAULT : 0; } static int handle_tsch(struct kvm_vcpu *vcpu) { struct kvm_s390_interrupt_info *inti = NULL; const u64 isc_mask = 0xffUL << 24; /* all iscs set */ vcpu->stat.instruction_tsch++; /* a valid schid has at least one bit set */ if (vcpu->run->s.regs.gprs[1]) inti = kvm_s390_get_io_int(vcpu->kvm, isc_mask, vcpu->run->s.regs.gprs[1]); /* * Prepare exit to userspace. * We indicate whether we dequeued a pending I/O interrupt * so that userspace can re-inject it if the instruction gets * a program check. While this may re-order the pending I/O * interrupts, this is no problem since the priority is kept * intact. */ vcpu->run->exit_reason = KVM_EXIT_S390_TSCH; vcpu->run->s390_tsch.dequeued = !!inti; if (inti) { vcpu->run->s390_tsch.subchannel_id = inti->io.subchannel_id; vcpu->run->s390_tsch.subchannel_nr = inti->io.subchannel_nr; vcpu->run->s390_tsch.io_int_parm = inti->io.io_int_parm; vcpu->run->s390_tsch.io_int_word = inti->io.io_int_word; } vcpu->run->s390_tsch.ipb = vcpu->arch.sie_block->ipb; kfree(inti); return -EREMOTE; } static int handle_io_inst(struct kvm_vcpu *vcpu) { VCPU_EVENT(vcpu, 4, "%s", "I/O instruction"); if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); if (vcpu->kvm->arch.css_support) { /* * Most I/O instructions will be handled by userspace. * Exceptions are tpi and the interrupt portion of tsch. */ if (vcpu->arch.sie_block->ipa == 0xb236) return handle_tpi(vcpu); if (vcpu->arch.sie_block->ipa == 0xb235) return handle_tsch(vcpu); /* Handle in userspace. */ vcpu->stat.instruction_io_other++; return -EOPNOTSUPP; } else { /* * Set condition code 3 to stop the guest from issuing channel * I/O instructions. */ kvm_s390_set_psw_cc(vcpu, 3); return 0; } } /* * handle_pqap: Handling pqap interception * @vcpu: the vcpu having issue the pqap instruction * * We now support PQAP/AQIC instructions and we need to correctly * answer the guest even if no dedicated driver's hook is available. * * The intercepting code calls a dedicated callback for this instruction * if a driver did register one in the CRYPTO satellite of the * SIE block. * * If no callback is available, the queues are not available, return this * response code to the caller and set CC to 3. * Else return the response code returned by the callback. */ static int handle_pqap(struct kvm_vcpu *vcpu) { struct ap_queue_status status = {}; unsigned long reg0; int ret; uint8_t fc; /* Verify that the AP instruction are available */ if (!ap_instructions_available()) return -EOPNOTSUPP; /* Verify that the guest is allowed to use AP instructions */ if (!(vcpu->arch.sie_block->eca & ECA_APIE)) return -EOPNOTSUPP; /* * The only possibly intercepted functions when AP instructions are * available for the guest are AQIC and TAPQ with the t bit set * since we do not set IC.3 (FIII) we currently will only intercept * the AQIC function code. * Note: running nested under z/VM can result in intercepts for other * function codes, e.g. PQAP(QCI). We do not support this and bail out. */ reg0 = vcpu->run->s.regs.gprs[0]; fc = (reg0 >> 24) & 0xff; if (fc != 0x03) return -EOPNOTSUPP; /* PQAP instruction is allowed for guest kernel only */ if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); /* Common PQAP instruction specification exceptions */ /* bits 41-47 must all be zeros */ if (reg0 & 0x007f0000UL) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); /* APFT not install and T bit set */ if (!test_kvm_facility(vcpu->kvm, 15) && (reg0 & 0x00800000UL)) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); /* APXA not installed and APID greater 64 or APQI greater 16 */ if (!(vcpu->kvm->arch.crypto.crycbd & 0x02) && (reg0 & 0x0000c0f0UL)) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); /* AQIC function code specific exception */ /* facility 65 not present for AQIC function code */ if (!test_kvm_facility(vcpu->kvm, 65)) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); /* * Verify that the hook callback is registered, lock the owner * and call the hook. */ if (vcpu->kvm->arch.crypto.pqap_hook) { if (!try_module_get(vcpu->kvm->arch.crypto.pqap_hook->owner)) return -EOPNOTSUPP; ret = vcpu->kvm->arch.crypto.pqap_hook->hook(vcpu); module_put(vcpu->kvm->arch.crypto.pqap_hook->owner); if (!ret && vcpu->run->s.regs.gprs[1] & 0x00ff0000) kvm_s390_set_psw_cc(vcpu, 3); return ret; } /* * A vfio_driver must register a hook. * No hook means no driver to enable the SIE CRYCB and no queues. * We send this response to the guest. */ status.response_code = 0x01; memcpy(&vcpu->run->s.regs.gprs[1], &status, sizeof(status)); kvm_s390_set_psw_cc(vcpu, 3); return 0; } static int handle_stfl(struct kvm_vcpu *vcpu) { int rc; unsigned int fac; vcpu->stat.instruction_stfl++; if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); /* * We need to shift the lower 32 facility bits (bit 0-31) from a u64 * into a u32 memory representation. They will remain bits 0-31. */ fac = *vcpu->kvm->arch.model.fac_list >> 32; rc = write_guest_lc(vcpu, offsetof(struct lowcore, stfl_fac_list), &fac, sizeof(fac)); if (rc) return rc; VCPU_EVENT(vcpu, 3, "STFL: store facility list 0x%x", fac); trace_kvm_s390_handle_stfl(vcpu, fac); return 0; } #define PSW_MASK_ADDR_MODE (PSW_MASK_EA | PSW_MASK_BA) #define PSW_MASK_UNASSIGNED 0xb80800fe7fffffffUL #define PSW_ADDR_24 0x0000000000ffffffUL #define PSW_ADDR_31 0x000000007fffffffUL int is_valid_psw(psw_t *psw) { if (psw->mask & PSW_MASK_UNASSIGNED) return 0; if ((psw->mask & PSW_MASK_ADDR_MODE) == PSW_MASK_BA) { if (psw->addr & ~PSW_ADDR_31) return 0; } if (!(psw->mask & PSW_MASK_ADDR_MODE) && (psw->addr & ~PSW_ADDR_24)) return 0; if ((psw->mask & PSW_MASK_ADDR_MODE) == PSW_MASK_EA) return 0; if (psw->addr & 1) return 0; return 1; } int kvm_s390_handle_lpsw(struct kvm_vcpu *vcpu) { psw_t *gpsw = &vcpu->arch.sie_block->gpsw; psw_compat_t new_psw; u64 addr; int rc; u8 ar; vcpu->stat.instruction_lpsw++; if (gpsw->mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); addr = kvm_s390_get_base_disp_s(vcpu, &ar); if (addr & 7) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); rc = read_guest(vcpu, addr, ar, &new_psw, sizeof(new_psw)); if (rc) return kvm_s390_inject_prog_cond(vcpu, rc); if (!(new_psw.mask & PSW32_MASK_BASE)) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); gpsw->mask = (new_psw.mask & ~PSW32_MASK_BASE) << 32; gpsw->mask |= new_psw.addr & PSW32_ADDR_AMODE; gpsw->addr = new_psw.addr & ~PSW32_ADDR_AMODE; if (!is_valid_psw(gpsw)) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); return 0; } static int handle_lpswe(struct kvm_vcpu *vcpu) { psw_t new_psw; u64 addr; int rc; u8 ar; vcpu->stat.instruction_lpswe++; if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); addr = kvm_s390_get_base_disp_s(vcpu, &ar); if (addr & 7) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); rc = read_guest(vcpu, addr, ar, &new_psw, sizeof(new_psw)); if (rc) return kvm_s390_inject_prog_cond(vcpu, rc); vcpu->arch.sie_block->gpsw = new_psw; if (!is_valid_psw(&vcpu->arch.sie_block->gpsw)) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); return 0; } static int handle_stidp(struct kvm_vcpu *vcpu) { u64 stidp_data = vcpu->kvm->arch.model.cpuid; u64 operand2; int rc; u8 ar; vcpu->stat.instruction_stidp++; if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); operand2 = kvm_s390_get_base_disp_s(vcpu, &ar); if (operand2 & 7) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); rc = write_guest(vcpu, operand2, ar, &stidp_data, sizeof(stidp_data)); if (rc) return kvm_s390_inject_prog_cond(vcpu, rc); VCPU_EVENT(vcpu, 3, "STIDP: store cpu id 0x%llx", stidp_data); return 0; } static void handle_stsi_3_2_2(struct kvm_vcpu *vcpu, struct sysinfo_3_2_2 *mem) { int cpus = 0; int n; cpus = atomic_read(&vcpu->kvm->online_vcpus); /* deal with other level 3 hypervisors */ if (stsi(mem, 3, 2, 2)) mem->count = 0; if (mem->count < 8) mem->count++; for (n = mem->count - 1; n > 0 ; n--) memcpy(&mem->vm[n], &mem->vm[n - 1], sizeof(mem->vm[0])); memset(&mem->vm[0], 0, sizeof(mem->vm[0])); mem->vm[0].cpus_total = cpus; mem->vm[0].cpus_configured = cpus; mem->vm[0].cpus_standby = 0; mem->vm[0].cpus_reserved = 0; mem->vm[0].caf = 1000; memcpy(mem->vm[0].name, "KVMguest", 8); ASCEBC(mem->vm[0].name, 8); memcpy(mem->vm[0].cpi, "KVM/Linux ", 16); ASCEBC(mem->vm[0].cpi, 16); } static void insert_stsi_usr_data(struct kvm_vcpu *vcpu, u64 addr, u8 ar, u8 fc, u8 sel1, u16 sel2) { vcpu->run->exit_reason = KVM_EXIT_S390_STSI; vcpu->run->s390_stsi.addr = addr; vcpu->run->s390_stsi.ar = ar; vcpu->run->s390_stsi.fc = fc; vcpu->run->s390_stsi.sel1 = sel1; vcpu->run->s390_stsi.sel2 = sel2; } static int handle_stsi(struct kvm_vcpu *vcpu) { int fc = (vcpu->run->s.regs.gprs[0] & 0xf0000000) >> 28; int sel1 = vcpu->run->s.regs.gprs[0] & 0xff; int sel2 = vcpu->run->s.regs.gprs[1] & 0xffff; unsigned long mem = 0; u64 operand2; int rc = 0; u8 ar; vcpu->stat.instruction_stsi++; VCPU_EVENT(vcpu, 3, "STSI: fc: %u sel1: %u sel2: %u", fc, sel1, sel2); if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); if (fc > 3) { kvm_s390_set_psw_cc(vcpu, 3); return 0; } if (vcpu->run->s.regs.gprs[0] & 0x0fffff00 || vcpu->run->s.regs.gprs[1] & 0xffff0000) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); if (fc == 0) { vcpu->run->s.regs.gprs[0] = 3 << 28; kvm_s390_set_psw_cc(vcpu, 0); return 0; } operand2 = kvm_s390_get_base_disp_s(vcpu, &ar); if (!kvm_s390_pv_cpu_is_protected(vcpu) && (operand2 & 0xfff)) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); switch (fc) { case 1: /* same handling for 1 and 2 */ case 2: mem = get_zeroed_page(GFP_KERNEL); if (!mem) goto out_no_data; if (stsi((void *) mem, fc, sel1, sel2)) goto out_no_data; break; case 3: if (sel1 != 2 || sel2 != 2) goto out_no_data; mem = get_zeroed_page(GFP_KERNEL); if (!mem) goto out_no_data; handle_stsi_3_2_2(vcpu, (void *) mem); break; } if (kvm_s390_pv_cpu_is_protected(vcpu)) { memcpy((void *)sida_origin(vcpu->arch.sie_block), (void *)mem, PAGE_SIZE); rc = 0; } else { rc = write_guest(vcpu, operand2, ar, (void *)mem, PAGE_SIZE); } if (rc) { rc = kvm_s390_inject_prog_cond(vcpu, rc); goto out; } if (vcpu->kvm->arch.user_stsi) { insert_stsi_usr_data(vcpu, operand2, ar, fc, sel1, sel2); rc = -EREMOTE; } trace_kvm_s390_handle_stsi(vcpu, fc, sel1, sel2, operand2); free_page(mem); kvm_s390_set_psw_cc(vcpu, 0); vcpu->run->s.regs.gprs[0] = 0; return rc; out_no_data: kvm_s390_set_psw_cc(vcpu, 3); out: free_page(mem); return rc; } int kvm_s390_handle_b2(struct kvm_vcpu *vcpu) { switch (vcpu->arch.sie_block->ipa & 0x00ff) { case 0x02: return handle_stidp(vcpu); case 0x04: return handle_set_clock(vcpu); case 0x10: return handle_set_prefix(vcpu); case 0x11: return handle_store_prefix(vcpu); case 0x12: return handle_store_cpu_address(vcpu); case 0x14: return kvm_s390_handle_vsie(vcpu); case 0x21: case 0x50: return handle_ipte_interlock(vcpu); case 0x29: return handle_iske(vcpu); case 0x2a: return handle_rrbe(vcpu); case 0x2b: return handle_sske(vcpu); case 0x2c: return handle_test_block(vcpu); case 0x30: case 0x31: case 0x32: case 0x33: case 0x34: case 0x35: case 0x36: case 0x37: case 0x38: case 0x39: case 0x3a: case 0x3b: case 0x3c: case 0x5f: case 0x74: case 0x76: return handle_io_inst(vcpu); case 0x56: return handle_sthyi(vcpu); case 0x7d: return handle_stsi(vcpu); case 0xaf: return handle_pqap(vcpu); case 0xb1: return handle_stfl(vcpu); case 0xb2: return handle_lpswe(vcpu); default: return -EOPNOTSUPP; } } static int handle_epsw(struct kvm_vcpu *vcpu) { int reg1, reg2; vcpu->stat.instruction_epsw++; kvm_s390_get_regs_rre(vcpu, ®1, ®2); /* This basically extracts the mask half of the psw. */ vcpu->run->s.regs.gprs[reg1] &= 0xffffffff00000000UL; vcpu->run->s.regs.gprs[reg1] |= vcpu->arch.sie_block->gpsw.mask >> 32; if (reg2) { vcpu->run->s.regs.gprs[reg2] &= 0xffffffff00000000UL; vcpu->run->s.regs.gprs[reg2] |= vcpu->arch.sie_block->gpsw.mask & 0x00000000ffffffffUL; } return 0; } #define PFMF_RESERVED 0xfffc0101UL #define PFMF_SK 0x00020000UL #define PFMF_CF 0x00010000UL #define PFMF_UI 0x00008000UL #define PFMF_FSC 0x00007000UL #define PFMF_NQ 0x00000800UL #define PFMF_MR 0x00000400UL #define PFMF_MC 0x00000200UL #define PFMF_KEY 0x000000feUL static int handle_pfmf(struct kvm_vcpu *vcpu) { bool mr = false, mc = false, nq; int reg1, reg2; unsigned long start, end; unsigned char key; vcpu->stat.instruction_pfmf++; kvm_s390_get_regs_rre(vcpu, ®1, ®2); if (!test_kvm_facility(vcpu->kvm, 8)) return kvm_s390_inject_program_int(vcpu, PGM_OPERATION); if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); if (vcpu->run->s.regs.gprs[reg1] & PFMF_RESERVED) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); /* Only provide non-quiescing support if enabled for the guest */ if (vcpu->run->s.regs.gprs[reg1] & PFMF_NQ && !test_kvm_facility(vcpu->kvm, 14)) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); /* Only provide conditional-SSKE support if enabled for the guest */ if (vcpu->run->s.regs.gprs[reg1] & PFMF_SK && test_kvm_facility(vcpu->kvm, 10)) { mr = vcpu->run->s.regs.gprs[reg1] & PFMF_MR; mc = vcpu->run->s.regs.gprs[reg1] & PFMF_MC; } nq = vcpu->run->s.regs.gprs[reg1] & PFMF_NQ; key = vcpu->run->s.regs.gprs[reg1] & PFMF_KEY; start = vcpu->run->s.regs.gprs[reg2] & PAGE_MASK; start = kvm_s390_logical_to_effective(vcpu, start); if (vcpu->run->s.regs.gprs[reg1] & PFMF_CF) { if (kvm_s390_check_low_addr_prot_real(vcpu, start)) return kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm); } switch (vcpu->run->s.regs.gprs[reg1] & PFMF_FSC) { case 0x00000000: /* only 4k frames specify a real address */ start = kvm_s390_real_to_abs(vcpu, start); end = (start + PAGE_SIZE) & ~(PAGE_SIZE - 1); break; case 0x00001000: end = (start + _SEGMENT_SIZE) & ~(_SEGMENT_SIZE - 1); break; case 0x00002000: /* only support 2G frame size if EDAT2 is available and we are not in 24-bit addressing mode */ if (!test_kvm_facility(vcpu->kvm, 78) || psw_bits(vcpu->arch.sie_block->gpsw).eaba == PSW_BITS_AMODE_24BIT) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); end = (start + _REGION3_SIZE) & ~(_REGION3_SIZE - 1); break; default: return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); } while (start != end) { unsigned long vmaddr; bool unlocked = false; /* Translate guest address to host address */ vmaddr = gfn_to_hva(vcpu->kvm, gpa_to_gfn(start)); if (kvm_is_error_hva(vmaddr)) return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING); if (vcpu->run->s.regs.gprs[reg1] & PFMF_CF) { if (kvm_clear_guest(vcpu->kvm, start, PAGE_SIZE)) return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING); } if (vcpu->run->s.regs.gprs[reg1] & PFMF_SK) { int rc = kvm_s390_skey_check_enable(vcpu); if (rc) return rc; mmap_read_lock(current->mm); rc = cond_set_guest_storage_key(current->mm, vmaddr, key, NULL, nq, mr, mc); if (rc < 0) { rc = fixup_user_fault(current->mm, vmaddr, FAULT_FLAG_WRITE, &unlocked); rc = !rc ? -EAGAIN : rc; } mmap_read_unlock(current->mm); if (rc == -EFAULT) return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING); if (rc == -EAGAIN) continue; if (rc < 0) return rc; } start += PAGE_SIZE; } if (vcpu->run->s.regs.gprs[reg1] & PFMF_FSC) { if (psw_bits(vcpu->arch.sie_block->gpsw).eaba == PSW_BITS_AMODE_64BIT) { vcpu->run->s.regs.gprs[reg2] = end; } else { vcpu->run->s.regs.gprs[reg2] &= ~0xffffffffUL; end = kvm_s390_logical_to_effective(vcpu, end); vcpu->run->s.regs.gprs[reg2] |= end; } } return 0; } /* * Must be called with relevant read locks held (kvm->mm->mmap_lock, kvm->srcu) */ static inline int __do_essa(struct kvm_vcpu *vcpu, const int orc) { int r1, r2, nappended, entries; unsigned long gfn, hva, res, pgstev, ptev; unsigned long *cbrlo; /* * We don't need to set SD.FPF.SK to 1 here, because if we have a * machine check here we either handle it or crash */ kvm_s390_get_regs_rre(vcpu, &r1, &r2); gfn = vcpu->run->s.regs.gprs[r2] >> PAGE_SHIFT; hva = gfn_to_hva(vcpu->kvm, gfn); entries = (vcpu->arch.sie_block->cbrlo & ~PAGE_MASK) >> 3; if (kvm_is_error_hva(hva)) return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING); nappended = pgste_perform_essa(vcpu->kvm->mm, hva, orc, &ptev, &pgstev); if (nappended < 0) { res = orc ? 0x10 : 0; vcpu->run->s.regs.gprs[r1] = res; /* Exception Indication */ return 0; } res = (pgstev & _PGSTE_GPS_USAGE_MASK) >> 22; /* * Set the block-content state part of the result. 0 means resident, so * nothing to do if the page is valid. 2 is for preserved pages * (non-present and non-zero), and 3 for zero pages (non-present and * zero). */ if (ptev & _PAGE_INVALID) { res |= 2; if (pgstev & _PGSTE_GPS_ZERO) res |= 1; } if (pgstev & _PGSTE_GPS_NODAT) res |= 0x20; vcpu->run->s.regs.gprs[r1] = res; /* * It is possible that all the normal 511 slots were full, in which case * we will now write in the 512th slot, which is reserved for host use. * In both cases we let the normal essa handling code process all the * slots, including the reserved one, if needed. */ if (nappended > 0) { cbrlo = phys_to_virt(vcpu->arch.sie_block->cbrlo & PAGE_MASK); cbrlo[entries] = gfn << PAGE_SHIFT; } if (orc) { struct kvm_memory_slot *ms = gfn_to_memslot(vcpu->kvm, gfn); /* Increment only if we are really flipping the bit */ if (ms && !test_and_set_bit(gfn - ms->base_gfn, kvm_second_dirty_bitmap(ms))) atomic64_inc(&vcpu->kvm->arch.cmma_dirty_pages); } return nappended; } static int handle_essa(struct kvm_vcpu *vcpu) { /* entries expected to be 1FF */ int entries = (vcpu->arch.sie_block->cbrlo & ~PAGE_MASK) >> 3; unsigned long *cbrlo; struct gmap *gmap; int i, orc; VCPU_EVENT(vcpu, 4, "ESSA: release %d pages", entries); gmap = vcpu->arch.gmap; vcpu->stat.instruction_essa++; if (!vcpu->kvm->arch.use_cmma) return kvm_s390_inject_program_int(vcpu, PGM_OPERATION); if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); /* Check for invalid operation request code */ orc = (vcpu->arch.sie_block->ipb & 0xf0000000) >> 28; /* ORCs 0-6 are always valid */ if (orc > (test_kvm_facility(vcpu->kvm, 147) ? ESSA_SET_STABLE_NODAT : ESSA_SET_STABLE_IF_RESIDENT)) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); if (!vcpu->kvm->arch.migration_mode) { /* * CMMA is enabled in the KVM settings, but is disabled in * the SIE block and in the mm_context, and we are not doing * a migration. Enable CMMA in the mm_context. * Since we need to take a write lock to write to the context * to avoid races with storage keys handling, we check if the * value really needs to be written to; if the value is * already correct, we do nothing and avoid the lock. */ if (vcpu->kvm->mm->context.uses_cmm == 0) { mmap_write_lock(vcpu->kvm->mm); vcpu->kvm->mm->context.uses_cmm = 1; mmap_write_unlock(vcpu->kvm->mm); } /* * If we are here, we are supposed to have CMMA enabled in * the SIE block. Enabling CMMA works on a per-CPU basis, * while the context use_cmma flag is per process. * It's possible that the context flag is enabled and the * SIE flag is not, so we set the flag always; if it was * already set, nothing changes, otherwise we enable it * on this CPU too. */ vcpu->arch.sie_block->ecb2 |= ECB2_CMMA; /* Retry the ESSA instruction */ kvm_s390_retry_instr(vcpu); } else { int srcu_idx; mmap_read_lock(vcpu->kvm->mm); srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); i = __do_essa(vcpu, orc); srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); mmap_read_unlock(vcpu->kvm->mm); if (i < 0) return i; /* Account for the possible extra cbrl entry */ entries += i; } vcpu->arch.sie_block->cbrlo &= PAGE_MASK; /* reset nceo */ cbrlo = phys_to_virt(vcpu->arch.sie_block->cbrlo); mmap_read_lock(gmap->mm); for (i = 0; i < entries; ++i) __gmap_zap(gmap, cbrlo[i]); mmap_read_unlock(gmap->mm); return 0; } int kvm_s390_handle_b9(struct kvm_vcpu *vcpu) { switch (vcpu->arch.sie_block->ipa & 0x00ff) { case 0x8a: case 0x8e: case 0x8f: return handle_ipte_interlock(vcpu); case 0x8d: return handle_epsw(vcpu); case 0xab: return handle_essa(vcpu); case 0xaf: return handle_pfmf(vcpu); default: return -EOPNOTSUPP; } } int kvm_s390_handle_lctl(struct kvm_vcpu *vcpu) { int reg1 = (vcpu->arch.sie_block->ipa & 0x00f0) >> 4; int reg3 = vcpu->arch.sie_block->ipa & 0x000f; int reg, rc, nr_regs; u32 ctl_array[16]; u64 ga; u8 ar; vcpu->stat.instruction_lctl++; if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); ga = kvm_s390_get_base_disp_rs(vcpu, &ar); if (ga & 3) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); VCPU_EVENT(vcpu, 4, "LCTL: r1:%d, r3:%d, addr: 0x%llx", reg1, reg3, ga); trace_kvm_s390_handle_lctl(vcpu, 0, reg1, reg3, ga); nr_regs = ((reg3 - reg1) & 0xf) + 1; rc = read_guest(vcpu, ga, ar, ctl_array, nr_regs * sizeof(u32)); if (rc) return kvm_s390_inject_prog_cond(vcpu, rc); reg = reg1; nr_regs = 0; do { vcpu->arch.sie_block->gcr[reg] &= 0xffffffff00000000ul; vcpu->arch.sie_block->gcr[reg] |= ctl_array[nr_regs++]; if (reg == reg3) break; reg = (reg + 1) % 16; } while (1); kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); return 0; } int kvm_s390_handle_stctl(struct kvm_vcpu *vcpu) { int reg1 = (vcpu->arch.sie_block->ipa & 0x00f0) >> 4; int reg3 = vcpu->arch.sie_block->ipa & 0x000f; int reg, rc, nr_regs; u32 ctl_array[16]; u64 ga; u8 ar; vcpu->stat.instruction_stctl++; if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); ga = kvm_s390_get_base_disp_rs(vcpu, &ar); if (ga & 3) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); VCPU_EVENT(vcpu, 4, "STCTL r1:%d, r3:%d, addr: 0x%llx", reg1, reg3, ga); trace_kvm_s390_handle_stctl(vcpu, 0, reg1, reg3, ga); reg = reg1; nr_regs = 0; do { ctl_array[nr_regs++] = vcpu->arch.sie_block->gcr[reg]; if (reg == reg3) break; reg = (reg + 1) % 16; } while (1); rc = write_guest(vcpu, ga, ar, ctl_array, nr_regs * sizeof(u32)); return rc ? kvm_s390_inject_prog_cond(vcpu, rc) : 0; } static int handle_lctlg(struct kvm_vcpu *vcpu) { int reg1 = (vcpu->arch.sie_block->ipa & 0x00f0) >> 4; int reg3 = vcpu->arch.sie_block->ipa & 0x000f; int reg, rc, nr_regs; u64 ctl_array[16]; u64 ga; u8 ar; vcpu->stat.instruction_lctlg++; if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); ga = kvm_s390_get_base_disp_rsy(vcpu, &ar); if (ga & 7) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); VCPU_EVENT(vcpu, 4, "LCTLG: r1:%d, r3:%d, addr: 0x%llx", reg1, reg3, ga); trace_kvm_s390_handle_lctl(vcpu, 1, reg1, reg3, ga); nr_regs = ((reg3 - reg1) & 0xf) + 1; rc = read_guest(vcpu, ga, ar, ctl_array, nr_regs * sizeof(u64)); if (rc) return kvm_s390_inject_prog_cond(vcpu, rc); reg = reg1; nr_regs = 0; do { vcpu->arch.sie_block->gcr[reg] = ctl_array[nr_regs++]; if (reg == reg3) break; reg = (reg + 1) % 16; } while (1); kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); return 0; } static int handle_stctg(struct kvm_vcpu *vcpu) { int reg1 = (vcpu->arch.sie_block->ipa & 0x00f0) >> 4; int reg3 = vcpu->arch.sie_block->ipa & 0x000f; int reg, rc, nr_regs; u64 ctl_array[16]; u64 ga; u8 ar; vcpu->stat.instruction_stctg++; if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); ga = kvm_s390_get_base_disp_rsy(vcpu, &ar); if (ga & 7) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); VCPU_EVENT(vcpu, 4, "STCTG r1:%d, r3:%d, addr: 0x%llx", reg1, reg3, ga); trace_kvm_s390_handle_stctl(vcpu, 1, reg1, reg3, ga); reg = reg1; nr_regs = 0; do { ctl_array[nr_regs++] = vcpu->arch.sie_block->gcr[reg]; if (reg == reg3) break; reg = (reg + 1) % 16; } while (1); rc = write_guest(vcpu, ga, ar, ctl_array, nr_regs * sizeof(u64)); return rc ? kvm_s390_inject_prog_cond(vcpu, rc) : 0; } int kvm_s390_handle_eb(struct kvm_vcpu *vcpu) { switch (vcpu->arch.sie_block->ipb & 0x000000ff) { case 0x25: return handle_stctg(vcpu); case 0x2f: return handle_lctlg(vcpu); case 0x60: case 0x61: case 0x62: return handle_ri(vcpu); default: return -EOPNOTSUPP; } } static int handle_tprot(struct kvm_vcpu *vcpu) { u64 address1, address2; unsigned long hva, gpa; int ret = 0, cc = 0; bool writable; u8 ar; vcpu->stat.instruction_tprot++; if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); kvm_s390_get_base_disp_sse(vcpu, &address1, &address2, &ar, NULL); /* we only handle the Linux memory detection case: * access key == 0 * everything else goes to userspace. */ if (address2 & 0xf0) return -EOPNOTSUPP; if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_DAT) ipte_lock(vcpu); ret = guest_translate_address(vcpu, address1, ar, &gpa, GACC_STORE); if (ret == PGM_PROTECTION) { /* Write protected? Try again with read-only... */ cc = 1; ret = guest_translate_address(vcpu, address1, ar, &gpa, GACC_FETCH); } if (ret) { if (ret == PGM_ADDRESSING || ret == PGM_TRANSLATION_SPEC) { ret = kvm_s390_inject_program_int(vcpu, ret); } else if (ret > 0) { /* Translation not available */ kvm_s390_set_psw_cc(vcpu, 3); ret = 0; } goto out_unlock; } hva = gfn_to_hva_prot(vcpu->kvm, gpa_to_gfn(gpa), &writable); if (kvm_is_error_hva(hva)) { ret = kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING); } else { if (!writable) cc = 1; /* Write not permitted ==> read-only */ kvm_s390_set_psw_cc(vcpu, cc); /* Note: CC2 only occurs for storage keys (not supported yet) */ } out_unlock: if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_DAT) ipte_unlock(vcpu); return ret; } int kvm_s390_handle_e5(struct kvm_vcpu *vcpu) { switch (vcpu->arch.sie_block->ipa & 0x00ff) { case 0x01: return handle_tprot(vcpu); default: return -EOPNOTSUPP; } } static int handle_sckpf(struct kvm_vcpu *vcpu) { u32 value; vcpu->stat.instruction_sckpf++; if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); if (vcpu->run->s.regs.gprs[0] & 0x00000000ffff0000) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); value = vcpu->run->s.regs.gprs[0] & 0x000000000000ffff; vcpu->arch.sie_block->todpr = value; return 0; } static int handle_ptff(struct kvm_vcpu *vcpu) { vcpu->stat.instruction_ptff++; /* we don't emulate any control instructions yet */ kvm_s390_set_psw_cc(vcpu, 3); return 0; } int kvm_s390_handle_01(struct kvm_vcpu *vcpu) { switch (vcpu->arch.sie_block->ipa & 0x00ff) { case 0x04: return handle_ptff(vcpu); case 0x07: return handle_sckpf(vcpu); default: return -EOPNOTSUPP; } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1