Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Paul Mundt | 668 | 96.81% | 2 | 40.00% |
Magnus Damm | 20 | 2.90% | 1 | 20.00% |
Greg Kroah-Hartman | 1 | 0.14% | 1 | 20.00% |
Lucas De Marchi | 1 | 0.14% | 1 | 20.00% |
Total | 690 | 5 |
/* SPDX-License-Identifier: GPL-2.0 */ #ifndef __ASM_SH_UNALIGNED_SH4A_H #define __ASM_SH_UNALIGNED_SH4A_H /* * SH-4A has support for unaligned 32-bit loads, and 32-bit loads only. * Support for 64-bit accesses are done through shifting and masking * relative to the endianness. Unaligned stores are not supported by the * instruction encoding, so these continue to use the packed * struct. * * The same note as with the movli.l/movco.l pair applies here, as long * as the load is guaranteed to be inlined, nothing else will hook in to * r0 and we get the return value for free. * * NOTE: Due to the fact we require r0 encoding, care should be taken to * avoid mixing these heavily with other r0 consumers, such as the atomic * ops. Failure to adhere to this can result in the compiler running out * of spill registers and blowing up when building at low optimization * levels. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=34777. */ #include <linux/unaligned/packed_struct.h> #include <linux/types.h> #include <asm/byteorder.h> static inline u16 sh4a_get_unaligned_cpu16(const u8 *p) { #ifdef __LITTLE_ENDIAN return p[0] | p[1] << 8; #else return p[0] << 8 | p[1]; #endif } static __always_inline u32 sh4a_get_unaligned_cpu32(const u8 *p) { unsigned long unaligned; __asm__ __volatile__ ( "movua.l @%1, %0\n\t" : "=z" (unaligned) : "r" (p) ); return unaligned; } /* * Even though movua.l supports auto-increment on the read side, it can * only store to r0 due to instruction encoding constraints, so just let * the compiler sort it out on its own. */ static inline u64 sh4a_get_unaligned_cpu64(const u8 *p) { #ifdef __LITTLE_ENDIAN return (u64)sh4a_get_unaligned_cpu32(p + 4) << 32 | sh4a_get_unaligned_cpu32(p); #else return (u64)sh4a_get_unaligned_cpu32(p) << 32 | sh4a_get_unaligned_cpu32(p + 4); #endif } static inline u16 get_unaligned_le16(const void *p) { return le16_to_cpu(sh4a_get_unaligned_cpu16(p)); } static inline u32 get_unaligned_le32(const void *p) { return le32_to_cpu(sh4a_get_unaligned_cpu32(p)); } static inline u64 get_unaligned_le64(const void *p) { return le64_to_cpu(sh4a_get_unaligned_cpu64(p)); } static inline u16 get_unaligned_be16(const void *p) { return be16_to_cpu(sh4a_get_unaligned_cpu16(p)); } static inline u32 get_unaligned_be32(const void *p) { return be32_to_cpu(sh4a_get_unaligned_cpu32(p)); } static inline u64 get_unaligned_be64(const void *p) { return be64_to_cpu(sh4a_get_unaligned_cpu64(p)); } static inline void nonnative_put_le16(u16 val, u8 *p) { *p++ = val; *p++ = val >> 8; } static inline void nonnative_put_le32(u32 val, u8 *p) { nonnative_put_le16(val, p); nonnative_put_le16(val >> 16, p + 2); } static inline void nonnative_put_le64(u64 val, u8 *p) { nonnative_put_le32(val, p); nonnative_put_le32(val >> 32, p + 4); } static inline void nonnative_put_be16(u16 val, u8 *p) { *p++ = val >> 8; *p++ = val; } static inline void nonnative_put_be32(u32 val, u8 *p) { nonnative_put_be16(val >> 16, p); nonnative_put_be16(val, p + 2); } static inline void nonnative_put_be64(u64 val, u8 *p) { nonnative_put_be32(val >> 32, p); nonnative_put_be32(val, p + 4); } static inline void put_unaligned_le16(u16 val, void *p) { #ifdef __LITTLE_ENDIAN __put_unaligned_cpu16(val, p); #else nonnative_put_le16(val, p); #endif } static inline void put_unaligned_le32(u32 val, void *p) { #ifdef __LITTLE_ENDIAN __put_unaligned_cpu32(val, p); #else nonnative_put_le32(val, p); #endif } static inline void put_unaligned_le64(u64 val, void *p) { #ifdef __LITTLE_ENDIAN __put_unaligned_cpu64(val, p); #else nonnative_put_le64(val, p); #endif } static inline void put_unaligned_be16(u16 val, void *p) { #ifdef __BIG_ENDIAN __put_unaligned_cpu16(val, p); #else nonnative_put_be16(val, p); #endif } static inline void put_unaligned_be32(u32 val, void *p) { #ifdef __BIG_ENDIAN __put_unaligned_cpu32(val, p); #else nonnative_put_be32(val, p); #endif } static inline void put_unaligned_be64(u64 val, void *p) { #ifdef __BIG_ENDIAN __put_unaligned_cpu64(val, p); #else nonnative_put_be64(val, p); #endif } /* * While it's a bit non-obvious, even though the generic le/be wrappers * use the __get/put_xxx prefixing, they actually wrap in to the * non-prefixed get/put_xxx variants as provided above. */ #include <linux/unaligned/generic.h> #ifdef __LITTLE_ENDIAN # define get_unaligned __get_unaligned_le # define put_unaligned __put_unaligned_le #else # define get_unaligned __get_unaligned_be # define put_unaligned __put_unaligned_be #endif #endif /* __ASM_SH_UNALIGNED_SH4A_H */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1