Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Peter Zijlstra | 216 | 21.41% | 3 | 10.00% |
Dave Hansen | 176 | 17.44% | 1 | 3.33% |
Dominik Brodowski | 159 | 15.76% | 5 | 16.67% |
Josh Poimboeuf | 98 | 9.71% | 3 | 10.00% |
Chang S. Bae | 92 | 9.12% | 2 | 6.67% |
Thomas Gleixner | 88 | 8.72% | 3 | 10.00% |
Andi Kleen | 68 | 6.74% | 2 | 6.67% |
Denys Vlasenko | 45 | 4.46% | 2 | 6.67% |
Alexander Popov | 26 | 2.58% | 1 | 3.33% |
Andrew Lutomirski | 18 | 1.78% | 2 | 6.67% |
Ingo Molnar | 16 | 1.59% | 2 | 6.67% |
Sean Christopherson | 4 | 0.40% | 1 | 3.33% |
Tao Guo | 1 | 0.10% | 1 | 3.33% |
Roland McGrath | 1 | 0.10% | 1 | 3.33% |
Greg Kroah-Hartman | 1 | 0.10% | 1 | 3.33% |
Total | 1009 | 30 |
/* SPDX-License-Identifier: GPL-2.0 */ #include <linux/jump_label.h> #include <asm/unwind_hints.h> #include <asm/cpufeatures.h> #include <asm/page_types.h> #include <asm/percpu.h> #include <asm/asm-offsets.h> #include <asm/processor-flags.h> #include <asm/inst.h> /* x86 function call convention, 64-bit: ------------------------------------- arguments | callee-saved | extra caller-saved | return [callee-clobbered] | | [callee-clobbered] | --------------------------------------------------------------------------- rdi rsi rdx rcx r8-9 | rbx rbp [*] r12-15 | r10-11 | rax, rdx [**] ( rsp is obviously invariant across normal function calls. (gcc can 'merge' functions when it sees tail-call optimization possibilities) rflags is clobbered. Leftover arguments are passed over the stack frame.) [*] In the frame-pointers case rbp is fixed to the stack frame. [**] for struct return values wider than 64 bits the return convention is a bit more complex: up to 128 bits width we return small structures straight in rax, rdx. For structures larger than that (3 words or larger) the caller puts a pointer to an on-stack return struct [allocated in the caller's stack frame] into the first argument - i.e. into rdi. All other arguments shift up by one in this case. Fortunately this case is rare in the kernel. For 32-bit we have the following conventions - kernel is built with -mregparm=3 and -freg-struct-return: x86 function calling convention, 32-bit: ---------------------------------------- arguments | callee-saved | extra caller-saved | return [callee-clobbered] | | [callee-clobbered] | ------------------------------------------------------------------------- eax edx ecx | ebx edi esi ebp [*] | <none> | eax, edx [**] ( here too esp is obviously invariant across normal function calls. eflags is clobbered. Leftover arguments are passed over the stack frame. ) [*] In the frame-pointers case ebp is fixed to the stack frame. [**] We build with -freg-struct-return, which on 32-bit means similar semantics as on 64-bit: edx can be used for a second return value (i.e. covering integer and structure sizes up to 64 bits) - after that it gets more complex and more expensive: 3-word or larger struct returns get done in the caller's frame and the pointer to the return struct goes into regparm0, i.e. eax - the other arguments shift up and the function's register parameters degenerate to regparm=2 in essence. */ #ifdef CONFIG_X86_64 /* * 64-bit system call stack frame layout defines and helpers, * for assembly code: */ /* The layout forms the "struct pt_regs" on the stack: */ /* * C ABI says these regs are callee-preserved. They aren't saved on kernel entry * unless syscall needs a complete, fully filled "struct pt_regs". */ #define R15 0*8 #define R14 1*8 #define R13 2*8 #define R12 3*8 #define RBP 4*8 #define RBX 5*8 /* These regs are callee-clobbered. Always saved on kernel entry. */ #define R11 6*8 #define R10 7*8 #define R9 8*8 #define R8 9*8 #define RAX 10*8 #define RCX 11*8 #define RDX 12*8 #define RSI 13*8 #define RDI 14*8 /* * On syscall entry, this is syscall#. On CPU exception, this is error code. * On hw interrupt, it's IRQ number: */ #define ORIG_RAX 15*8 /* Return frame for iretq */ #define RIP 16*8 #define CS 17*8 #define EFLAGS 18*8 #define RSP 19*8 #define SS 20*8 #define SIZEOF_PTREGS 21*8 .macro PUSH_AND_CLEAR_REGS rdx=%rdx rax=%rax save_ret=0 .if \save_ret pushq %rsi /* pt_regs->si */ movq 8(%rsp), %rsi /* temporarily store the return address in %rsi */ movq %rdi, 8(%rsp) /* pt_regs->di (overwriting original return address) */ .else pushq %rdi /* pt_regs->di */ pushq %rsi /* pt_regs->si */ .endif pushq \rdx /* pt_regs->dx */ pushq %rcx /* pt_regs->cx */ pushq \rax /* pt_regs->ax */ pushq %r8 /* pt_regs->r8 */ pushq %r9 /* pt_regs->r9 */ pushq %r10 /* pt_regs->r10 */ pushq %r11 /* pt_regs->r11 */ pushq %rbx /* pt_regs->rbx */ pushq %rbp /* pt_regs->rbp */ pushq %r12 /* pt_regs->r12 */ pushq %r13 /* pt_regs->r13 */ pushq %r14 /* pt_regs->r14 */ pushq %r15 /* pt_regs->r15 */ UNWIND_HINT_REGS .if \save_ret pushq %rsi /* return address on top of stack */ .endif /* * Sanitize registers of values that a speculation attack might * otherwise want to exploit. The lower registers are likely clobbered * well before they could be put to use in a speculative execution * gadget. */ xorl %edx, %edx /* nospec dx */ xorl %ecx, %ecx /* nospec cx */ xorl %r8d, %r8d /* nospec r8 */ xorl %r9d, %r9d /* nospec r9 */ xorl %r10d, %r10d /* nospec r10 */ xorl %r11d, %r11d /* nospec r11 */ xorl %ebx, %ebx /* nospec rbx */ xorl %ebp, %ebp /* nospec rbp */ xorl %r12d, %r12d /* nospec r12 */ xorl %r13d, %r13d /* nospec r13 */ xorl %r14d, %r14d /* nospec r14 */ xorl %r15d, %r15d /* nospec r15 */ .endm .macro POP_REGS pop_rdi=1 skip_r11rcx=0 popq %r15 popq %r14 popq %r13 popq %r12 popq %rbp popq %rbx .if \skip_r11rcx popq %rsi .else popq %r11 .endif popq %r10 popq %r9 popq %r8 popq %rax .if \skip_r11rcx popq %rsi .else popq %rcx .endif popq %rdx popq %rsi .if \pop_rdi popq %rdi .endif .endm #ifdef CONFIG_PAGE_TABLE_ISOLATION /* * PAGE_TABLE_ISOLATION PGDs are 8k. Flip bit 12 to switch between the two * halves: */ #define PTI_USER_PGTABLE_BIT PAGE_SHIFT #define PTI_USER_PGTABLE_MASK (1 << PTI_USER_PGTABLE_BIT) #define PTI_USER_PCID_BIT X86_CR3_PTI_PCID_USER_BIT #define PTI_USER_PCID_MASK (1 << PTI_USER_PCID_BIT) #define PTI_USER_PGTABLE_AND_PCID_MASK (PTI_USER_PCID_MASK | PTI_USER_PGTABLE_MASK) .macro SET_NOFLUSH_BIT reg:req bts $X86_CR3_PCID_NOFLUSH_BIT, \reg .endm .macro ADJUST_KERNEL_CR3 reg:req ALTERNATIVE "", "SET_NOFLUSH_BIT \reg", X86_FEATURE_PCID /* Clear PCID and "PAGE_TABLE_ISOLATION bit", point CR3 at kernel pagetables: */ andq $(~PTI_USER_PGTABLE_AND_PCID_MASK), \reg .endm .macro SWITCH_TO_KERNEL_CR3 scratch_reg:req ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI mov %cr3, \scratch_reg ADJUST_KERNEL_CR3 \scratch_reg mov \scratch_reg, %cr3 .Lend_\@: .endm #define THIS_CPU_user_pcid_flush_mask \ PER_CPU_VAR(cpu_tlbstate) + TLB_STATE_user_pcid_flush_mask .macro SWITCH_TO_USER_CR3_NOSTACK scratch_reg:req scratch_reg2:req ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI mov %cr3, \scratch_reg ALTERNATIVE "jmp .Lwrcr3_\@", "", X86_FEATURE_PCID /* * Test if the ASID needs a flush. */ movq \scratch_reg, \scratch_reg2 andq $(0x7FF), \scratch_reg /* mask ASID */ bt \scratch_reg, THIS_CPU_user_pcid_flush_mask jnc .Lnoflush_\@ /* Flush needed, clear the bit */ btr \scratch_reg, THIS_CPU_user_pcid_flush_mask movq \scratch_reg2, \scratch_reg jmp .Lwrcr3_pcid_\@ .Lnoflush_\@: movq \scratch_reg2, \scratch_reg SET_NOFLUSH_BIT \scratch_reg .Lwrcr3_pcid_\@: /* Flip the ASID to the user version */ orq $(PTI_USER_PCID_MASK), \scratch_reg .Lwrcr3_\@: /* Flip the PGD to the user version */ orq $(PTI_USER_PGTABLE_MASK), \scratch_reg mov \scratch_reg, %cr3 .Lend_\@: .endm .macro SWITCH_TO_USER_CR3_STACK scratch_reg:req pushq %rax SWITCH_TO_USER_CR3_NOSTACK scratch_reg=\scratch_reg scratch_reg2=%rax popq %rax .endm .macro SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg:req save_reg:req ALTERNATIVE "jmp .Ldone_\@", "", X86_FEATURE_PTI movq %cr3, \scratch_reg movq \scratch_reg, \save_reg /* * Test the user pagetable bit. If set, then the user page tables * are active. If clear CR3 already has the kernel page table * active. */ bt $PTI_USER_PGTABLE_BIT, \scratch_reg jnc .Ldone_\@ ADJUST_KERNEL_CR3 \scratch_reg movq \scratch_reg, %cr3 .Ldone_\@: .endm .macro RESTORE_CR3 scratch_reg:req save_reg:req ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI ALTERNATIVE "jmp .Lwrcr3_\@", "", X86_FEATURE_PCID /* * KERNEL pages can always resume with NOFLUSH as we do * explicit flushes. */ bt $PTI_USER_PGTABLE_BIT, \save_reg jnc .Lnoflush_\@ /* * Check if there's a pending flush for the user ASID we're * about to set. */ movq \save_reg, \scratch_reg andq $(0x7FF), \scratch_reg bt \scratch_reg, THIS_CPU_user_pcid_flush_mask jnc .Lnoflush_\@ btr \scratch_reg, THIS_CPU_user_pcid_flush_mask jmp .Lwrcr3_\@ .Lnoflush_\@: SET_NOFLUSH_BIT \save_reg .Lwrcr3_\@: /* * The CR3 write could be avoided when not changing its value, * but would require a CR3 read *and* a scratch register. */ movq \save_reg, %cr3 .Lend_\@: .endm #else /* CONFIG_PAGE_TABLE_ISOLATION=n: */ .macro SWITCH_TO_KERNEL_CR3 scratch_reg:req .endm .macro SWITCH_TO_USER_CR3_NOSTACK scratch_reg:req scratch_reg2:req .endm .macro SWITCH_TO_USER_CR3_STACK scratch_reg:req .endm .macro SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg:req save_reg:req .endm .macro RESTORE_CR3 scratch_reg:req save_reg:req .endm #endif /* * Mitigate Spectre v1 for conditional swapgs code paths. * * FENCE_SWAPGS_USER_ENTRY is used in the user entry swapgs code path, to * prevent a speculative swapgs when coming from kernel space. * * FENCE_SWAPGS_KERNEL_ENTRY is used in the kernel entry non-swapgs code path, * to prevent the swapgs from getting speculatively skipped when coming from * user space. */ .macro FENCE_SWAPGS_USER_ENTRY ALTERNATIVE "", "lfence", X86_FEATURE_FENCE_SWAPGS_USER .endm .macro FENCE_SWAPGS_KERNEL_ENTRY ALTERNATIVE "", "lfence", X86_FEATURE_FENCE_SWAPGS_KERNEL .endm .macro STACKLEAK_ERASE_NOCLOBBER #ifdef CONFIG_GCC_PLUGIN_STACKLEAK PUSH_AND_CLEAR_REGS call stackleak_erase POP_REGS #endif .endm .macro SAVE_AND_SET_GSBASE scratch_reg:req save_reg:req rdgsbase \save_reg GET_PERCPU_BASE \scratch_reg wrgsbase \scratch_reg .endm #else /* CONFIG_X86_64 */ # undef UNWIND_HINT_IRET_REGS # define UNWIND_HINT_IRET_REGS #endif /* !CONFIG_X86_64 */ .macro STACKLEAK_ERASE #ifdef CONFIG_GCC_PLUGIN_STACKLEAK call stackleak_erase #endif .endm #ifdef CONFIG_SMP /* * CPU/node NR is loaded from the limit (size) field of a special segment * descriptor entry in GDT. */ .macro LOAD_CPU_AND_NODE_SEG_LIMIT reg:req movq $__CPUNODE_SEG, \reg lsl \reg, \reg .endm /* * Fetch the per-CPU GSBASE value for this processor and put it in @reg. * We normally use %gs for accessing per-CPU data, but we are setting up * %gs here and obviously can not use %gs itself to access per-CPU data. * * Do not use RDPID, because KVM loads guest's TSC_AUX on vm-entry and * may not restore the host's value until the CPU returns to userspace. * Thus the kernel would consume a guest's TSC_AUX if an NMI arrives * while running KVM's run loop. */ .macro GET_PERCPU_BASE reg:req LOAD_CPU_AND_NODE_SEG_LIMIT \reg andq $VDSO_CPUNODE_MASK, \reg movq __per_cpu_offset(, \reg, 8), \reg .endm #else .macro GET_PERCPU_BASE reg:req movq pcpu_unit_offsets(%rip), \reg .endm #endif /* CONFIG_SMP */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1