Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jacob Shin | 1833 | 71.05% | 2 | 6.90% |
Janakarajan Natarajan | 216 | 8.37% | 5 | 17.24% |
Kim Phillips | 144 | 5.58% | 6 | 20.69% |
Zhouyi Zhou | 135 | 5.23% | 1 | 3.45% |
Sebastian Andrzej Siewior | 75 | 2.91% | 1 | 3.45% |
Richard Cochran | 51 | 1.98% | 1 | 3.45% |
Borislav Petkov | 44 | 1.71% | 4 | 13.79% |
Pu Wen | 28 | 1.09% | 1 | 3.45% |
Thomas Gleixner | 19 | 0.74% | 3 | 10.34% |
Andrew Murray | 10 | 0.39% | 1 | 3.45% |
Peter Zijlstra | 10 | 0.39% | 1 | 3.45% |
Suravee Suthikulpanit | 9 | 0.35% | 1 | 3.45% |
Sudeep Holla | 4 | 0.16% | 1 | 3.45% |
Chen Yucong | 2 | 0.08% | 1 | 3.45% |
Total | 2580 | 29 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2013 Advanced Micro Devices, Inc. * * Author: Jacob Shin <jacob.shin@amd.com> */ #include <linux/perf_event.h> #include <linux/percpu.h> #include <linux/types.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/cpu.h> #include <linux/cpumask.h> #include <asm/cpufeature.h> #include <asm/perf_event.h> #include <asm/msr.h> #include <asm/smp.h> #define NUM_COUNTERS_NB 4 #define NUM_COUNTERS_L2 4 #define NUM_COUNTERS_L3 6 #define MAX_COUNTERS 6 #define RDPMC_BASE_NB 6 #define RDPMC_BASE_LLC 10 #define COUNTER_SHIFT 16 #undef pr_fmt #define pr_fmt(fmt) "amd_uncore: " fmt static int num_counters_llc; static int num_counters_nb; static bool l3_mask; static HLIST_HEAD(uncore_unused_list); struct amd_uncore { int id; int refcnt; int cpu; int num_counters; int rdpmc_base; u32 msr_base; cpumask_t *active_mask; struct pmu *pmu; struct perf_event *events[MAX_COUNTERS]; struct hlist_node node; }; static struct amd_uncore * __percpu *amd_uncore_nb; static struct amd_uncore * __percpu *amd_uncore_llc; static struct pmu amd_nb_pmu; static struct pmu amd_llc_pmu; static cpumask_t amd_nb_active_mask; static cpumask_t amd_llc_active_mask; static bool is_nb_event(struct perf_event *event) { return event->pmu->type == amd_nb_pmu.type; } static bool is_llc_event(struct perf_event *event) { return event->pmu->type == amd_llc_pmu.type; } static struct amd_uncore *event_to_amd_uncore(struct perf_event *event) { if (is_nb_event(event) && amd_uncore_nb) return *per_cpu_ptr(amd_uncore_nb, event->cpu); else if (is_llc_event(event) && amd_uncore_llc) return *per_cpu_ptr(amd_uncore_llc, event->cpu); return NULL; } static void amd_uncore_read(struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; u64 prev, new; s64 delta; /* * since we do not enable counter overflow interrupts, * we do not have to worry about prev_count changing on us */ prev = local64_read(&hwc->prev_count); rdpmcl(hwc->event_base_rdpmc, new); local64_set(&hwc->prev_count, new); delta = (new << COUNTER_SHIFT) - (prev << COUNTER_SHIFT); delta >>= COUNTER_SHIFT; local64_add(delta, &event->count); } static void amd_uncore_start(struct perf_event *event, int flags) { struct hw_perf_event *hwc = &event->hw; if (flags & PERF_EF_RELOAD) wrmsrl(hwc->event_base, (u64)local64_read(&hwc->prev_count)); hwc->state = 0; wrmsrl(hwc->config_base, (hwc->config | ARCH_PERFMON_EVENTSEL_ENABLE)); perf_event_update_userpage(event); } static void amd_uncore_stop(struct perf_event *event, int flags) { struct hw_perf_event *hwc = &event->hw; wrmsrl(hwc->config_base, hwc->config); hwc->state |= PERF_HES_STOPPED; if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) { amd_uncore_read(event); hwc->state |= PERF_HES_UPTODATE; } } static int amd_uncore_add(struct perf_event *event, int flags) { int i; struct amd_uncore *uncore = event_to_amd_uncore(event); struct hw_perf_event *hwc = &event->hw; /* are we already assigned? */ if (hwc->idx != -1 && uncore->events[hwc->idx] == event) goto out; for (i = 0; i < uncore->num_counters; i++) { if (uncore->events[i] == event) { hwc->idx = i; goto out; } } /* if not, take the first available counter */ hwc->idx = -1; for (i = 0; i < uncore->num_counters; i++) { if (cmpxchg(&uncore->events[i], NULL, event) == NULL) { hwc->idx = i; break; } } out: if (hwc->idx == -1) return -EBUSY; hwc->config_base = uncore->msr_base + (2 * hwc->idx); hwc->event_base = uncore->msr_base + 1 + (2 * hwc->idx); hwc->event_base_rdpmc = uncore->rdpmc_base + hwc->idx; hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED; if (flags & PERF_EF_START) amd_uncore_start(event, PERF_EF_RELOAD); return 0; } static void amd_uncore_del(struct perf_event *event, int flags) { int i; struct amd_uncore *uncore = event_to_amd_uncore(event); struct hw_perf_event *hwc = &event->hw; amd_uncore_stop(event, PERF_EF_UPDATE); for (i = 0; i < uncore->num_counters; i++) { if (cmpxchg(&uncore->events[i], event, NULL) == event) break; } hwc->idx = -1; } /* * Convert logical CPU number to L3 PMC Config ThreadMask format */ static u64 l3_thread_slice_mask(int cpu) { u64 thread_mask, core = topology_core_id(cpu); unsigned int shift, thread = 0; if (topology_smt_supported() && !topology_is_primary_thread(cpu)) thread = 1; if (boot_cpu_data.x86 <= 0x18) { shift = AMD64_L3_THREAD_SHIFT + 2 * (core % 4) + thread; thread_mask = BIT_ULL(shift); return AMD64_L3_SLICE_MASK | thread_mask; } core = (core << AMD64_L3_COREID_SHIFT) & AMD64_L3_COREID_MASK; shift = AMD64_L3_THREAD_SHIFT + thread; thread_mask = BIT_ULL(shift); return AMD64_L3_EN_ALL_SLICES | core | thread_mask; } static int amd_uncore_event_init(struct perf_event *event) { struct amd_uncore *uncore; struct hw_perf_event *hwc = &event->hw; if (event->attr.type != event->pmu->type) return -ENOENT; /* * NB and Last level cache counters (MSRs) are shared across all cores * that share the same NB / Last level cache. On family 16h and below, * Interrupts can be directed to a single target core, however, event * counts generated by processes running on other cores cannot be masked * out. So we do not support sampling and per-thread events via * CAP_NO_INTERRUPT, and we do not enable counter overflow interrupts: */ hwc->config = event->attr.config & AMD64_RAW_EVENT_MASK_NB; hwc->idx = -1; if (event->cpu < 0) return -EINVAL; /* * SliceMask and ThreadMask need to be set for certain L3 events. * For other events, the two fields do not affect the count. */ if (l3_mask && is_llc_event(event)) hwc->config |= l3_thread_slice_mask(event->cpu); uncore = event_to_amd_uncore(event); if (!uncore) return -ENODEV; /* * since request can come in to any of the shared cores, we will remap * to a single common cpu. */ event->cpu = uncore->cpu; return 0; } static ssize_t amd_uncore_attr_show_cpumask(struct device *dev, struct device_attribute *attr, char *buf) { cpumask_t *active_mask; struct pmu *pmu = dev_get_drvdata(dev); if (pmu->type == amd_nb_pmu.type) active_mask = &amd_nb_active_mask; else if (pmu->type == amd_llc_pmu.type) active_mask = &amd_llc_active_mask; else return 0; return cpumap_print_to_pagebuf(true, buf, active_mask); } static DEVICE_ATTR(cpumask, S_IRUGO, amd_uncore_attr_show_cpumask, NULL); static struct attribute *amd_uncore_attrs[] = { &dev_attr_cpumask.attr, NULL, }; static struct attribute_group amd_uncore_attr_group = { .attrs = amd_uncore_attrs, }; /* * Similar to PMU_FORMAT_ATTR but allowing for format_attr to be assigned based * on family */ #define AMD_FORMAT_ATTR(_dev, _name, _format) \ static ssize_t \ _dev##_show##_name(struct device *dev, \ struct device_attribute *attr, \ char *page) \ { \ BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ return sprintf(page, _format "\n"); \ } \ static struct device_attribute format_attr_##_dev##_name = __ATTR_RO(_dev); /* Used for each uncore counter type */ #define AMD_ATTRIBUTE(_name) \ static struct attribute *amd_uncore_format_attr_##_name[] = { \ &format_attr_event_##_name.attr, \ &format_attr_umask.attr, \ NULL, \ }; \ static struct attribute_group amd_uncore_format_group_##_name = { \ .name = "format", \ .attrs = amd_uncore_format_attr_##_name, \ }; \ static const struct attribute_group *amd_uncore_attr_groups_##_name[] = { \ &amd_uncore_attr_group, \ &amd_uncore_format_group_##_name, \ NULL, \ }; AMD_FORMAT_ATTR(event, , "config:0-7,32-35"); AMD_FORMAT_ATTR(umask, , "config:8-15"); AMD_FORMAT_ATTR(event, _df, "config:0-7,32-35,59-60"); AMD_FORMAT_ATTR(event, _l3, "config:0-7"); AMD_ATTRIBUTE(df); AMD_ATTRIBUTE(l3); static struct pmu amd_nb_pmu = { .task_ctx_nr = perf_invalid_context, .event_init = amd_uncore_event_init, .add = amd_uncore_add, .del = amd_uncore_del, .start = amd_uncore_start, .stop = amd_uncore_stop, .read = amd_uncore_read, .capabilities = PERF_PMU_CAP_NO_EXCLUDE | PERF_PMU_CAP_NO_INTERRUPT, }; static struct pmu amd_llc_pmu = { .task_ctx_nr = perf_invalid_context, .event_init = amd_uncore_event_init, .add = amd_uncore_add, .del = amd_uncore_del, .start = amd_uncore_start, .stop = amd_uncore_stop, .read = amd_uncore_read, .capabilities = PERF_PMU_CAP_NO_EXCLUDE | PERF_PMU_CAP_NO_INTERRUPT, }; static struct amd_uncore *amd_uncore_alloc(unsigned int cpu) { return kzalloc_node(sizeof(struct amd_uncore), GFP_KERNEL, cpu_to_node(cpu)); } static int amd_uncore_cpu_up_prepare(unsigned int cpu) { struct amd_uncore *uncore_nb = NULL, *uncore_llc; if (amd_uncore_nb) { uncore_nb = amd_uncore_alloc(cpu); if (!uncore_nb) goto fail; uncore_nb->cpu = cpu; uncore_nb->num_counters = num_counters_nb; uncore_nb->rdpmc_base = RDPMC_BASE_NB; uncore_nb->msr_base = MSR_F15H_NB_PERF_CTL; uncore_nb->active_mask = &amd_nb_active_mask; uncore_nb->pmu = &amd_nb_pmu; uncore_nb->id = -1; *per_cpu_ptr(amd_uncore_nb, cpu) = uncore_nb; } if (amd_uncore_llc) { uncore_llc = amd_uncore_alloc(cpu); if (!uncore_llc) goto fail; uncore_llc->cpu = cpu; uncore_llc->num_counters = num_counters_llc; uncore_llc->rdpmc_base = RDPMC_BASE_LLC; uncore_llc->msr_base = MSR_F16H_L2I_PERF_CTL; uncore_llc->active_mask = &amd_llc_active_mask; uncore_llc->pmu = &amd_llc_pmu; uncore_llc->id = -1; *per_cpu_ptr(amd_uncore_llc, cpu) = uncore_llc; } return 0; fail: if (amd_uncore_nb) *per_cpu_ptr(amd_uncore_nb, cpu) = NULL; kfree(uncore_nb); return -ENOMEM; } static struct amd_uncore * amd_uncore_find_online_sibling(struct amd_uncore *this, struct amd_uncore * __percpu *uncores) { unsigned int cpu; struct amd_uncore *that; for_each_online_cpu(cpu) { that = *per_cpu_ptr(uncores, cpu); if (!that) continue; if (this == that) continue; if (this->id == that->id) { hlist_add_head(&this->node, &uncore_unused_list); this = that; break; } } this->refcnt++; return this; } static int amd_uncore_cpu_starting(unsigned int cpu) { unsigned int eax, ebx, ecx, edx; struct amd_uncore *uncore; if (amd_uncore_nb) { uncore = *per_cpu_ptr(amd_uncore_nb, cpu); cpuid(0x8000001e, &eax, &ebx, &ecx, &edx); uncore->id = ecx & 0xff; uncore = amd_uncore_find_online_sibling(uncore, amd_uncore_nb); *per_cpu_ptr(amd_uncore_nb, cpu) = uncore; } if (amd_uncore_llc) { uncore = *per_cpu_ptr(amd_uncore_llc, cpu); uncore->id = per_cpu(cpu_llc_id, cpu); uncore = amd_uncore_find_online_sibling(uncore, amd_uncore_llc); *per_cpu_ptr(amd_uncore_llc, cpu) = uncore; } return 0; } static void uncore_clean_online(void) { struct amd_uncore *uncore; struct hlist_node *n; hlist_for_each_entry_safe(uncore, n, &uncore_unused_list, node) { hlist_del(&uncore->node); kfree(uncore); } } static void uncore_online(unsigned int cpu, struct amd_uncore * __percpu *uncores) { struct amd_uncore *uncore = *per_cpu_ptr(uncores, cpu); uncore_clean_online(); if (cpu == uncore->cpu) cpumask_set_cpu(cpu, uncore->active_mask); } static int amd_uncore_cpu_online(unsigned int cpu) { if (amd_uncore_nb) uncore_online(cpu, amd_uncore_nb); if (amd_uncore_llc) uncore_online(cpu, amd_uncore_llc); return 0; } static void uncore_down_prepare(unsigned int cpu, struct amd_uncore * __percpu *uncores) { unsigned int i; struct amd_uncore *this = *per_cpu_ptr(uncores, cpu); if (this->cpu != cpu) return; /* this cpu is going down, migrate to a shared sibling if possible */ for_each_online_cpu(i) { struct amd_uncore *that = *per_cpu_ptr(uncores, i); if (cpu == i) continue; if (this == that) { perf_pmu_migrate_context(this->pmu, cpu, i); cpumask_clear_cpu(cpu, that->active_mask); cpumask_set_cpu(i, that->active_mask); that->cpu = i; break; } } } static int amd_uncore_cpu_down_prepare(unsigned int cpu) { if (amd_uncore_nb) uncore_down_prepare(cpu, amd_uncore_nb); if (amd_uncore_llc) uncore_down_prepare(cpu, amd_uncore_llc); return 0; } static void uncore_dead(unsigned int cpu, struct amd_uncore * __percpu *uncores) { struct amd_uncore *uncore = *per_cpu_ptr(uncores, cpu); if (cpu == uncore->cpu) cpumask_clear_cpu(cpu, uncore->active_mask); if (!--uncore->refcnt) kfree(uncore); *per_cpu_ptr(uncores, cpu) = NULL; } static int amd_uncore_cpu_dead(unsigned int cpu) { if (amd_uncore_nb) uncore_dead(cpu, amd_uncore_nb); if (amd_uncore_llc) uncore_dead(cpu, amd_uncore_llc); return 0; } static int __init amd_uncore_init(void) { int ret = -ENODEV; if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD && boot_cpu_data.x86_vendor != X86_VENDOR_HYGON) return -ENODEV; if (!boot_cpu_has(X86_FEATURE_TOPOEXT)) return -ENODEV; if (boot_cpu_data.x86 >= 0x17) { /* * For F17h and above, the Northbridge counters are * repurposed as Data Fabric counters. Also, L3 * counters are supported too. The PMUs are exported * based on family as either L2 or L3 and NB or DF. */ num_counters_nb = NUM_COUNTERS_NB; num_counters_llc = NUM_COUNTERS_L3; amd_nb_pmu.name = "amd_df"; amd_llc_pmu.name = "amd_l3"; format_attr_event_df.show = &event_show_df; format_attr_event_l3.show = &event_show_l3; l3_mask = true; } else { num_counters_nb = NUM_COUNTERS_NB; num_counters_llc = NUM_COUNTERS_L2; amd_nb_pmu.name = "amd_nb"; amd_llc_pmu.name = "amd_l2"; format_attr_event_df = format_attr_event; format_attr_event_l3 = format_attr_event; l3_mask = false; } amd_nb_pmu.attr_groups = amd_uncore_attr_groups_df; amd_llc_pmu.attr_groups = amd_uncore_attr_groups_l3; if (boot_cpu_has(X86_FEATURE_PERFCTR_NB)) { amd_uncore_nb = alloc_percpu(struct amd_uncore *); if (!amd_uncore_nb) { ret = -ENOMEM; goto fail_nb; } ret = perf_pmu_register(&amd_nb_pmu, amd_nb_pmu.name, -1); if (ret) goto fail_nb; pr_info("%s NB counters detected\n", boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ? "HYGON" : "AMD"); ret = 0; } if (boot_cpu_has(X86_FEATURE_PERFCTR_LLC)) { amd_uncore_llc = alloc_percpu(struct amd_uncore *); if (!amd_uncore_llc) { ret = -ENOMEM; goto fail_llc; } ret = perf_pmu_register(&amd_llc_pmu, amd_llc_pmu.name, -1); if (ret) goto fail_llc; pr_info("%s LLC counters detected\n", boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ? "HYGON" : "AMD"); ret = 0; } /* * Install callbacks. Core will call them for each online cpu. */ if (cpuhp_setup_state(CPUHP_PERF_X86_AMD_UNCORE_PREP, "perf/x86/amd/uncore:prepare", amd_uncore_cpu_up_prepare, amd_uncore_cpu_dead)) goto fail_llc; if (cpuhp_setup_state(CPUHP_AP_PERF_X86_AMD_UNCORE_STARTING, "perf/x86/amd/uncore:starting", amd_uncore_cpu_starting, NULL)) goto fail_prep; if (cpuhp_setup_state(CPUHP_AP_PERF_X86_AMD_UNCORE_ONLINE, "perf/x86/amd/uncore:online", amd_uncore_cpu_online, amd_uncore_cpu_down_prepare)) goto fail_start; return 0; fail_start: cpuhp_remove_state(CPUHP_AP_PERF_X86_AMD_UNCORE_STARTING); fail_prep: cpuhp_remove_state(CPUHP_PERF_X86_AMD_UNCORE_PREP); fail_llc: if (boot_cpu_has(X86_FEATURE_PERFCTR_NB)) perf_pmu_unregister(&amd_nb_pmu); if (amd_uncore_llc) free_percpu(amd_uncore_llc); fail_nb: if (amd_uncore_nb) free_percpu(amd_uncore_nb); return ret; } device_initcall(amd_uncore_init);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1