Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Yan Zheng | 3952 | 52.79% | 19 | 22.62% |
Kan Liang | 1789 | 23.90% | 20 | 23.81% |
Thomas Gleixner | 1120 | 14.96% | 11 | 13.10% |
Taku Izumi | 247 | 3.30% | 1 | 1.19% |
Stéphane Eranian | 79 | 1.06% | 4 | 4.76% |
Roman Sudarikov | 57 | 0.76% | 2 | 2.38% |
Colin Ian King | 42 | 0.56% | 1 | 1.19% |
Jiri Olsa | 40 | 0.53% | 1 | 1.19% |
Peter Zijlstra | 33 | 0.44% | 4 | 4.76% |
Matthew Wilcox | 32 | 0.43% | 1 | 1.19% |
Ingo Molnar | 13 | 0.17% | 2 | 2.38% |
David Carrillo-Cisneros | 11 | 0.15% | 2 | 2.38% |
Srinivas Pandruvada | 10 | 0.13% | 1 | 1.19% |
Andi Kleen | 8 | 0.11% | 1 | 1.19% |
Harish Chegondi | 7 | 0.09% | 1 | 1.19% |
Kees Cook | 5 | 0.07% | 1 | 1.19% |
Piotr Luc | 5 | 0.07% | 1 | 1.19% |
Rajneesh Bhardwaj | 5 | 0.07% | 1 | 1.19% |
Andrew Murray | 5 | 0.07% | 1 | 1.19% |
Jan-Simon Möller | 5 | 0.07% | 1 | 1.19% |
Andrew Hunter | 4 | 0.05% | 1 | 1.19% |
Sudeep Holla | 4 | 0.05% | 1 | 1.19% |
Linus Torvalds | 4 | 0.05% | 1 | 1.19% |
Paul Gortmaker | 3 | 0.04% | 1 | 1.19% |
Dave Hansen | 3 | 0.04% | 1 | 1.19% |
Borislav Petkov | 1 | 0.01% | 1 | 1.19% |
Arvind Yadav | 1 | 0.01% | 1 | 1.19% |
Joe Perches | 1 | 0.01% | 1 | 1.19% |
Total | 7486 | 84 |
// SPDX-License-Identifier: GPL-2.0-only #include <linux/module.h> #include <asm/cpu_device_id.h> #include <asm/intel-family.h> #include "uncore.h" static struct intel_uncore_type *empty_uncore[] = { NULL, }; struct intel_uncore_type **uncore_msr_uncores = empty_uncore; struct intel_uncore_type **uncore_pci_uncores = empty_uncore; struct intel_uncore_type **uncore_mmio_uncores = empty_uncore; static bool pcidrv_registered; struct pci_driver *uncore_pci_driver; /* pci bus to socket mapping */ DEFINE_RAW_SPINLOCK(pci2phy_map_lock); struct list_head pci2phy_map_head = LIST_HEAD_INIT(pci2phy_map_head); struct pci_extra_dev *uncore_extra_pci_dev; int __uncore_max_dies; /* mask of cpus that collect uncore events */ static cpumask_t uncore_cpu_mask; /* constraint for the fixed counter */ static struct event_constraint uncore_constraint_fixed = EVENT_CONSTRAINT(~0ULL, 1 << UNCORE_PMC_IDX_FIXED, ~0ULL); struct event_constraint uncore_constraint_empty = EVENT_CONSTRAINT(0, 0, 0); MODULE_LICENSE("GPL"); int uncore_pcibus_to_physid(struct pci_bus *bus) { struct pci2phy_map *map; int phys_id = -1; raw_spin_lock(&pci2phy_map_lock); list_for_each_entry(map, &pci2phy_map_head, list) { if (map->segment == pci_domain_nr(bus)) { phys_id = map->pbus_to_physid[bus->number]; break; } } raw_spin_unlock(&pci2phy_map_lock); return phys_id; } static void uncore_free_pcibus_map(void) { struct pci2phy_map *map, *tmp; list_for_each_entry_safe(map, tmp, &pci2phy_map_head, list) { list_del(&map->list); kfree(map); } } struct pci2phy_map *__find_pci2phy_map(int segment) { struct pci2phy_map *map, *alloc = NULL; int i; lockdep_assert_held(&pci2phy_map_lock); lookup: list_for_each_entry(map, &pci2phy_map_head, list) { if (map->segment == segment) goto end; } if (!alloc) { raw_spin_unlock(&pci2phy_map_lock); alloc = kmalloc(sizeof(struct pci2phy_map), GFP_KERNEL); raw_spin_lock(&pci2phy_map_lock); if (!alloc) return NULL; goto lookup; } map = alloc; alloc = NULL; map->segment = segment; for (i = 0; i < 256; i++) map->pbus_to_physid[i] = -1; list_add_tail(&map->list, &pci2phy_map_head); end: kfree(alloc); return map; } ssize_t uncore_event_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct uncore_event_desc *event = container_of(attr, struct uncore_event_desc, attr); return sprintf(buf, "%s", event->config); } struct intel_uncore_box *uncore_pmu_to_box(struct intel_uncore_pmu *pmu, int cpu) { unsigned int dieid = topology_logical_die_id(cpu); /* * The unsigned check also catches the '-1' return value for non * existent mappings in the topology map. */ return dieid < uncore_max_dies() ? pmu->boxes[dieid] : NULL; } u64 uncore_msr_read_counter(struct intel_uncore_box *box, struct perf_event *event) { u64 count; rdmsrl(event->hw.event_base, count); return count; } void uncore_mmio_exit_box(struct intel_uncore_box *box) { if (box->io_addr) iounmap(box->io_addr); } u64 uncore_mmio_read_counter(struct intel_uncore_box *box, struct perf_event *event) { if (!box->io_addr) return 0; if (!uncore_mmio_is_valid_offset(box, event->hw.event_base)) return 0; return readq(box->io_addr + event->hw.event_base); } /* * generic get constraint function for shared match/mask registers. */ struct event_constraint * uncore_get_constraint(struct intel_uncore_box *box, struct perf_event *event) { struct intel_uncore_extra_reg *er; struct hw_perf_event_extra *reg1 = &event->hw.extra_reg; struct hw_perf_event_extra *reg2 = &event->hw.branch_reg; unsigned long flags; bool ok = false; /* * reg->alloc can be set due to existing state, so for fake box we * need to ignore this, otherwise we might fail to allocate proper * fake state for this extra reg constraint. */ if (reg1->idx == EXTRA_REG_NONE || (!uncore_box_is_fake(box) && reg1->alloc)) return NULL; er = &box->shared_regs[reg1->idx]; raw_spin_lock_irqsave(&er->lock, flags); if (!atomic_read(&er->ref) || (er->config1 == reg1->config && er->config2 == reg2->config)) { atomic_inc(&er->ref); er->config1 = reg1->config; er->config2 = reg2->config; ok = true; } raw_spin_unlock_irqrestore(&er->lock, flags); if (ok) { if (!uncore_box_is_fake(box)) reg1->alloc = 1; return NULL; } return &uncore_constraint_empty; } void uncore_put_constraint(struct intel_uncore_box *box, struct perf_event *event) { struct intel_uncore_extra_reg *er; struct hw_perf_event_extra *reg1 = &event->hw.extra_reg; /* * Only put constraint if extra reg was actually allocated. Also * takes care of event which do not use an extra shared reg. * * Also, if this is a fake box we shouldn't touch any event state * (reg->alloc) and we don't care about leaving inconsistent box * state either since it will be thrown out. */ if (uncore_box_is_fake(box) || !reg1->alloc) return; er = &box->shared_regs[reg1->idx]; atomic_dec(&er->ref); reg1->alloc = 0; } u64 uncore_shared_reg_config(struct intel_uncore_box *box, int idx) { struct intel_uncore_extra_reg *er; unsigned long flags; u64 config; er = &box->shared_regs[idx]; raw_spin_lock_irqsave(&er->lock, flags); config = er->config; raw_spin_unlock_irqrestore(&er->lock, flags); return config; } static void uncore_assign_hw_event(struct intel_uncore_box *box, struct perf_event *event, int idx) { struct hw_perf_event *hwc = &event->hw; hwc->idx = idx; hwc->last_tag = ++box->tags[idx]; if (uncore_pmc_fixed(hwc->idx)) { hwc->event_base = uncore_fixed_ctr(box); hwc->config_base = uncore_fixed_ctl(box); return; } hwc->config_base = uncore_event_ctl(box, hwc->idx); hwc->event_base = uncore_perf_ctr(box, hwc->idx); } void uncore_perf_event_update(struct intel_uncore_box *box, struct perf_event *event) { u64 prev_count, new_count, delta; int shift; if (uncore_pmc_freerunning(event->hw.idx)) shift = 64 - uncore_freerunning_bits(box, event); else if (uncore_pmc_fixed(event->hw.idx)) shift = 64 - uncore_fixed_ctr_bits(box); else shift = 64 - uncore_perf_ctr_bits(box); /* the hrtimer might modify the previous event value */ again: prev_count = local64_read(&event->hw.prev_count); new_count = uncore_read_counter(box, event); if (local64_xchg(&event->hw.prev_count, new_count) != prev_count) goto again; delta = (new_count << shift) - (prev_count << shift); delta >>= shift; local64_add(delta, &event->count); } /* * The overflow interrupt is unavailable for SandyBridge-EP, is broken * for SandyBridge. So we use hrtimer to periodically poll the counter * to avoid overflow. */ static enum hrtimer_restart uncore_pmu_hrtimer(struct hrtimer *hrtimer) { struct intel_uncore_box *box; struct perf_event *event; unsigned long flags; int bit; box = container_of(hrtimer, struct intel_uncore_box, hrtimer); if (!box->n_active || box->cpu != smp_processor_id()) return HRTIMER_NORESTART; /* * disable local interrupt to prevent uncore_pmu_event_start/stop * to interrupt the update process */ local_irq_save(flags); /* * handle boxes with an active event list as opposed to active * counters */ list_for_each_entry(event, &box->active_list, active_entry) { uncore_perf_event_update(box, event); } for_each_set_bit(bit, box->active_mask, UNCORE_PMC_IDX_MAX) uncore_perf_event_update(box, box->events[bit]); local_irq_restore(flags); hrtimer_forward_now(hrtimer, ns_to_ktime(box->hrtimer_duration)); return HRTIMER_RESTART; } void uncore_pmu_start_hrtimer(struct intel_uncore_box *box) { hrtimer_start(&box->hrtimer, ns_to_ktime(box->hrtimer_duration), HRTIMER_MODE_REL_PINNED); } void uncore_pmu_cancel_hrtimer(struct intel_uncore_box *box) { hrtimer_cancel(&box->hrtimer); } static void uncore_pmu_init_hrtimer(struct intel_uncore_box *box) { hrtimer_init(&box->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); box->hrtimer.function = uncore_pmu_hrtimer; } static struct intel_uncore_box *uncore_alloc_box(struct intel_uncore_type *type, int node) { int i, size, numshared = type->num_shared_regs ; struct intel_uncore_box *box; size = sizeof(*box) + numshared * sizeof(struct intel_uncore_extra_reg); box = kzalloc_node(size, GFP_KERNEL, node); if (!box) return NULL; for (i = 0; i < numshared; i++) raw_spin_lock_init(&box->shared_regs[i].lock); uncore_pmu_init_hrtimer(box); box->cpu = -1; box->pci_phys_id = -1; box->dieid = -1; /* set default hrtimer timeout */ box->hrtimer_duration = UNCORE_PMU_HRTIMER_INTERVAL; INIT_LIST_HEAD(&box->active_list); return box; } /* * Using uncore_pmu_event_init pmu event_init callback * as a detection point for uncore events. */ static int uncore_pmu_event_init(struct perf_event *event); static bool is_box_event(struct intel_uncore_box *box, struct perf_event *event) { return &box->pmu->pmu == event->pmu; } static int uncore_collect_events(struct intel_uncore_box *box, struct perf_event *leader, bool dogrp) { struct perf_event *event; int n, max_count; max_count = box->pmu->type->num_counters; if (box->pmu->type->fixed_ctl) max_count++; if (box->n_events >= max_count) return -EINVAL; n = box->n_events; if (is_box_event(box, leader)) { box->event_list[n] = leader; n++; } if (!dogrp) return n; for_each_sibling_event(event, leader) { if (!is_box_event(box, event) || event->state <= PERF_EVENT_STATE_OFF) continue; if (n >= max_count) return -EINVAL; box->event_list[n] = event; n++; } return n; } static struct event_constraint * uncore_get_event_constraint(struct intel_uncore_box *box, struct perf_event *event) { struct intel_uncore_type *type = box->pmu->type; struct event_constraint *c; if (type->ops->get_constraint) { c = type->ops->get_constraint(box, event); if (c) return c; } if (event->attr.config == UNCORE_FIXED_EVENT) return &uncore_constraint_fixed; if (type->constraints) { for_each_event_constraint(c, type->constraints) { if ((event->hw.config & c->cmask) == c->code) return c; } } return &type->unconstrainted; } static void uncore_put_event_constraint(struct intel_uncore_box *box, struct perf_event *event) { if (box->pmu->type->ops->put_constraint) box->pmu->type->ops->put_constraint(box, event); } static int uncore_assign_events(struct intel_uncore_box *box, int assign[], int n) { unsigned long used_mask[BITS_TO_LONGS(UNCORE_PMC_IDX_MAX)]; struct event_constraint *c; int i, wmin, wmax, ret = 0; struct hw_perf_event *hwc; bitmap_zero(used_mask, UNCORE_PMC_IDX_MAX); for (i = 0, wmin = UNCORE_PMC_IDX_MAX, wmax = 0; i < n; i++) { c = uncore_get_event_constraint(box, box->event_list[i]); box->event_constraint[i] = c; wmin = min(wmin, c->weight); wmax = max(wmax, c->weight); } /* fastpath, try to reuse previous register */ for (i = 0; i < n; i++) { hwc = &box->event_list[i]->hw; c = box->event_constraint[i]; /* never assigned */ if (hwc->idx == -1) break; /* constraint still honored */ if (!test_bit(hwc->idx, c->idxmsk)) break; /* not already used */ if (test_bit(hwc->idx, used_mask)) break; __set_bit(hwc->idx, used_mask); if (assign) assign[i] = hwc->idx; } /* slow path */ if (i != n) ret = perf_assign_events(box->event_constraint, n, wmin, wmax, n, assign); if (!assign || ret) { for (i = 0; i < n; i++) uncore_put_event_constraint(box, box->event_list[i]); } return ret ? -EINVAL : 0; } void uncore_pmu_event_start(struct perf_event *event, int flags) { struct intel_uncore_box *box = uncore_event_to_box(event); int idx = event->hw.idx; if (WARN_ON_ONCE(idx == -1 || idx >= UNCORE_PMC_IDX_MAX)) return; /* * Free running counter is read-only and always active. * Use the current counter value as start point. * There is no overflow interrupt for free running counter. * Use hrtimer to periodically poll the counter to avoid overflow. */ if (uncore_pmc_freerunning(event->hw.idx)) { list_add_tail(&event->active_entry, &box->active_list); local64_set(&event->hw.prev_count, uncore_read_counter(box, event)); if (box->n_active++ == 0) uncore_pmu_start_hrtimer(box); return; } if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED))) return; event->hw.state = 0; box->events[idx] = event; box->n_active++; __set_bit(idx, box->active_mask); local64_set(&event->hw.prev_count, uncore_read_counter(box, event)); uncore_enable_event(box, event); if (box->n_active == 1) uncore_pmu_start_hrtimer(box); } void uncore_pmu_event_stop(struct perf_event *event, int flags) { struct intel_uncore_box *box = uncore_event_to_box(event); struct hw_perf_event *hwc = &event->hw; /* Cannot disable free running counter which is read-only */ if (uncore_pmc_freerunning(hwc->idx)) { list_del(&event->active_entry); if (--box->n_active == 0) uncore_pmu_cancel_hrtimer(box); uncore_perf_event_update(box, event); return; } if (__test_and_clear_bit(hwc->idx, box->active_mask)) { uncore_disable_event(box, event); box->n_active--; box->events[hwc->idx] = NULL; WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED); hwc->state |= PERF_HES_STOPPED; if (box->n_active == 0) uncore_pmu_cancel_hrtimer(box); } if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) { /* * Drain the remaining delta count out of a event * that we are disabling: */ uncore_perf_event_update(box, event); hwc->state |= PERF_HES_UPTODATE; } } int uncore_pmu_event_add(struct perf_event *event, int flags) { struct intel_uncore_box *box = uncore_event_to_box(event); struct hw_perf_event *hwc = &event->hw; int assign[UNCORE_PMC_IDX_MAX]; int i, n, ret; if (!box) return -ENODEV; /* * The free funning counter is assigned in event_init(). * The free running counter event and free running counter * are 1:1 mapped. It doesn't need to be tracked in event_list. */ if (uncore_pmc_freerunning(hwc->idx)) { if (flags & PERF_EF_START) uncore_pmu_event_start(event, 0); return 0; } ret = n = uncore_collect_events(box, event, false); if (ret < 0) return ret; hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED; if (!(flags & PERF_EF_START)) hwc->state |= PERF_HES_ARCH; ret = uncore_assign_events(box, assign, n); if (ret) return ret; /* save events moving to new counters */ for (i = 0; i < box->n_events; i++) { event = box->event_list[i]; hwc = &event->hw; if (hwc->idx == assign[i] && hwc->last_tag == box->tags[assign[i]]) continue; /* * Ensure we don't accidentally enable a stopped * counter simply because we rescheduled. */ if (hwc->state & PERF_HES_STOPPED) hwc->state |= PERF_HES_ARCH; uncore_pmu_event_stop(event, PERF_EF_UPDATE); } /* reprogram moved events into new counters */ for (i = 0; i < n; i++) { event = box->event_list[i]; hwc = &event->hw; if (hwc->idx != assign[i] || hwc->last_tag != box->tags[assign[i]]) uncore_assign_hw_event(box, event, assign[i]); else if (i < box->n_events) continue; if (hwc->state & PERF_HES_ARCH) continue; uncore_pmu_event_start(event, 0); } box->n_events = n; return 0; } void uncore_pmu_event_del(struct perf_event *event, int flags) { struct intel_uncore_box *box = uncore_event_to_box(event); int i; uncore_pmu_event_stop(event, PERF_EF_UPDATE); /* * The event for free running counter is not tracked by event_list. * It doesn't need to force event->hw.idx = -1 to reassign the counter. * Because the event and the free running counter are 1:1 mapped. */ if (uncore_pmc_freerunning(event->hw.idx)) return; for (i = 0; i < box->n_events; i++) { if (event == box->event_list[i]) { uncore_put_event_constraint(box, event); for (++i; i < box->n_events; i++) box->event_list[i - 1] = box->event_list[i]; --box->n_events; break; } } event->hw.idx = -1; event->hw.last_tag = ~0ULL; } void uncore_pmu_event_read(struct perf_event *event) { struct intel_uncore_box *box = uncore_event_to_box(event); uncore_perf_event_update(box, event); } /* * validation ensures the group can be loaded onto the * PMU if it was the only group available. */ static int uncore_validate_group(struct intel_uncore_pmu *pmu, struct perf_event *event) { struct perf_event *leader = event->group_leader; struct intel_uncore_box *fake_box; int ret = -EINVAL, n; /* The free running counter is always active. */ if (uncore_pmc_freerunning(event->hw.idx)) return 0; fake_box = uncore_alloc_box(pmu->type, NUMA_NO_NODE); if (!fake_box) return -ENOMEM; fake_box->pmu = pmu; /* * the event is not yet connected with its * siblings therefore we must first collect * existing siblings, then add the new event * before we can simulate the scheduling */ n = uncore_collect_events(fake_box, leader, true); if (n < 0) goto out; fake_box->n_events = n; n = uncore_collect_events(fake_box, event, false); if (n < 0) goto out; fake_box->n_events = n; ret = uncore_assign_events(fake_box, NULL, n); out: kfree(fake_box); return ret; } static int uncore_pmu_event_init(struct perf_event *event) { struct intel_uncore_pmu *pmu; struct intel_uncore_box *box; struct hw_perf_event *hwc = &event->hw; int ret; if (event->attr.type != event->pmu->type) return -ENOENT; pmu = uncore_event_to_pmu(event); /* no device found for this pmu */ if (pmu->func_id < 0) return -ENOENT; /* Sampling not supported yet */ if (hwc->sample_period) return -EINVAL; /* * Place all uncore events for a particular physical package * onto a single cpu */ if (event->cpu < 0) return -EINVAL; box = uncore_pmu_to_box(pmu, event->cpu); if (!box || box->cpu < 0) return -EINVAL; event->cpu = box->cpu; event->pmu_private = box; event->event_caps |= PERF_EV_CAP_READ_ACTIVE_PKG; event->hw.idx = -1; event->hw.last_tag = ~0ULL; event->hw.extra_reg.idx = EXTRA_REG_NONE; event->hw.branch_reg.idx = EXTRA_REG_NONE; if (event->attr.config == UNCORE_FIXED_EVENT) { /* no fixed counter */ if (!pmu->type->fixed_ctl) return -EINVAL; /* * if there is only one fixed counter, only the first pmu * can access the fixed counter */ if (pmu->type->single_fixed && pmu->pmu_idx > 0) return -EINVAL; /* fixed counters have event field hardcoded to zero */ hwc->config = 0ULL; } else if (is_freerunning_event(event)) { hwc->config = event->attr.config; if (!check_valid_freerunning_event(box, event)) return -EINVAL; event->hw.idx = UNCORE_PMC_IDX_FREERUNNING; /* * The free running counter event and free running counter * are always 1:1 mapped. * The free running counter is always active. * Assign the free running counter here. */ event->hw.event_base = uncore_freerunning_counter(box, event); } else { hwc->config = event->attr.config & (pmu->type->event_mask | ((u64)pmu->type->event_mask_ext << 32)); if (pmu->type->ops->hw_config) { ret = pmu->type->ops->hw_config(box, event); if (ret) return ret; } } if (event->group_leader != event) ret = uncore_validate_group(pmu, event); else ret = 0; return ret; } static void uncore_pmu_enable(struct pmu *pmu) { struct intel_uncore_pmu *uncore_pmu; struct intel_uncore_box *box; uncore_pmu = container_of(pmu, struct intel_uncore_pmu, pmu); if (!uncore_pmu) return; box = uncore_pmu_to_box(uncore_pmu, smp_processor_id()); if (!box) return; if (uncore_pmu->type->ops->enable_box) uncore_pmu->type->ops->enable_box(box); } static void uncore_pmu_disable(struct pmu *pmu) { struct intel_uncore_pmu *uncore_pmu; struct intel_uncore_box *box; uncore_pmu = container_of(pmu, struct intel_uncore_pmu, pmu); if (!uncore_pmu) return; box = uncore_pmu_to_box(uncore_pmu, smp_processor_id()); if (!box) return; if (uncore_pmu->type->ops->disable_box) uncore_pmu->type->ops->disable_box(box); } static ssize_t uncore_get_attr_cpumask(struct device *dev, struct device_attribute *attr, char *buf) { return cpumap_print_to_pagebuf(true, buf, &uncore_cpu_mask); } static DEVICE_ATTR(cpumask, S_IRUGO, uncore_get_attr_cpumask, NULL); static struct attribute *uncore_pmu_attrs[] = { &dev_attr_cpumask.attr, NULL, }; static const struct attribute_group uncore_pmu_attr_group = { .attrs = uncore_pmu_attrs, }; static int uncore_pmu_register(struct intel_uncore_pmu *pmu) { int ret; if (!pmu->type->pmu) { pmu->pmu = (struct pmu) { .attr_groups = pmu->type->attr_groups, .task_ctx_nr = perf_invalid_context, .pmu_enable = uncore_pmu_enable, .pmu_disable = uncore_pmu_disable, .event_init = uncore_pmu_event_init, .add = uncore_pmu_event_add, .del = uncore_pmu_event_del, .start = uncore_pmu_event_start, .stop = uncore_pmu_event_stop, .read = uncore_pmu_event_read, .module = THIS_MODULE, .capabilities = PERF_PMU_CAP_NO_EXCLUDE, .attr_update = pmu->type->attr_update, }; } else { pmu->pmu = *pmu->type->pmu; pmu->pmu.attr_groups = pmu->type->attr_groups; pmu->pmu.attr_update = pmu->type->attr_update; } if (pmu->type->num_boxes == 1) { if (strlen(pmu->type->name) > 0) sprintf(pmu->name, "uncore_%s", pmu->type->name); else sprintf(pmu->name, "uncore"); } else { sprintf(pmu->name, "uncore_%s_%d", pmu->type->name, pmu->pmu_idx); } ret = perf_pmu_register(&pmu->pmu, pmu->name, -1); if (!ret) pmu->registered = true; return ret; } static void uncore_pmu_unregister(struct intel_uncore_pmu *pmu) { if (!pmu->registered) return; perf_pmu_unregister(&pmu->pmu); pmu->registered = false; } static void uncore_free_boxes(struct intel_uncore_pmu *pmu) { int die; for (die = 0; die < uncore_max_dies(); die++) kfree(pmu->boxes[die]); kfree(pmu->boxes); } static void uncore_type_exit(struct intel_uncore_type *type) { struct intel_uncore_pmu *pmu = type->pmus; int i; if (type->cleanup_mapping) type->cleanup_mapping(type); if (pmu) { for (i = 0; i < type->num_boxes; i++, pmu++) { uncore_pmu_unregister(pmu); uncore_free_boxes(pmu); } kfree(type->pmus); type->pmus = NULL; } kfree(type->events_group); type->events_group = NULL; } static void uncore_types_exit(struct intel_uncore_type **types) { for (; *types; types++) uncore_type_exit(*types); } static int __init uncore_type_init(struct intel_uncore_type *type, bool setid) { struct intel_uncore_pmu *pmus; size_t size; int i, j; pmus = kcalloc(type->num_boxes, sizeof(*pmus), GFP_KERNEL); if (!pmus) return -ENOMEM; size = uncore_max_dies() * sizeof(struct intel_uncore_box *); for (i = 0; i < type->num_boxes; i++) { pmus[i].func_id = setid ? i : -1; pmus[i].pmu_idx = i; pmus[i].type = type; pmus[i].boxes = kzalloc(size, GFP_KERNEL); if (!pmus[i].boxes) goto err; } type->pmus = pmus; type->unconstrainted = (struct event_constraint) __EVENT_CONSTRAINT(0, (1ULL << type->num_counters) - 1, 0, type->num_counters, 0, 0); if (type->event_descs) { struct { struct attribute_group group; struct attribute *attrs[]; } *attr_group; for (i = 0; type->event_descs[i].attr.attr.name; i++); attr_group = kzalloc(struct_size(attr_group, attrs, i + 1), GFP_KERNEL); if (!attr_group) goto err; attr_group->group.name = "events"; attr_group->group.attrs = attr_group->attrs; for (j = 0; j < i; j++) attr_group->attrs[j] = &type->event_descs[j].attr.attr; type->events_group = &attr_group->group; } type->pmu_group = &uncore_pmu_attr_group; if (type->set_mapping) type->set_mapping(type); return 0; err: for (i = 0; i < type->num_boxes; i++) kfree(pmus[i].boxes); kfree(pmus); return -ENOMEM; } static int __init uncore_types_init(struct intel_uncore_type **types, bool setid) { int ret; for (; *types; types++) { ret = uncore_type_init(*types, setid); if (ret) return ret; } return 0; } /* * add a pci uncore device */ static int uncore_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct intel_uncore_type *type; struct intel_uncore_pmu *pmu = NULL; struct intel_uncore_box *box; int phys_id, die, ret; phys_id = uncore_pcibus_to_physid(pdev->bus); if (phys_id < 0) return -ENODEV; die = (topology_max_die_per_package() > 1) ? phys_id : topology_phys_to_logical_pkg(phys_id); if (die < 0) return -EINVAL; if (UNCORE_PCI_DEV_TYPE(id->driver_data) == UNCORE_EXTRA_PCI_DEV) { int idx = UNCORE_PCI_DEV_IDX(id->driver_data); uncore_extra_pci_dev[die].dev[idx] = pdev; pci_set_drvdata(pdev, NULL); return 0; } type = uncore_pci_uncores[UNCORE_PCI_DEV_TYPE(id->driver_data)]; /* * Some platforms, e.g. Knights Landing, use a common PCI device ID * for multiple instances of an uncore PMU device type. We should check * PCI slot and func to indicate the uncore box. */ if (id->driver_data & ~0xffff) { struct pci_driver *pci_drv = pdev->driver; const struct pci_device_id *ids = pci_drv->id_table; unsigned int devfn; while (ids && ids->vendor) { if ((ids->vendor == pdev->vendor) && (ids->device == pdev->device)) { devfn = PCI_DEVFN(UNCORE_PCI_DEV_DEV(ids->driver_data), UNCORE_PCI_DEV_FUNC(ids->driver_data)); if (devfn == pdev->devfn) { pmu = &type->pmus[UNCORE_PCI_DEV_IDX(ids->driver_data)]; break; } } ids++; } if (pmu == NULL) return -ENODEV; } else { /* * for performance monitoring unit with multiple boxes, * each box has a different function id. */ pmu = &type->pmus[UNCORE_PCI_DEV_IDX(id->driver_data)]; } if (WARN_ON_ONCE(pmu->boxes[die] != NULL)) return -EINVAL; box = uncore_alloc_box(type, NUMA_NO_NODE); if (!box) return -ENOMEM; if (pmu->func_id < 0) pmu->func_id = pdev->devfn; else WARN_ON_ONCE(pmu->func_id != pdev->devfn); atomic_inc(&box->refcnt); box->pci_phys_id = phys_id; box->dieid = die; box->pci_dev = pdev; box->pmu = pmu; uncore_box_init(box); pci_set_drvdata(pdev, box); pmu->boxes[die] = box; if (atomic_inc_return(&pmu->activeboxes) > 1) return 0; /* First active box registers the pmu */ ret = uncore_pmu_register(pmu); if (ret) { pci_set_drvdata(pdev, NULL); pmu->boxes[die] = NULL; uncore_box_exit(box); kfree(box); } return ret; } static void uncore_pci_remove(struct pci_dev *pdev) { struct intel_uncore_box *box; struct intel_uncore_pmu *pmu; int i, phys_id, die; phys_id = uncore_pcibus_to_physid(pdev->bus); box = pci_get_drvdata(pdev); if (!box) { die = (topology_max_die_per_package() > 1) ? phys_id : topology_phys_to_logical_pkg(phys_id); for (i = 0; i < UNCORE_EXTRA_PCI_DEV_MAX; i++) { if (uncore_extra_pci_dev[die].dev[i] == pdev) { uncore_extra_pci_dev[die].dev[i] = NULL; break; } } WARN_ON_ONCE(i >= UNCORE_EXTRA_PCI_DEV_MAX); return; } pmu = box->pmu; if (WARN_ON_ONCE(phys_id != box->pci_phys_id)) return; pci_set_drvdata(pdev, NULL); pmu->boxes[box->dieid] = NULL; if (atomic_dec_return(&pmu->activeboxes) == 0) uncore_pmu_unregister(pmu); uncore_box_exit(box); kfree(box); } static int __init uncore_pci_init(void) { size_t size; int ret; size = uncore_max_dies() * sizeof(struct pci_extra_dev); uncore_extra_pci_dev = kzalloc(size, GFP_KERNEL); if (!uncore_extra_pci_dev) { ret = -ENOMEM; goto err; } ret = uncore_types_init(uncore_pci_uncores, false); if (ret) goto errtype; uncore_pci_driver->probe = uncore_pci_probe; uncore_pci_driver->remove = uncore_pci_remove; ret = pci_register_driver(uncore_pci_driver); if (ret) goto errtype; pcidrv_registered = true; return 0; errtype: uncore_types_exit(uncore_pci_uncores); kfree(uncore_extra_pci_dev); uncore_extra_pci_dev = NULL; uncore_free_pcibus_map(); err: uncore_pci_uncores = empty_uncore; return ret; } static void uncore_pci_exit(void) { if (pcidrv_registered) { pcidrv_registered = false; pci_unregister_driver(uncore_pci_driver); uncore_types_exit(uncore_pci_uncores); kfree(uncore_extra_pci_dev); uncore_free_pcibus_map(); } } static void uncore_change_type_ctx(struct intel_uncore_type *type, int old_cpu, int new_cpu) { struct intel_uncore_pmu *pmu = type->pmus; struct intel_uncore_box *box; int i, die; die = topology_logical_die_id(old_cpu < 0 ? new_cpu : old_cpu); for (i = 0; i < type->num_boxes; i++, pmu++) { box = pmu->boxes[die]; if (!box) continue; if (old_cpu < 0) { WARN_ON_ONCE(box->cpu != -1); box->cpu = new_cpu; continue; } WARN_ON_ONCE(box->cpu != old_cpu); box->cpu = -1; if (new_cpu < 0) continue; uncore_pmu_cancel_hrtimer(box); perf_pmu_migrate_context(&pmu->pmu, old_cpu, new_cpu); box->cpu = new_cpu; } } static void uncore_change_context(struct intel_uncore_type **uncores, int old_cpu, int new_cpu) { for (; *uncores; uncores++) uncore_change_type_ctx(*uncores, old_cpu, new_cpu); } static void uncore_box_unref(struct intel_uncore_type **types, int id) { struct intel_uncore_type *type; struct intel_uncore_pmu *pmu; struct intel_uncore_box *box; int i; for (; *types; types++) { type = *types; pmu = type->pmus; for (i = 0; i < type->num_boxes; i++, pmu++) { box = pmu->boxes[id]; if (box && atomic_dec_return(&box->refcnt) == 0) uncore_box_exit(box); } } } static int uncore_event_cpu_offline(unsigned int cpu) { int die, target; /* Check if exiting cpu is used for collecting uncore events */ if (!cpumask_test_and_clear_cpu(cpu, &uncore_cpu_mask)) goto unref; /* Find a new cpu to collect uncore events */ target = cpumask_any_but(topology_die_cpumask(cpu), cpu); /* Migrate uncore events to the new target */ if (target < nr_cpu_ids) cpumask_set_cpu(target, &uncore_cpu_mask); else target = -1; uncore_change_context(uncore_msr_uncores, cpu, target); uncore_change_context(uncore_mmio_uncores, cpu, target); uncore_change_context(uncore_pci_uncores, cpu, target); unref: /* Clear the references */ die = topology_logical_die_id(cpu); uncore_box_unref(uncore_msr_uncores, die); uncore_box_unref(uncore_mmio_uncores, die); return 0; } static int allocate_boxes(struct intel_uncore_type **types, unsigned int die, unsigned int cpu) { struct intel_uncore_box *box, *tmp; struct intel_uncore_type *type; struct intel_uncore_pmu *pmu; LIST_HEAD(allocated); int i; /* Try to allocate all required boxes */ for (; *types; types++) { type = *types; pmu = type->pmus; for (i = 0; i < type->num_boxes; i++, pmu++) { if (pmu->boxes[die]) continue; box = uncore_alloc_box(type, cpu_to_node(cpu)); if (!box) goto cleanup; box->pmu = pmu; box->dieid = die; list_add(&box->active_list, &allocated); } } /* Install them in the pmus */ list_for_each_entry_safe(box, tmp, &allocated, active_list) { list_del_init(&box->active_list); box->pmu->boxes[die] = box; } return 0; cleanup: list_for_each_entry_safe(box, tmp, &allocated, active_list) { list_del_init(&box->active_list); kfree(box); } return -ENOMEM; } static int uncore_box_ref(struct intel_uncore_type **types, int id, unsigned int cpu) { struct intel_uncore_type *type; struct intel_uncore_pmu *pmu; struct intel_uncore_box *box; int i, ret; ret = allocate_boxes(types, id, cpu); if (ret) return ret; for (; *types; types++) { type = *types; pmu = type->pmus; for (i = 0; i < type->num_boxes; i++, pmu++) { box = pmu->boxes[id]; if (box && atomic_inc_return(&box->refcnt) == 1) uncore_box_init(box); } } return 0; } static int uncore_event_cpu_online(unsigned int cpu) { int die, target, msr_ret, mmio_ret; die = topology_logical_die_id(cpu); msr_ret = uncore_box_ref(uncore_msr_uncores, die, cpu); mmio_ret = uncore_box_ref(uncore_mmio_uncores, die, cpu); if (msr_ret && mmio_ret) return -ENOMEM; /* * Check if there is an online cpu in the package * which collects uncore events already. */ target = cpumask_any_and(&uncore_cpu_mask, topology_die_cpumask(cpu)); if (target < nr_cpu_ids) return 0; cpumask_set_cpu(cpu, &uncore_cpu_mask); if (!msr_ret) uncore_change_context(uncore_msr_uncores, -1, cpu); if (!mmio_ret) uncore_change_context(uncore_mmio_uncores, -1, cpu); uncore_change_context(uncore_pci_uncores, -1, cpu); return 0; } static int __init type_pmu_register(struct intel_uncore_type *type) { int i, ret; for (i = 0; i < type->num_boxes; i++) { ret = uncore_pmu_register(&type->pmus[i]); if (ret) return ret; } return 0; } static int __init uncore_msr_pmus_register(void) { struct intel_uncore_type **types = uncore_msr_uncores; int ret; for (; *types; types++) { ret = type_pmu_register(*types); if (ret) return ret; } return 0; } static int __init uncore_cpu_init(void) { int ret; ret = uncore_types_init(uncore_msr_uncores, true); if (ret) goto err; ret = uncore_msr_pmus_register(); if (ret) goto err; return 0; err: uncore_types_exit(uncore_msr_uncores); uncore_msr_uncores = empty_uncore; return ret; } static int __init uncore_mmio_init(void) { struct intel_uncore_type **types = uncore_mmio_uncores; int ret; ret = uncore_types_init(types, true); if (ret) goto err; for (; *types; types++) { ret = type_pmu_register(*types); if (ret) goto err; } return 0; err: uncore_types_exit(uncore_mmio_uncores); uncore_mmio_uncores = empty_uncore; return ret; } struct intel_uncore_init_fun { void (*cpu_init)(void); int (*pci_init)(void); void (*mmio_init)(void); }; static const struct intel_uncore_init_fun nhm_uncore_init __initconst = { .cpu_init = nhm_uncore_cpu_init, }; static const struct intel_uncore_init_fun snb_uncore_init __initconst = { .cpu_init = snb_uncore_cpu_init, .pci_init = snb_uncore_pci_init, }; static const struct intel_uncore_init_fun ivb_uncore_init __initconst = { .cpu_init = snb_uncore_cpu_init, .pci_init = ivb_uncore_pci_init, }; static const struct intel_uncore_init_fun hsw_uncore_init __initconst = { .cpu_init = snb_uncore_cpu_init, .pci_init = hsw_uncore_pci_init, }; static const struct intel_uncore_init_fun bdw_uncore_init __initconst = { .cpu_init = snb_uncore_cpu_init, .pci_init = bdw_uncore_pci_init, }; static const struct intel_uncore_init_fun snbep_uncore_init __initconst = { .cpu_init = snbep_uncore_cpu_init, .pci_init = snbep_uncore_pci_init, }; static const struct intel_uncore_init_fun nhmex_uncore_init __initconst = { .cpu_init = nhmex_uncore_cpu_init, }; static const struct intel_uncore_init_fun ivbep_uncore_init __initconst = { .cpu_init = ivbep_uncore_cpu_init, .pci_init = ivbep_uncore_pci_init, }; static const struct intel_uncore_init_fun hswep_uncore_init __initconst = { .cpu_init = hswep_uncore_cpu_init, .pci_init = hswep_uncore_pci_init, }; static const struct intel_uncore_init_fun bdx_uncore_init __initconst = { .cpu_init = bdx_uncore_cpu_init, .pci_init = bdx_uncore_pci_init, }; static const struct intel_uncore_init_fun knl_uncore_init __initconst = { .cpu_init = knl_uncore_cpu_init, .pci_init = knl_uncore_pci_init, }; static const struct intel_uncore_init_fun skl_uncore_init __initconst = { .cpu_init = skl_uncore_cpu_init, .pci_init = skl_uncore_pci_init, }; static const struct intel_uncore_init_fun skx_uncore_init __initconst = { .cpu_init = skx_uncore_cpu_init, .pci_init = skx_uncore_pci_init, }; static const struct intel_uncore_init_fun icl_uncore_init __initconst = { .cpu_init = icl_uncore_cpu_init, .pci_init = skl_uncore_pci_init, }; static const struct intel_uncore_init_fun tgl_uncore_init __initconst = { .cpu_init = icl_uncore_cpu_init, .mmio_init = tgl_uncore_mmio_init, }; static const struct intel_uncore_init_fun tgl_l_uncore_init __initconst = { .cpu_init = icl_uncore_cpu_init, .mmio_init = tgl_l_uncore_mmio_init, }; static const struct intel_uncore_init_fun icx_uncore_init __initconst = { .cpu_init = icx_uncore_cpu_init, .pci_init = icx_uncore_pci_init, .mmio_init = icx_uncore_mmio_init, }; static const struct intel_uncore_init_fun snr_uncore_init __initconst = { .cpu_init = snr_uncore_cpu_init, .pci_init = snr_uncore_pci_init, .mmio_init = snr_uncore_mmio_init, }; static const struct x86_cpu_id intel_uncore_match[] __initconst = { X86_MATCH_INTEL_FAM6_MODEL(NEHALEM_EP, &nhm_uncore_init), X86_MATCH_INTEL_FAM6_MODEL(NEHALEM, &nhm_uncore_init), X86_MATCH_INTEL_FAM6_MODEL(WESTMERE, &nhm_uncore_init), X86_MATCH_INTEL_FAM6_MODEL(WESTMERE_EP, &nhm_uncore_init), X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE, &snb_uncore_init), X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE, &ivb_uncore_init), X86_MATCH_INTEL_FAM6_MODEL(HASWELL, &hsw_uncore_init), X86_MATCH_INTEL_FAM6_MODEL(HASWELL_L, &hsw_uncore_init), X86_MATCH_INTEL_FAM6_MODEL(HASWELL_G, &hsw_uncore_init), X86_MATCH_INTEL_FAM6_MODEL(BROADWELL, &bdw_uncore_init), X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_G, &bdw_uncore_init), X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE_X, &snbep_uncore_init), X86_MATCH_INTEL_FAM6_MODEL(NEHALEM_EX, &nhmex_uncore_init), X86_MATCH_INTEL_FAM6_MODEL(WESTMERE_EX, &nhmex_uncore_init), X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &ivbep_uncore_init), X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &hswep_uncore_init), X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &bdx_uncore_init), X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &bdx_uncore_init), X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &knl_uncore_init), X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &knl_uncore_init), X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE, &skl_uncore_init), X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_L, &skl_uncore_init), X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &skx_uncore_init), X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE_L, &skl_uncore_init), X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE, &skl_uncore_init), X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE_L, &skl_uncore_init), X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE, &skl_uncore_init), X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L, &icl_uncore_init), X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_NNPI, &icl_uncore_init), X86_MATCH_INTEL_FAM6_MODEL(ICELAKE, &icl_uncore_init), X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &icx_uncore_init), X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &icx_uncore_init), X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L, &tgl_l_uncore_init), X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE, &tgl_uncore_init), X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_D, &snr_uncore_init), {}, }; MODULE_DEVICE_TABLE(x86cpu, intel_uncore_match); static int __init intel_uncore_init(void) { const struct x86_cpu_id *id; struct intel_uncore_init_fun *uncore_init; int pret = 0, cret = 0, mret = 0, ret; id = x86_match_cpu(intel_uncore_match); if (!id) return -ENODEV; if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) return -ENODEV; __uncore_max_dies = topology_max_packages() * topology_max_die_per_package(); uncore_init = (struct intel_uncore_init_fun *)id->driver_data; if (uncore_init->pci_init) { pret = uncore_init->pci_init(); if (!pret) pret = uncore_pci_init(); } if (uncore_init->cpu_init) { uncore_init->cpu_init(); cret = uncore_cpu_init(); } if (uncore_init->mmio_init) { uncore_init->mmio_init(); mret = uncore_mmio_init(); } if (cret && pret && mret) return -ENODEV; /* Install hotplug callbacks to setup the targets for each package */ ret = cpuhp_setup_state(CPUHP_AP_PERF_X86_UNCORE_ONLINE, "perf/x86/intel/uncore:online", uncore_event_cpu_online, uncore_event_cpu_offline); if (ret) goto err; return 0; err: uncore_types_exit(uncore_msr_uncores); uncore_types_exit(uncore_mmio_uncores); uncore_pci_exit(); return ret; } module_init(intel_uncore_init); static void __exit intel_uncore_exit(void) { cpuhp_remove_state(CPUHP_AP_PERF_X86_UNCORE_ONLINE); uncore_types_exit(uncore_msr_uncores); uncore_types_exit(uncore_mmio_uncores); uncore_pci_exit(); } module_exit(intel_uncore_exit);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1