Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jeremy Fitzhardinge | 1816 | 82.06% | 3 | 8.33% |
Juergen Gross | 104 | 4.70% | 6 | 16.67% |
Peter Zijlstra | 77 | 3.48% | 6 | 16.67% |
Kirill A. Shutemov | 67 | 3.03% | 3 | 8.33% |
Andrew Lutomirski | 59 | 2.67% | 6 | 16.67% |
Ingo Molnar | 32 | 1.45% | 3 | 8.33% |
Boris Ostrovsky | 15 | 0.68% | 1 | 2.78% |
Glauber de Oliveira Costa | 12 | 0.54% | 1 | 2.78% |
Andi Kleen | 11 | 0.50% | 1 | 2.78% |
Kees Cook | 8 | 0.36% | 1 | 2.78% |
Aneesh Kumar K.V | 7 | 0.32% | 1 | 2.78% |
Josh Poimboeuf | 2 | 0.09% | 1 | 2.78% |
Greg Kroah-Hartman | 1 | 0.05% | 1 | 2.78% |
Thomas Gleixner | 1 | 0.05% | 1 | 2.78% |
Pan Xinhui | 1 | 0.05% | 1 | 2.78% |
Total | 2213 | 36 |
/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_PARAVIRT_TYPES_H #define _ASM_X86_PARAVIRT_TYPES_H /* Bitmask of what can be clobbered: usually at least eax. */ #define CLBR_NONE 0 #define CLBR_EAX (1 << 0) #define CLBR_ECX (1 << 1) #define CLBR_EDX (1 << 2) #define CLBR_EDI (1 << 3) #ifdef CONFIG_X86_32 /* CLBR_ANY should match all regs platform has. For i386, that's just it */ #define CLBR_ANY ((1 << 4) - 1) #define CLBR_ARG_REGS (CLBR_EAX | CLBR_EDX | CLBR_ECX) #define CLBR_RET_REG (CLBR_EAX | CLBR_EDX) #define CLBR_SCRATCH (0) #else #define CLBR_RAX CLBR_EAX #define CLBR_RCX CLBR_ECX #define CLBR_RDX CLBR_EDX #define CLBR_RDI CLBR_EDI #define CLBR_RSI (1 << 4) #define CLBR_R8 (1 << 5) #define CLBR_R9 (1 << 6) #define CLBR_R10 (1 << 7) #define CLBR_R11 (1 << 8) #define CLBR_ANY ((1 << 9) - 1) #define CLBR_ARG_REGS (CLBR_RDI | CLBR_RSI | CLBR_RDX | \ CLBR_RCX | CLBR_R8 | CLBR_R9) #define CLBR_RET_REG (CLBR_RAX) #define CLBR_SCRATCH (CLBR_R10 | CLBR_R11) #endif /* X86_64 */ #define CLBR_CALLEE_SAVE ((CLBR_ARG_REGS | CLBR_SCRATCH) & ~CLBR_RET_REG) #ifndef __ASSEMBLY__ #include <asm/desc_defs.h> #include <asm/kmap_types.h> #include <asm/pgtable_types.h> #include <asm/nospec-branch.h> struct page; struct thread_struct; struct desc_ptr; struct tss_struct; struct mm_struct; struct desc_struct; struct task_struct; struct cpumask; struct flush_tlb_info; struct mmu_gather; struct vm_area_struct; /* * Wrapper type for pointers to code which uses the non-standard * calling convention. See PV_CALL_SAVE_REGS_THUNK below. */ struct paravirt_callee_save { void *func; }; /* general info */ struct pv_info { #ifdef CONFIG_PARAVIRT_XXL unsigned int kernel_rpl; int shared_kernel_pmd; #ifdef CONFIG_X86_64 u16 extra_user_64bit_cs; /* __USER_CS if none */ #endif #endif const char *name; }; struct pv_init_ops { /* * Patch may replace one of the defined code sequences with * arbitrary code, subject to the same register constraints. * This generally means the code is not free to clobber any * registers other than EAX. The patch function should return * the number of bytes of code generated, as we nop pad the * rest in generic code. */ unsigned (*patch)(u8 type, void *insn_buff, unsigned long addr, unsigned len); } __no_randomize_layout; #ifdef CONFIG_PARAVIRT_XXL struct pv_lazy_ops { /* Set deferred update mode, used for batching operations. */ void (*enter)(void); void (*leave)(void); void (*flush)(void); } __no_randomize_layout; #endif struct pv_time_ops { unsigned long long (*sched_clock)(void); unsigned long long (*steal_clock)(int cpu); } __no_randomize_layout; struct pv_cpu_ops { /* hooks for various privileged instructions */ void (*io_delay)(void); #ifdef CONFIG_PARAVIRT_XXL unsigned long (*get_debugreg)(int regno); void (*set_debugreg)(int regno, unsigned long value); unsigned long (*read_cr0)(void); void (*write_cr0)(unsigned long); void (*write_cr4)(unsigned long); /* Segment descriptor handling */ void (*load_tr_desc)(void); void (*load_gdt)(const struct desc_ptr *); void (*load_idt)(const struct desc_ptr *); void (*set_ldt)(const void *desc, unsigned entries); unsigned long (*store_tr)(void); void (*load_tls)(struct thread_struct *t, unsigned int cpu); #ifdef CONFIG_X86_64 void (*load_gs_index)(unsigned int idx); #endif void (*write_ldt_entry)(struct desc_struct *ldt, int entrynum, const void *desc); void (*write_gdt_entry)(struct desc_struct *, int entrynum, const void *desc, int size); void (*write_idt_entry)(gate_desc *, int entrynum, const gate_desc *gate); void (*alloc_ldt)(struct desc_struct *ldt, unsigned entries); void (*free_ldt)(struct desc_struct *ldt, unsigned entries); void (*load_sp0)(unsigned long sp0); #ifdef CONFIG_X86_IOPL_IOPERM void (*invalidate_io_bitmap)(void); void (*update_io_bitmap)(void); #endif void (*wbinvd)(void); /* cpuid emulation, mostly so that caps bits can be disabled */ void (*cpuid)(unsigned int *eax, unsigned int *ebx, unsigned int *ecx, unsigned int *edx); /* Unsafe MSR operations. These will warn or panic on failure. */ u64 (*read_msr)(unsigned int msr); void (*write_msr)(unsigned int msr, unsigned low, unsigned high); /* * Safe MSR operations. * read sets err to 0 or -EIO. write returns 0 or -EIO. */ u64 (*read_msr_safe)(unsigned int msr, int *err); int (*write_msr_safe)(unsigned int msr, unsigned low, unsigned high); u64 (*read_pmc)(int counter); /* * Switch to usermode gs and return to 64-bit usermode using * sysret. Only used in 64-bit kernels to return to 64-bit * processes. Usermode register state, including %rsp, must * already be restored. */ void (*usergs_sysret64)(void); /* Normal iret. Jump to this with the standard iret stack frame set up. */ void (*iret)(void); void (*swapgs)(void); void (*start_context_switch)(struct task_struct *prev); void (*end_context_switch)(struct task_struct *next); #endif } __no_randomize_layout; struct pv_irq_ops { #ifdef CONFIG_PARAVIRT_XXL /* * Get/set interrupt state. save_fl and restore_fl are only * expected to use X86_EFLAGS_IF; all other bits * returned from save_fl are undefined, and may be ignored by * restore_fl. * * NOTE: These functions callers expect the callee to preserve * more registers than the standard C calling convention. */ struct paravirt_callee_save save_fl; struct paravirt_callee_save restore_fl; struct paravirt_callee_save irq_disable; struct paravirt_callee_save irq_enable; void (*safe_halt)(void); void (*halt)(void); #endif } __no_randomize_layout; struct pv_mmu_ops { /* TLB operations */ void (*flush_tlb_user)(void); void (*flush_tlb_kernel)(void); void (*flush_tlb_one_user)(unsigned long addr); void (*flush_tlb_others)(const struct cpumask *cpus, const struct flush_tlb_info *info); void (*tlb_remove_table)(struct mmu_gather *tlb, void *table); /* Hook for intercepting the destruction of an mm_struct. */ void (*exit_mmap)(struct mm_struct *mm); #ifdef CONFIG_PARAVIRT_XXL struct paravirt_callee_save read_cr2; void (*write_cr2)(unsigned long); unsigned long (*read_cr3)(void); void (*write_cr3)(unsigned long); /* Hooks for intercepting the creation/use of an mm_struct. */ void (*activate_mm)(struct mm_struct *prev, struct mm_struct *next); void (*dup_mmap)(struct mm_struct *oldmm, struct mm_struct *mm); /* Hooks for allocating and freeing a pagetable top-level */ int (*pgd_alloc)(struct mm_struct *mm); void (*pgd_free)(struct mm_struct *mm, pgd_t *pgd); /* * Hooks for allocating/releasing pagetable pages when they're * attached to a pagetable */ void (*alloc_pte)(struct mm_struct *mm, unsigned long pfn); void (*alloc_pmd)(struct mm_struct *mm, unsigned long pfn); void (*alloc_pud)(struct mm_struct *mm, unsigned long pfn); void (*alloc_p4d)(struct mm_struct *mm, unsigned long pfn); void (*release_pte)(unsigned long pfn); void (*release_pmd)(unsigned long pfn); void (*release_pud)(unsigned long pfn); void (*release_p4d)(unsigned long pfn); /* Pagetable manipulation functions */ void (*set_pte)(pte_t *ptep, pte_t pteval); void (*set_pte_at)(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pteval); void (*set_pmd)(pmd_t *pmdp, pmd_t pmdval); pte_t (*ptep_modify_prot_start)(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep); void (*ptep_modify_prot_commit)(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep, pte_t pte); struct paravirt_callee_save pte_val; struct paravirt_callee_save make_pte; struct paravirt_callee_save pgd_val; struct paravirt_callee_save make_pgd; #if CONFIG_PGTABLE_LEVELS >= 3 #ifdef CONFIG_X86_PAE void (*set_pte_atomic)(pte_t *ptep, pte_t pteval); void (*pte_clear)(struct mm_struct *mm, unsigned long addr, pte_t *ptep); void (*pmd_clear)(pmd_t *pmdp); #endif /* CONFIG_X86_PAE */ void (*set_pud)(pud_t *pudp, pud_t pudval); struct paravirt_callee_save pmd_val; struct paravirt_callee_save make_pmd; #if CONFIG_PGTABLE_LEVELS >= 4 struct paravirt_callee_save pud_val; struct paravirt_callee_save make_pud; void (*set_p4d)(p4d_t *p4dp, p4d_t p4dval); #if CONFIG_PGTABLE_LEVELS >= 5 struct paravirt_callee_save p4d_val; struct paravirt_callee_save make_p4d; void (*set_pgd)(pgd_t *pgdp, pgd_t pgdval); #endif /* CONFIG_PGTABLE_LEVELS >= 5 */ #endif /* CONFIG_PGTABLE_LEVELS >= 4 */ #endif /* CONFIG_PGTABLE_LEVELS >= 3 */ struct pv_lazy_ops lazy_mode; /* dom0 ops */ /* Sometimes the physical address is a pfn, and sometimes its an mfn. We can tell which is which from the index. */ void (*set_fixmap)(unsigned /* enum fixed_addresses */ idx, phys_addr_t phys, pgprot_t flags); #endif } __no_randomize_layout; struct arch_spinlock; #ifdef CONFIG_SMP #include <asm/spinlock_types.h> #endif struct qspinlock; struct pv_lock_ops { void (*queued_spin_lock_slowpath)(struct qspinlock *lock, u32 val); struct paravirt_callee_save queued_spin_unlock; void (*wait)(u8 *ptr, u8 val); void (*kick)(int cpu); struct paravirt_callee_save vcpu_is_preempted; } __no_randomize_layout; /* This contains all the paravirt structures: we get a convenient * number for each function using the offset which we use to indicate * what to patch. */ struct paravirt_patch_template { struct pv_init_ops init; struct pv_time_ops time; struct pv_cpu_ops cpu; struct pv_irq_ops irq; struct pv_mmu_ops mmu; struct pv_lock_ops lock; } __no_randomize_layout; extern struct pv_info pv_info; extern struct paravirt_patch_template pv_ops; #define PARAVIRT_PATCH(x) \ (offsetof(struct paravirt_patch_template, x) / sizeof(void *)) #define paravirt_type(op) \ [paravirt_typenum] "i" (PARAVIRT_PATCH(op)), \ [paravirt_opptr] "i" (&(pv_ops.op)) #define paravirt_clobber(clobber) \ [paravirt_clobber] "i" (clobber) /* * Generate some code, and mark it as patchable by the * apply_paravirt() alternate instruction patcher. */ #define _paravirt_alt(insn_string, type, clobber) \ "771:\n\t" insn_string "\n" "772:\n" \ ".pushsection .parainstructions,\"a\"\n" \ _ASM_ALIGN "\n" \ _ASM_PTR " 771b\n" \ " .byte " type "\n" \ " .byte 772b-771b\n" \ " .short " clobber "\n" \ ".popsection\n" /* Generate patchable code, with the default asm parameters. */ #define paravirt_alt(insn_string) \ _paravirt_alt(insn_string, "%c[paravirt_typenum]", "%c[paravirt_clobber]") /* Simple instruction patching code. */ #define NATIVE_LABEL(a,x,b) "\n\t.globl " a #x "_" #b "\n" a #x "_" #b ":\n\t" unsigned paravirt_patch_ident_64(void *insn_buff, unsigned len); unsigned paravirt_patch_default(u8 type, void *insn_buff, unsigned long addr, unsigned len); unsigned paravirt_patch_insns(void *insn_buff, unsigned len, const char *start, const char *end); unsigned native_patch(u8 type, void *insn_buff, unsigned long addr, unsigned len); int paravirt_disable_iospace(void); /* * This generates an indirect call based on the operation type number. * The type number, computed in PARAVIRT_PATCH, is derived from the * offset into the paravirt_patch_template structure, and can therefore be * freely converted back into a structure offset. */ #define PARAVIRT_CALL \ ANNOTATE_RETPOLINE_SAFE \ "call *%c[paravirt_opptr];" /* * These macros are intended to wrap calls through one of the paravirt * ops structs, so that they can be later identified and patched at * runtime. * * Normally, a call to a pv_op function is a simple indirect call: * (pv_op_struct.operations)(args...). * * Unfortunately, this is a relatively slow operation for modern CPUs, * because it cannot necessarily determine what the destination * address is. In this case, the address is a runtime constant, so at * the very least we can patch the call to e a simple direct call, or * ideally, patch an inline implementation into the callsite. (Direct * calls are essentially free, because the call and return addresses * are completely predictable.) * * For i386, these macros rely on the standard gcc "regparm(3)" calling * convention, in which the first three arguments are placed in %eax, * %edx, %ecx (in that order), and the remaining arguments are placed * on the stack. All caller-save registers (eax,edx,ecx) are expected * to be modified (either clobbered or used for return values). * X86_64, on the other hand, already specifies a register-based calling * conventions, returning at %rax, with parameteres going on %rdi, %rsi, * %rdx, and %rcx. Note that for this reason, x86_64 does not need any * special handling for dealing with 4 arguments, unlike i386. * However, x86_64 also have to clobber all caller saved registers, which * unfortunately, are quite a bit (r8 - r11) * * The call instruction itself is marked by placing its start address * and size into the .parainstructions section, so that * apply_paravirt() in arch/i386/kernel/alternative.c can do the * appropriate patching under the control of the backend pv_init_ops * implementation. * * Unfortunately there's no way to get gcc to generate the args setup * for the call, and then allow the call itself to be generated by an * inline asm. Because of this, we must do the complete arg setup and * return value handling from within these macros. This is fairly * cumbersome. * * There are 5 sets of PVOP_* macros for dealing with 0-4 arguments. * It could be extended to more arguments, but there would be little * to be gained from that. For each number of arguments, there are * the two VCALL and CALL variants for void and non-void functions. * * When there is a return value, the invoker of the macro must specify * the return type. The macro then uses sizeof() on that type to * determine whether its a 32 or 64 bit value, and places the return * in the right register(s) (just %eax for 32-bit, and %edx:%eax for * 64-bit). For x86_64 machines, it just returns at %rax regardless of * the return value size. * * 64-bit arguments are passed as a pair of adjacent 32-bit arguments * i386 also passes 64-bit arguments as a pair of adjacent 32-bit arguments * in low,high order * * Small structures are passed and returned in registers. The macro * calling convention can't directly deal with this, so the wrapper * functions must do this. * * These PVOP_* macros are only defined within this header. This * means that all uses must be wrapped in inline functions. This also * makes sure the incoming and outgoing types are always correct. */ #ifdef CONFIG_X86_32 #define PVOP_VCALL_ARGS \ unsigned long __eax = __eax, __edx = __edx, __ecx = __ecx; #define PVOP_CALL_ARGS PVOP_VCALL_ARGS #define PVOP_CALL_ARG1(x) "a" ((unsigned long)(x)) #define PVOP_CALL_ARG2(x) "d" ((unsigned long)(x)) #define PVOP_CALL_ARG3(x) "c" ((unsigned long)(x)) #define PVOP_VCALL_CLOBBERS "=a" (__eax), "=d" (__edx), \ "=c" (__ecx) #define PVOP_CALL_CLOBBERS PVOP_VCALL_CLOBBERS #define PVOP_VCALLEE_CLOBBERS "=a" (__eax), "=d" (__edx) #define PVOP_CALLEE_CLOBBERS PVOP_VCALLEE_CLOBBERS #define EXTRA_CLOBBERS #define VEXTRA_CLOBBERS #else /* CONFIG_X86_64 */ /* [re]ax isn't an arg, but the return val */ #define PVOP_VCALL_ARGS \ unsigned long __edi = __edi, __esi = __esi, \ __edx = __edx, __ecx = __ecx, __eax = __eax; #define PVOP_CALL_ARGS PVOP_VCALL_ARGS #define PVOP_CALL_ARG1(x) "D" ((unsigned long)(x)) #define PVOP_CALL_ARG2(x) "S" ((unsigned long)(x)) #define PVOP_CALL_ARG3(x) "d" ((unsigned long)(x)) #define PVOP_CALL_ARG4(x) "c" ((unsigned long)(x)) #define PVOP_VCALL_CLOBBERS "=D" (__edi), \ "=S" (__esi), "=d" (__edx), \ "=c" (__ecx) #define PVOP_CALL_CLOBBERS PVOP_VCALL_CLOBBERS, "=a" (__eax) /* void functions are still allowed [re]ax for scratch */ #define PVOP_VCALLEE_CLOBBERS "=a" (__eax) #define PVOP_CALLEE_CLOBBERS PVOP_VCALLEE_CLOBBERS #define EXTRA_CLOBBERS , "r8", "r9", "r10", "r11" #define VEXTRA_CLOBBERS , "rax", "r8", "r9", "r10", "r11" #endif /* CONFIG_X86_32 */ #ifdef CONFIG_PARAVIRT_DEBUG #define PVOP_TEST_NULL(op) BUG_ON(pv_ops.op == NULL) #else #define PVOP_TEST_NULL(op) ((void)pv_ops.op) #endif #define PVOP_RETMASK(rettype) \ ({ unsigned long __mask = ~0UL; \ switch (sizeof(rettype)) { \ case 1: __mask = 0xffUL; break; \ case 2: __mask = 0xffffUL; break; \ case 4: __mask = 0xffffffffUL; break; \ default: break; \ } \ __mask; \ }) #define ____PVOP_CALL(rettype, op, clbr, call_clbr, extra_clbr, \ pre, post, ...) \ ({ \ rettype __ret; \ PVOP_CALL_ARGS; \ PVOP_TEST_NULL(op); \ /* This is 32-bit specific, but is okay in 64-bit */ \ /* since this condition will never hold */ \ if (sizeof(rettype) > sizeof(unsigned long)) { \ asm volatile(pre \ paravirt_alt(PARAVIRT_CALL) \ post \ : call_clbr, ASM_CALL_CONSTRAINT \ : paravirt_type(op), \ paravirt_clobber(clbr), \ ##__VA_ARGS__ \ : "memory", "cc" extra_clbr); \ __ret = (rettype)((((u64)__edx) << 32) | __eax); \ } else { \ asm volatile(pre \ paravirt_alt(PARAVIRT_CALL) \ post \ : call_clbr, ASM_CALL_CONSTRAINT \ : paravirt_type(op), \ paravirt_clobber(clbr), \ ##__VA_ARGS__ \ : "memory", "cc" extra_clbr); \ __ret = (rettype)(__eax & PVOP_RETMASK(rettype)); \ } \ __ret; \ }) #define __PVOP_CALL(rettype, op, pre, post, ...) \ ____PVOP_CALL(rettype, op, CLBR_ANY, PVOP_CALL_CLOBBERS, \ EXTRA_CLOBBERS, pre, post, ##__VA_ARGS__) #define __PVOP_CALLEESAVE(rettype, op, pre, post, ...) \ ____PVOP_CALL(rettype, op.func, CLBR_RET_REG, \ PVOP_CALLEE_CLOBBERS, , \ pre, post, ##__VA_ARGS__) #define ____PVOP_VCALL(op, clbr, call_clbr, extra_clbr, pre, post, ...) \ ({ \ PVOP_VCALL_ARGS; \ PVOP_TEST_NULL(op); \ asm volatile(pre \ paravirt_alt(PARAVIRT_CALL) \ post \ : call_clbr, ASM_CALL_CONSTRAINT \ : paravirt_type(op), \ paravirt_clobber(clbr), \ ##__VA_ARGS__ \ : "memory", "cc" extra_clbr); \ }) #define __PVOP_VCALL(op, pre, post, ...) \ ____PVOP_VCALL(op, CLBR_ANY, PVOP_VCALL_CLOBBERS, \ VEXTRA_CLOBBERS, \ pre, post, ##__VA_ARGS__) #define __PVOP_VCALLEESAVE(op, pre, post, ...) \ ____PVOP_VCALL(op.func, CLBR_RET_REG, \ PVOP_VCALLEE_CLOBBERS, , \ pre, post, ##__VA_ARGS__) #define PVOP_CALL0(rettype, op) \ __PVOP_CALL(rettype, op, "", "") #define PVOP_VCALL0(op) \ __PVOP_VCALL(op, "", "") #define PVOP_CALLEE0(rettype, op) \ __PVOP_CALLEESAVE(rettype, op, "", "") #define PVOP_VCALLEE0(op) \ __PVOP_VCALLEESAVE(op, "", "") #define PVOP_CALL1(rettype, op, arg1) \ __PVOP_CALL(rettype, op, "", "", PVOP_CALL_ARG1(arg1)) #define PVOP_VCALL1(op, arg1) \ __PVOP_VCALL(op, "", "", PVOP_CALL_ARG1(arg1)) #define PVOP_CALLEE1(rettype, op, arg1) \ __PVOP_CALLEESAVE(rettype, op, "", "", PVOP_CALL_ARG1(arg1)) #define PVOP_VCALLEE1(op, arg1) \ __PVOP_VCALLEESAVE(op, "", "", PVOP_CALL_ARG1(arg1)) #define PVOP_CALL2(rettype, op, arg1, arg2) \ __PVOP_CALL(rettype, op, "", "", PVOP_CALL_ARG1(arg1), \ PVOP_CALL_ARG2(arg2)) #define PVOP_VCALL2(op, arg1, arg2) \ __PVOP_VCALL(op, "", "", PVOP_CALL_ARG1(arg1), \ PVOP_CALL_ARG2(arg2)) #define PVOP_CALLEE2(rettype, op, arg1, arg2) \ __PVOP_CALLEESAVE(rettype, op, "", "", PVOP_CALL_ARG1(arg1), \ PVOP_CALL_ARG2(arg2)) #define PVOP_VCALLEE2(op, arg1, arg2) \ __PVOP_VCALLEESAVE(op, "", "", PVOP_CALL_ARG1(arg1), \ PVOP_CALL_ARG2(arg2)) #define PVOP_CALL3(rettype, op, arg1, arg2, arg3) \ __PVOP_CALL(rettype, op, "", "", PVOP_CALL_ARG1(arg1), \ PVOP_CALL_ARG2(arg2), PVOP_CALL_ARG3(arg3)) #define PVOP_VCALL3(op, arg1, arg2, arg3) \ __PVOP_VCALL(op, "", "", PVOP_CALL_ARG1(arg1), \ PVOP_CALL_ARG2(arg2), PVOP_CALL_ARG3(arg3)) /* This is the only difference in x86_64. We can make it much simpler */ #ifdef CONFIG_X86_32 #define PVOP_CALL4(rettype, op, arg1, arg2, arg3, arg4) \ __PVOP_CALL(rettype, op, \ "push %[_arg4];", "lea 4(%%esp),%%esp;", \ PVOP_CALL_ARG1(arg1), PVOP_CALL_ARG2(arg2), \ PVOP_CALL_ARG3(arg3), [_arg4] "mr" ((u32)(arg4))) #define PVOP_VCALL4(op, arg1, arg2, arg3, arg4) \ __PVOP_VCALL(op, \ "push %[_arg4];", "lea 4(%%esp),%%esp;", \ "0" ((u32)(arg1)), "1" ((u32)(arg2)), \ "2" ((u32)(arg3)), [_arg4] "mr" ((u32)(arg4))) #else #define PVOP_CALL4(rettype, op, arg1, arg2, arg3, arg4) \ __PVOP_CALL(rettype, op, "", "", \ PVOP_CALL_ARG1(arg1), PVOP_CALL_ARG2(arg2), \ PVOP_CALL_ARG3(arg3), PVOP_CALL_ARG4(arg4)) #define PVOP_VCALL4(op, arg1, arg2, arg3, arg4) \ __PVOP_VCALL(op, "", "", \ PVOP_CALL_ARG1(arg1), PVOP_CALL_ARG2(arg2), \ PVOP_CALL_ARG3(arg3), PVOP_CALL_ARG4(arg4)) #endif /* Lazy mode for batching updates / context switch */ enum paravirt_lazy_mode { PARAVIRT_LAZY_NONE, PARAVIRT_LAZY_MMU, PARAVIRT_LAZY_CPU, }; enum paravirt_lazy_mode paravirt_get_lazy_mode(void); void paravirt_start_context_switch(struct task_struct *prev); void paravirt_end_context_switch(struct task_struct *next); void paravirt_enter_lazy_mmu(void); void paravirt_leave_lazy_mmu(void); void paravirt_flush_lazy_mmu(void); void _paravirt_nop(void); u64 _paravirt_ident_64(u64); #define paravirt_nop ((void *)_paravirt_nop) /* These all sit in the .parainstructions section to tell us what to patch. */ struct paravirt_patch_site { u8 *instr; /* original instructions */ u8 type; /* type of this instruction */ u8 len; /* length of original instruction */ }; extern struct paravirt_patch_site __parainstructions[], __parainstructions_end[]; #endif /* __ASSEMBLY__ */ #endif /* _ASM_X86_PARAVIRT_TYPES_H */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1