Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Thomas Gleixner | 1120 | 14.42% | 28 | 8.33% |
Yinghai Lu | 1034 | 13.31% | 26 | 7.74% |
Dave Jones | 913 | 11.76% | 5 | 1.49% |
Andrew Lutomirski | 538 | 6.93% | 31 | 9.23% |
Borislav Petkov | 481 | 6.19% | 27 | 8.04% |
H. Peter Anvin | 333 | 4.29% | 11 | 3.27% |
Andi Kleen | 193 | 2.49% | 17 | 5.06% |
Mark Gross | 187 | 2.41% | 2 | 0.60% |
Akinobu Mita | 159 | 2.05% | 1 | 0.30% |
Fenghua Yu | 152 | 1.96% | 6 | 1.79% |
Ingo Molnar | 150 | 1.93% | 23 | 6.85% |
Jeremy Fitzhardinge | 129 | 1.66% | 8 | 2.38% |
Rusty Russell | 127 | 1.64% | 5 | 1.49% |
Chang S. Bae | 113 | 1.46% | 1 | 0.30% |
Konrad Rzeszutek Wilk | 110 | 1.42% | 7 | 2.08% |
Andrew Morton | 109 | 1.40% | 2 | 0.60% |
Alex Shi | 107 | 1.38% | 3 | 0.89% |
Dave Hansen | 105 | 1.35% | 5 | 1.49% |
Ondrej Zary | 97 | 1.25% | 1 | 0.30% |
Brian Gerst | 92 | 1.18% | 9 | 2.68% |
Kirill A. Shutemov | 92 | 1.18% | 4 | 1.19% |
Jan Beulich | 92 | 1.18% | 4 | 1.19% |
Kees Cook | 90 | 1.16% | 2 | 0.60% |
David Woodhouse | 87 | 1.12% | 2 | 0.60% |
Jaswinder Singh Rajput | 80 | 1.03% | 3 | 0.89% |
Thomas Garnier | 73 | 0.94% | 2 | 0.60% |
Pawan Gupta | 71 | 0.91% | 4 | 1.19% |
Vineela Tummalapalli | 69 | 0.89% | 1 | 0.30% |
Peter P. Waskiewicz Jr | 65 | 0.84% | 1 | 0.30% |
David Wang | 65 | 0.84% | 1 | 0.30% |
Ricardo Neri | 61 | 0.79% | 2 | 0.60% |
Tejun Heo | 46 | 0.59% | 3 | 0.89% |
Yazen Ghannam | 42 | 0.54% | 1 | 0.30% |
Igor Mammedov | 41 | 0.53% | 1 | 0.30% |
Tony W Wang-oc | 39 | 0.50% | 2 | 0.60% |
Jason Wessel | 39 | 0.50% | 1 | 0.30% |
Peter Zijlstra | 38 | 0.49% | 4 | 1.19% |
Suresh B. Siddha | 31 | 0.40% | 4 | 1.19% |
Denys Vlasenko | 30 | 0.39% | 3 | 0.89% |
Sebastian Andrzej Siewior | 27 | 0.35% | 1 | 0.30% |
Pavel Tatashin | 25 | 0.32% | 1 | 0.30% |
Sean Christopherson | 25 | 0.32% | 2 | 0.60% |
Shaohua Li | 21 | 0.27% | 3 | 0.89% |
Dominik Brodowski | 16 | 0.21% | 1 | 0.30% |
Joerg Roedel | 16 | 0.21% | 1 | 0.30% |
Mike Travis | 14 | 0.18% | 2 | 0.60% |
Huang Ying | 13 | 0.17% | 1 | 0.30% |
Chen Yucong | 12 | 0.15% | 1 | 0.30% |
Len Brown | 12 | 0.15% | 1 | 0.30% |
Sai Praneeth | 11 | 0.14% | 1 | 0.30% |
Matthew Whitehead | 11 | 0.14% | 1 | 0.30% |
Tom Lendacky | 9 | 0.12% | 3 | 0.89% |
Rahul Tanwar | 9 | 0.12% | 1 | 0.30% |
Harvey Harrison | 9 | 0.12% | 1 | 0.30% |
Chuck Ebbert | 8 | 0.10% | 3 | 0.89% |
James Bottomley | 7 | 0.09% | 2 | 0.60% |
Glauber de Oliveira Costa | 7 | 0.09% | 2 | 0.60% |
Grzegorz Andrejczuk | 7 | 0.09% | 1 | 0.30% |
Steven Honeyman | 7 | 0.09% | 1 | 0.30% |
Josh Triplett | 6 | 0.08% | 1 | 0.30% |
Krzysztof Helt | 5 | 0.06% | 2 | 0.60% |
Vitaly Kuznetsov | 5 | 0.06% | 1 | 0.30% |
Lee Schermerhorn | 4 | 0.05% | 1 | 0.30% |
Shai Fultheim | 4 | 0.05% | 1 | 0.30% |
Thomas Petazzoni | 4 | 0.05% | 1 | 0.30% |
Mike Rapoport | 4 | 0.05% | 2 | 0.60% |
Stoyan Gaydarov | 4 | 0.05% | 1 | 0.30% |
Paul Gortmaker | 4 | 0.05% | 2 | 0.60% |
Alan Cox | 4 | 0.05% | 2 | 0.60% |
Juergen Gross | 4 | 0.05% | 2 | 0.60% |
Jordan Borgner | 4 | 0.05% | 1 | 0.30% |
Alexey Dobriyan | 4 | 0.05% | 2 | 0.60% |
jia zhang | 4 | 0.05% | 1 | 0.30% |
Masami Hiramatsu | 3 | 0.04% | 1 | 0.30% |
Andrew Cooper | 3 | 0.04% | 1 | 0.30% |
Steven Rostedt | 3 | 0.04% | 1 | 0.30% |
Benjamin Thiel | 3 | 0.04% | 1 | 0.30% |
Linus Torvalds | 3 | 0.04% | 3 | 0.89% |
Laura Abbott | 3 | 0.04% | 1 | 0.30% |
Adam Buchbinder | 2 | 0.03% | 1 | 0.30% |
Hans Schou | 2 | 0.03% | 1 | 0.30% |
zhong jiang | 2 | 0.03% | 1 | 0.30% |
Nitin A. Kamble | 2 | 0.03% | 1 | 0.30% |
Prarit Bhargava | 2 | 0.03% | 1 | 0.30% |
Seiji Aguchi | 2 | 0.03% | 1 | 0.30% |
MinChan Kim | 2 | 0.03% | 1 | 0.30% |
Jean Delvare | 1 | 0.01% | 1 | 0.30% |
Zachary Amsden | 1 | 0.01% | 1 | 0.30% |
Mikael Pettersson | 1 | 0.01% | 1 | 0.30% |
Vegard Nossum | 1 | 0.01% | 1 | 0.30% |
Jeff Garzik | 1 | 0.01% | 1 | 0.30% |
Robert Richter | 1 | 0.01% | 1 | 0.30% |
Gustavo A. R. Silva | 1 | 0.01% | 1 | 0.30% |
Arun Sharma | 1 | 0.01% | 1 | 0.30% |
Total | 7766 | 336 |
// SPDX-License-Identifier: GPL-2.0-only /* cpu_feature_enabled() cannot be used this early */ #define USE_EARLY_PGTABLE_L5 #include <linux/memblock.h> #include <linux/linkage.h> #include <linux/bitops.h> #include <linux/kernel.h> #include <linux/export.h> #include <linux/percpu.h> #include <linux/string.h> #include <linux/ctype.h> #include <linux/delay.h> #include <linux/sched/mm.h> #include <linux/sched/clock.h> #include <linux/sched/task.h> #include <linux/sched/smt.h> #include <linux/init.h> #include <linux/kprobes.h> #include <linux/kgdb.h> #include <linux/smp.h> #include <linux/io.h> #include <linux/syscore_ops.h> #include <linux/pgtable.h> #include <asm/stackprotector.h> #include <asm/perf_event.h> #include <asm/mmu_context.h> #include <asm/doublefault.h> #include <asm/archrandom.h> #include <asm/hypervisor.h> #include <asm/processor.h> #include <asm/tlbflush.h> #include <asm/debugreg.h> #include <asm/sections.h> #include <asm/vsyscall.h> #include <linux/topology.h> #include <linux/cpumask.h> #include <linux/atomic.h> #include <asm/proto.h> #include <asm/setup.h> #include <asm/apic.h> #include <asm/desc.h> #include <asm/fpu/internal.h> #include <asm/mtrr.h> #include <asm/hwcap2.h> #include <linux/numa.h> #include <asm/numa.h> #include <asm/asm.h> #include <asm/bugs.h> #include <asm/cpu.h> #include <asm/mce.h> #include <asm/msr.h> #include <asm/memtype.h> #include <asm/microcode.h> #include <asm/microcode_intel.h> #include <asm/intel-family.h> #include <asm/cpu_device_id.h> #include <asm/uv/uv.h> #include "cpu.h" u32 elf_hwcap2 __read_mostly; /* all of these masks are initialized in setup_cpu_local_masks() */ cpumask_var_t cpu_initialized_mask; cpumask_var_t cpu_callout_mask; cpumask_var_t cpu_callin_mask; /* representing cpus for which sibling maps can be computed */ cpumask_var_t cpu_sibling_setup_mask; /* Number of siblings per CPU package */ int smp_num_siblings = 1; EXPORT_SYMBOL(smp_num_siblings); /* Last level cache ID of each logical CPU */ DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID; /* correctly size the local cpu masks */ void __init setup_cpu_local_masks(void) { alloc_bootmem_cpumask_var(&cpu_initialized_mask); alloc_bootmem_cpumask_var(&cpu_callin_mask); alloc_bootmem_cpumask_var(&cpu_callout_mask); alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask); } static void default_init(struct cpuinfo_x86 *c) { #ifdef CONFIG_X86_64 cpu_detect_cache_sizes(c); #else /* Not much we can do here... */ /* Check if at least it has cpuid */ if (c->cpuid_level == -1) { /* No cpuid. It must be an ancient CPU */ if (c->x86 == 4) strcpy(c->x86_model_id, "486"); else if (c->x86 == 3) strcpy(c->x86_model_id, "386"); } #endif } static const struct cpu_dev default_cpu = { .c_init = default_init, .c_vendor = "Unknown", .c_x86_vendor = X86_VENDOR_UNKNOWN, }; static const struct cpu_dev *this_cpu = &default_cpu; DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = { #ifdef CONFIG_X86_64 /* * We need valid kernel segments for data and code in long mode too * IRET will check the segment types kkeil 2000/10/28 * Also sysret mandates a special GDT layout * * TLS descriptors are currently at a different place compared to i386. * Hopefully nobody expects them at a fixed place (Wine?) */ [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff), [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff), [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff), [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff), [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff), [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff), #else [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff), [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff), [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff), [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff), /* * Segments used for calling PnP BIOS have byte granularity. * They code segments and data segments have fixed 64k limits, * the transfer segment sizes are set at run time. */ /* 32-bit code */ [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff), /* 16-bit code */ [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff), /* 16-bit data */ [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff), /* 16-bit data */ [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0), /* 16-bit data */ [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0), /* * The APM segments have byte granularity and their bases * are set at run time. All have 64k limits. */ /* 32-bit code */ [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff), /* 16-bit code */ [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff), /* data */ [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff), [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff), [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff), GDT_STACK_CANARY_INIT #endif } }; EXPORT_PER_CPU_SYMBOL_GPL(gdt_page); #ifdef CONFIG_X86_64 static int __init x86_nopcid_setup(char *s) { /* nopcid doesn't accept parameters */ if (s) return -EINVAL; /* do not emit a message if the feature is not present */ if (!boot_cpu_has(X86_FEATURE_PCID)) return 0; setup_clear_cpu_cap(X86_FEATURE_PCID); pr_info("nopcid: PCID feature disabled\n"); return 0; } early_param("nopcid", x86_nopcid_setup); #endif static int __init x86_noinvpcid_setup(char *s) { /* noinvpcid doesn't accept parameters */ if (s) return -EINVAL; /* do not emit a message if the feature is not present */ if (!boot_cpu_has(X86_FEATURE_INVPCID)) return 0; setup_clear_cpu_cap(X86_FEATURE_INVPCID); pr_info("noinvpcid: INVPCID feature disabled\n"); return 0; } early_param("noinvpcid", x86_noinvpcid_setup); #ifdef CONFIG_X86_32 static int cachesize_override = -1; static int disable_x86_serial_nr = 1; static int __init cachesize_setup(char *str) { get_option(&str, &cachesize_override); return 1; } __setup("cachesize=", cachesize_setup); static int __init x86_sep_setup(char *s) { setup_clear_cpu_cap(X86_FEATURE_SEP); return 1; } __setup("nosep", x86_sep_setup); /* Standard macro to see if a specific flag is changeable */ static inline int flag_is_changeable_p(u32 flag) { u32 f1, f2; /* * Cyrix and IDT cpus allow disabling of CPUID * so the code below may return different results * when it is executed before and after enabling * the CPUID. Add "volatile" to not allow gcc to * optimize the subsequent calls to this function. */ asm volatile ("pushfl \n\t" "pushfl \n\t" "popl %0 \n\t" "movl %0, %1 \n\t" "xorl %2, %0 \n\t" "pushl %0 \n\t" "popfl \n\t" "pushfl \n\t" "popl %0 \n\t" "popfl \n\t" : "=&r" (f1), "=&r" (f2) : "ir" (flag)); return ((f1^f2) & flag) != 0; } /* Probe for the CPUID instruction */ int have_cpuid_p(void) { return flag_is_changeable_p(X86_EFLAGS_ID); } static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c) { unsigned long lo, hi; if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr) return; /* Disable processor serial number: */ rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi); lo |= 0x200000; wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi); pr_notice("CPU serial number disabled.\n"); clear_cpu_cap(c, X86_FEATURE_PN); /* Disabling the serial number may affect the cpuid level */ c->cpuid_level = cpuid_eax(0); } static int __init x86_serial_nr_setup(char *s) { disable_x86_serial_nr = 0; return 1; } __setup("serialnumber", x86_serial_nr_setup); #else static inline int flag_is_changeable_p(u32 flag) { return 1; } static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c) { } #endif static __init int setup_disable_smep(char *arg) { setup_clear_cpu_cap(X86_FEATURE_SMEP); return 1; } __setup("nosmep", setup_disable_smep); static __always_inline void setup_smep(struct cpuinfo_x86 *c) { if (cpu_has(c, X86_FEATURE_SMEP)) cr4_set_bits(X86_CR4_SMEP); } static __init int setup_disable_smap(char *arg) { setup_clear_cpu_cap(X86_FEATURE_SMAP); return 1; } __setup("nosmap", setup_disable_smap); static __always_inline void setup_smap(struct cpuinfo_x86 *c) { unsigned long eflags = native_save_fl(); /* This should have been cleared long ago */ BUG_ON(eflags & X86_EFLAGS_AC); if (cpu_has(c, X86_FEATURE_SMAP)) { #ifdef CONFIG_X86_SMAP cr4_set_bits(X86_CR4_SMAP); #else cr4_clear_bits(X86_CR4_SMAP); #endif } } static __always_inline void setup_umip(struct cpuinfo_x86 *c) { /* Check the boot processor, plus build option for UMIP. */ if (!cpu_feature_enabled(X86_FEATURE_UMIP)) goto out; /* Check the current processor's cpuid bits. */ if (!cpu_has(c, X86_FEATURE_UMIP)) goto out; cr4_set_bits(X86_CR4_UMIP); pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n"); return; out: /* * Make sure UMIP is disabled in case it was enabled in a * previous boot (e.g., via kexec). */ cr4_clear_bits(X86_CR4_UMIP); } /* These bits should not change their value after CPU init is finished. */ static const unsigned long cr4_pinned_mask = X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP | X86_CR4_FSGSBASE; static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning); static unsigned long cr4_pinned_bits __ro_after_init; void native_write_cr0(unsigned long val) { unsigned long bits_missing = 0; set_register: asm volatile("mov %0,%%cr0": "+r" (val), "+m" (__force_order)); if (static_branch_likely(&cr_pinning)) { if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) { bits_missing = X86_CR0_WP; val |= bits_missing; goto set_register; } /* Warn after we've set the missing bits. */ WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n"); } } EXPORT_SYMBOL(native_write_cr0); void native_write_cr4(unsigned long val) { unsigned long bits_changed = 0; set_register: asm volatile("mov %0,%%cr4": "+r" (val), "+m" (cr4_pinned_bits)); if (static_branch_likely(&cr_pinning)) { if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) { bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits; val = (val & ~cr4_pinned_mask) | cr4_pinned_bits; goto set_register; } /* Warn after we've corrected the changed bits. */ WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n", bits_changed); } } #if IS_MODULE(CONFIG_LKDTM) EXPORT_SYMBOL_GPL(native_write_cr4); #endif void cr4_update_irqsoff(unsigned long set, unsigned long clear) { unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4); lockdep_assert_irqs_disabled(); newval = (cr4 & ~clear) | set; if (newval != cr4) { this_cpu_write(cpu_tlbstate.cr4, newval); __write_cr4(newval); } } EXPORT_SYMBOL(cr4_update_irqsoff); /* Read the CR4 shadow. */ unsigned long cr4_read_shadow(void) { return this_cpu_read(cpu_tlbstate.cr4); } EXPORT_SYMBOL_GPL(cr4_read_shadow); void cr4_init(void) { unsigned long cr4 = __read_cr4(); if (boot_cpu_has(X86_FEATURE_PCID)) cr4 |= X86_CR4_PCIDE; if (static_branch_likely(&cr_pinning)) cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits; __write_cr4(cr4); /* Initialize cr4 shadow for this CPU. */ this_cpu_write(cpu_tlbstate.cr4, cr4); } /* * Once CPU feature detection is finished (and boot params have been * parsed), record any of the sensitive CR bits that are set, and * enable CR pinning. */ static void __init setup_cr_pinning(void) { cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask; static_key_enable(&cr_pinning.key); } static __init int x86_nofsgsbase_setup(char *arg) { /* Require an exact match without trailing characters. */ if (strlen(arg)) return 0; /* Do not emit a message if the feature is not present. */ if (!boot_cpu_has(X86_FEATURE_FSGSBASE)) return 1; setup_clear_cpu_cap(X86_FEATURE_FSGSBASE); pr_info("FSGSBASE disabled via kernel command line\n"); return 1; } __setup("nofsgsbase", x86_nofsgsbase_setup); /* * Protection Keys are not available in 32-bit mode. */ static bool pku_disabled; static __always_inline void setup_pku(struct cpuinfo_x86 *c) { struct pkru_state *pk; /* check the boot processor, plus compile options for PKU: */ if (!cpu_feature_enabled(X86_FEATURE_PKU)) return; /* checks the actual processor's cpuid bits: */ if (!cpu_has(c, X86_FEATURE_PKU)) return; if (pku_disabled) return; cr4_set_bits(X86_CR4_PKE); pk = get_xsave_addr(&init_fpstate.xsave, XFEATURE_PKRU); if (pk) pk->pkru = init_pkru_value; /* * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE * cpuid bit to be set. We need to ensure that we * update that bit in this CPU's "cpu_info". */ set_cpu_cap(c, X86_FEATURE_OSPKE); } #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS static __init int setup_disable_pku(char *arg) { /* * Do not clear the X86_FEATURE_PKU bit. All of the * runtime checks are against OSPKE so clearing the * bit does nothing. * * This way, we will see "pku" in cpuinfo, but not * "ospke", which is exactly what we want. It shows * that the CPU has PKU, but the OS has not enabled it. * This happens to be exactly how a system would look * if we disabled the config option. */ pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n"); pku_disabled = true; return 1; } __setup("nopku", setup_disable_pku); #endif /* CONFIG_X86_64 */ /* * Some CPU features depend on higher CPUID levels, which may not always * be available due to CPUID level capping or broken virtualization * software. Add those features to this table to auto-disable them. */ struct cpuid_dependent_feature { u32 feature; u32 level; }; static const struct cpuid_dependent_feature cpuid_dependent_features[] = { { X86_FEATURE_MWAIT, 0x00000005 }, { X86_FEATURE_DCA, 0x00000009 }, { X86_FEATURE_XSAVE, 0x0000000d }, { 0, 0 } }; static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn) { const struct cpuid_dependent_feature *df; for (df = cpuid_dependent_features; df->feature; df++) { if (!cpu_has(c, df->feature)) continue; /* * Note: cpuid_level is set to -1 if unavailable, but * extended_extended_level is set to 0 if unavailable * and the legitimate extended levels are all negative * when signed; hence the weird messing around with * signs here... */ if (!((s32)df->level < 0 ? (u32)df->level > (u32)c->extended_cpuid_level : (s32)df->level > (s32)c->cpuid_level)) continue; clear_cpu_cap(c, df->feature); if (!warn) continue; pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n", x86_cap_flag(df->feature), df->level); } } /* * Naming convention should be: <Name> [(<Codename>)] * This table only is used unless init_<vendor>() below doesn't set it; * in particular, if CPUID levels 0x80000002..4 are supported, this * isn't used */ /* Look up CPU names by table lookup. */ static const char *table_lookup_model(struct cpuinfo_x86 *c) { #ifdef CONFIG_X86_32 const struct legacy_cpu_model_info *info; if (c->x86_model >= 16) return NULL; /* Range check */ if (!this_cpu) return NULL; info = this_cpu->legacy_models; while (info->family) { if (info->family == c->x86) return info->model_names[c->x86_model]; info++; } #endif return NULL; /* Not found */ } /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */ __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long)); __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long)); void load_percpu_segment(int cpu) { #ifdef CONFIG_X86_32 loadsegment(fs, __KERNEL_PERCPU); #else __loadsegment_simple(gs, 0); wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu)); #endif load_stack_canary_segment(); } #ifdef CONFIG_X86_32 /* The 32-bit entry code needs to find cpu_entry_area. */ DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area); #endif /* Load the original GDT from the per-cpu structure */ void load_direct_gdt(int cpu) { struct desc_ptr gdt_descr; gdt_descr.address = (long)get_cpu_gdt_rw(cpu); gdt_descr.size = GDT_SIZE - 1; load_gdt(&gdt_descr); } EXPORT_SYMBOL_GPL(load_direct_gdt); /* Load a fixmap remapping of the per-cpu GDT */ void load_fixmap_gdt(int cpu) { struct desc_ptr gdt_descr; gdt_descr.address = (long)get_cpu_gdt_ro(cpu); gdt_descr.size = GDT_SIZE - 1; load_gdt(&gdt_descr); } EXPORT_SYMBOL_GPL(load_fixmap_gdt); /* * Current gdt points %fs at the "master" per-cpu area: after this, * it's on the real one. */ void switch_to_new_gdt(int cpu) { /* Load the original GDT */ load_direct_gdt(cpu); /* Reload the per-cpu base */ load_percpu_segment(cpu); } static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {}; static void get_model_name(struct cpuinfo_x86 *c) { unsigned int *v; char *p, *q, *s; if (c->extended_cpuid_level < 0x80000004) return; v = (unsigned int *)c->x86_model_id; cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]); cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]); cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]); c->x86_model_id[48] = 0; /* Trim whitespace */ p = q = s = &c->x86_model_id[0]; while (*p == ' ') p++; while (*p) { /* Note the last non-whitespace index */ if (!isspace(*p)) s = q; *q++ = *p++; } *(s + 1) = '\0'; } void detect_num_cpu_cores(struct cpuinfo_x86 *c) { unsigned int eax, ebx, ecx, edx; c->x86_max_cores = 1; if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4) return; cpuid_count(4, 0, &eax, &ebx, &ecx, &edx); if (eax & 0x1f) c->x86_max_cores = (eax >> 26) + 1; } void cpu_detect_cache_sizes(struct cpuinfo_x86 *c) { unsigned int n, dummy, ebx, ecx, edx, l2size; n = c->extended_cpuid_level; if (n >= 0x80000005) { cpuid(0x80000005, &dummy, &ebx, &ecx, &edx); c->x86_cache_size = (ecx>>24) + (edx>>24); #ifdef CONFIG_X86_64 /* On K8 L1 TLB is inclusive, so don't count it */ c->x86_tlbsize = 0; #endif } if (n < 0x80000006) /* Some chips just has a large L1. */ return; cpuid(0x80000006, &dummy, &ebx, &ecx, &edx); l2size = ecx >> 16; #ifdef CONFIG_X86_64 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff); #else /* do processor-specific cache resizing */ if (this_cpu->legacy_cache_size) l2size = this_cpu->legacy_cache_size(c, l2size); /* Allow user to override all this if necessary. */ if (cachesize_override != -1) l2size = cachesize_override; if (l2size == 0) return; /* Again, no L2 cache is possible */ #endif c->x86_cache_size = l2size; } u16 __read_mostly tlb_lli_4k[NR_INFO]; u16 __read_mostly tlb_lli_2m[NR_INFO]; u16 __read_mostly tlb_lli_4m[NR_INFO]; u16 __read_mostly tlb_lld_4k[NR_INFO]; u16 __read_mostly tlb_lld_2m[NR_INFO]; u16 __read_mostly tlb_lld_4m[NR_INFO]; u16 __read_mostly tlb_lld_1g[NR_INFO]; static void cpu_detect_tlb(struct cpuinfo_x86 *c) { if (this_cpu->c_detect_tlb) this_cpu->c_detect_tlb(c); pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n", tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES], tlb_lli_4m[ENTRIES]); pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n", tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES], tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]); } int detect_ht_early(struct cpuinfo_x86 *c) { #ifdef CONFIG_SMP u32 eax, ebx, ecx, edx; if (!cpu_has(c, X86_FEATURE_HT)) return -1; if (cpu_has(c, X86_FEATURE_CMP_LEGACY)) return -1; if (cpu_has(c, X86_FEATURE_XTOPOLOGY)) return -1; cpuid(1, &eax, &ebx, &ecx, &edx); smp_num_siblings = (ebx & 0xff0000) >> 16; if (smp_num_siblings == 1) pr_info_once("CPU0: Hyper-Threading is disabled\n"); #endif return 0; } void detect_ht(struct cpuinfo_x86 *c) { #ifdef CONFIG_SMP int index_msb, core_bits; if (detect_ht_early(c) < 0) return; index_msb = get_count_order(smp_num_siblings); c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb); smp_num_siblings = smp_num_siblings / c->x86_max_cores; index_msb = get_count_order(smp_num_siblings); core_bits = get_count_order(c->x86_max_cores); c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) & ((1 << core_bits) - 1); #endif } static void get_cpu_vendor(struct cpuinfo_x86 *c) { char *v = c->x86_vendor_id; int i; for (i = 0; i < X86_VENDOR_NUM; i++) { if (!cpu_devs[i]) break; if (!strcmp(v, cpu_devs[i]->c_ident[0]) || (cpu_devs[i]->c_ident[1] && !strcmp(v, cpu_devs[i]->c_ident[1]))) { this_cpu = cpu_devs[i]; c->x86_vendor = this_cpu->c_x86_vendor; return; } } pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \ "CPU: Your system may be unstable.\n", v); c->x86_vendor = X86_VENDOR_UNKNOWN; this_cpu = &default_cpu; } void cpu_detect(struct cpuinfo_x86 *c) { /* Get vendor name */ cpuid(0x00000000, (unsigned int *)&c->cpuid_level, (unsigned int *)&c->x86_vendor_id[0], (unsigned int *)&c->x86_vendor_id[8], (unsigned int *)&c->x86_vendor_id[4]); c->x86 = 4; /* Intel-defined flags: level 0x00000001 */ if (c->cpuid_level >= 0x00000001) { u32 junk, tfms, cap0, misc; cpuid(0x00000001, &tfms, &misc, &junk, &cap0); c->x86 = x86_family(tfms); c->x86_model = x86_model(tfms); c->x86_stepping = x86_stepping(tfms); if (cap0 & (1<<19)) { c->x86_clflush_size = ((misc >> 8) & 0xff) * 8; c->x86_cache_alignment = c->x86_clflush_size; } } } static void apply_forced_caps(struct cpuinfo_x86 *c) { int i; for (i = 0; i < NCAPINTS + NBUGINTS; i++) { c->x86_capability[i] &= ~cpu_caps_cleared[i]; c->x86_capability[i] |= cpu_caps_set[i]; } } static void init_speculation_control(struct cpuinfo_x86 *c) { /* * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support, * and they also have a different bit for STIBP support. Also, * a hypervisor might have set the individual AMD bits even on * Intel CPUs, for finer-grained selection of what's available. */ if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) { set_cpu_cap(c, X86_FEATURE_IBRS); set_cpu_cap(c, X86_FEATURE_IBPB); set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL); } if (cpu_has(c, X86_FEATURE_INTEL_STIBP)) set_cpu_cap(c, X86_FEATURE_STIBP); if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) || cpu_has(c, X86_FEATURE_VIRT_SSBD)) set_cpu_cap(c, X86_FEATURE_SSBD); if (cpu_has(c, X86_FEATURE_AMD_IBRS)) { set_cpu_cap(c, X86_FEATURE_IBRS); set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL); } if (cpu_has(c, X86_FEATURE_AMD_IBPB)) set_cpu_cap(c, X86_FEATURE_IBPB); if (cpu_has(c, X86_FEATURE_AMD_STIBP)) { set_cpu_cap(c, X86_FEATURE_STIBP); set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL); } if (cpu_has(c, X86_FEATURE_AMD_SSBD)) { set_cpu_cap(c, X86_FEATURE_SSBD); set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL); clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD); } } void get_cpu_cap(struct cpuinfo_x86 *c) { u32 eax, ebx, ecx, edx; /* Intel-defined flags: level 0x00000001 */ if (c->cpuid_level >= 0x00000001) { cpuid(0x00000001, &eax, &ebx, &ecx, &edx); c->x86_capability[CPUID_1_ECX] = ecx; c->x86_capability[CPUID_1_EDX] = edx; } /* Thermal and Power Management Leaf: level 0x00000006 (eax) */ if (c->cpuid_level >= 0x00000006) c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006); /* Additional Intel-defined flags: level 0x00000007 */ if (c->cpuid_level >= 0x00000007) { cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx); c->x86_capability[CPUID_7_0_EBX] = ebx; c->x86_capability[CPUID_7_ECX] = ecx; c->x86_capability[CPUID_7_EDX] = edx; /* Check valid sub-leaf index before accessing it */ if (eax >= 1) { cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx); c->x86_capability[CPUID_7_1_EAX] = eax; } } /* Extended state features: level 0x0000000d */ if (c->cpuid_level >= 0x0000000d) { cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx); c->x86_capability[CPUID_D_1_EAX] = eax; } /* AMD-defined flags: level 0x80000001 */ eax = cpuid_eax(0x80000000); c->extended_cpuid_level = eax; if ((eax & 0xffff0000) == 0x80000000) { if (eax >= 0x80000001) { cpuid(0x80000001, &eax, &ebx, &ecx, &edx); c->x86_capability[CPUID_8000_0001_ECX] = ecx; c->x86_capability[CPUID_8000_0001_EDX] = edx; } } if (c->extended_cpuid_level >= 0x80000007) { cpuid(0x80000007, &eax, &ebx, &ecx, &edx); c->x86_capability[CPUID_8000_0007_EBX] = ebx; c->x86_power = edx; } if (c->extended_cpuid_level >= 0x80000008) { cpuid(0x80000008, &eax, &ebx, &ecx, &edx); c->x86_capability[CPUID_8000_0008_EBX] = ebx; } if (c->extended_cpuid_level >= 0x8000000a) c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a); init_scattered_cpuid_features(c); init_speculation_control(c); /* * Clear/Set all flags overridden by options, after probe. * This needs to happen each time we re-probe, which may happen * several times during CPU initialization. */ apply_forced_caps(c); } void get_cpu_address_sizes(struct cpuinfo_x86 *c) { u32 eax, ebx, ecx, edx; if (c->extended_cpuid_level >= 0x80000008) { cpuid(0x80000008, &eax, &ebx, &ecx, &edx); c->x86_virt_bits = (eax >> 8) & 0xff; c->x86_phys_bits = eax & 0xff; } #ifdef CONFIG_X86_32 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36)) c->x86_phys_bits = 36; #endif c->x86_cache_bits = c->x86_phys_bits; } static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c) { #ifdef CONFIG_X86_32 int i; /* * First of all, decide if this is a 486 or higher * It's a 486 if we can modify the AC flag */ if (flag_is_changeable_p(X86_EFLAGS_AC)) c->x86 = 4; else c->x86 = 3; for (i = 0; i < X86_VENDOR_NUM; i++) if (cpu_devs[i] && cpu_devs[i]->c_identify) { c->x86_vendor_id[0] = 0; cpu_devs[i]->c_identify(c); if (c->x86_vendor_id[0]) { get_cpu_vendor(c); break; } } #endif } #define NO_SPECULATION BIT(0) #define NO_MELTDOWN BIT(1) #define NO_SSB BIT(2) #define NO_L1TF BIT(3) #define NO_MDS BIT(4) #define MSBDS_ONLY BIT(5) #define NO_SWAPGS BIT(6) #define NO_ITLB_MULTIHIT BIT(7) #define NO_SPECTRE_V2 BIT(8) #define VULNWL(vendor, family, model, whitelist) \ X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist) #define VULNWL_INTEL(model, whitelist) \ VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist) #define VULNWL_AMD(family, whitelist) \ VULNWL(AMD, family, X86_MODEL_ANY, whitelist) #define VULNWL_HYGON(family, whitelist) \ VULNWL(HYGON, family, X86_MODEL_ANY, whitelist) static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = { VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION), VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION), VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION), VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION), /* Intel Family 6 */ VULNWL_INTEL(ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT), VULNWL_INTEL(ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT), VULNWL_INTEL(ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT), VULNWL_INTEL(ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT), VULNWL_INTEL(ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT), VULNWL_INTEL(ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), VULNWL_INTEL(ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), VULNWL_INTEL(ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), VULNWL_INTEL(ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), VULNWL_INTEL(XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), VULNWL_INTEL(XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), VULNWL_INTEL(CORE_YONAH, NO_SSB), VULNWL_INTEL(ATOM_AIRMONT_MID, NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), VULNWL_INTEL(ATOM_AIRMONT_NP, NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT), VULNWL_INTEL(ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT), VULNWL_INTEL(ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT), VULNWL_INTEL(ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT), /* * Technically, swapgs isn't serializing on AMD (despite it previously * being documented as such in the APM). But according to AMD, %gs is * updated non-speculatively, and the issuing of %gs-relative memory * operands will be blocked until the %gs update completes, which is * good enough for our purposes. */ VULNWL_INTEL(ATOM_TREMONT_D, NO_ITLB_MULTIHIT), /* AMD Family 0xf - 0x12 */ VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT), VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT), VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT), VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT), /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */ VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT), VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT), /* Zhaoxin Family 7 */ VULNWL(CENTAUR, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS), VULNWL(ZHAOXIN, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS), {} }; #define VULNBL_INTEL_STEPPINGS(model, steppings, issues) \ X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6, \ INTEL_FAM6_##model, steppings, \ X86_FEATURE_ANY, issues) #define SRBDS BIT(0) static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = { VULNBL_INTEL_STEPPINGS(IVYBRIDGE, X86_STEPPING_ANY, SRBDS), VULNBL_INTEL_STEPPINGS(HASWELL, X86_STEPPING_ANY, SRBDS), VULNBL_INTEL_STEPPINGS(HASWELL_L, X86_STEPPING_ANY, SRBDS), VULNBL_INTEL_STEPPINGS(HASWELL_G, X86_STEPPING_ANY, SRBDS), VULNBL_INTEL_STEPPINGS(BROADWELL_G, X86_STEPPING_ANY, SRBDS), VULNBL_INTEL_STEPPINGS(BROADWELL, X86_STEPPING_ANY, SRBDS), VULNBL_INTEL_STEPPINGS(SKYLAKE_L, X86_STEPPING_ANY, SRBDS), VULNBL_INTEL_STEPPINGS(SKYLAKE, X86_STEPPING_ANY, SRBDS), VULNBL_INTEL_STEPPINGS(KABYLAKE_L, X86_STEPPINGS(0x0, 0xC), SRBDS), VULNBL_INTEL_STEPPINGS(KABYLAKE, X86_STEPPINGS(0x0, 0xD), SRBDS), {} }; static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which) { const struct x86_cpu_id *m = x86_match_cpu(table); return m && !!(m->driver_data & which); } u64 x86_read_arch_cap_msr(void) { u64 ia32_cap = 0; if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap); return ia32_cap; } static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c) { u64 ia32_cap = x86_read_arch_cap_msr(); /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */ if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) && !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO)) setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT); if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION)) return; setup_force_cpu_bug(X86_BUG_SPECTRE_V1); if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2)) setup_force_cpu_bug(X86_BUG_SPECTRE_V2); if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) && !(ia32_cap & ARCH_CAP_SSB_NO) && !cpu_has(c, X86_FEATURE_AMD_SSB_NO)) setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS); if (ia32_cap & ARCH_CAP_IBRS_ALL) setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED); if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) && !(ia32_cap & ARCH_CAP_MDS_NO)) { setup_force_cpu_bug(X86_BUG_MDS); if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY)) setup_force_cpu_bug(X86_BUG_MSBDS_ONLY); } if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS)) setup_force_cpu_bug(X86_BUG_SWAPGS); /* * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when: * - TSX is supported or * - TSX_CTRL is present * * TSX_CTRL check is needed for cases when TSX could be disabled before * the kernel boot e.g. kexec. * TSX_CTRL check alone is not sufficient for cases when the microcode * update is not present or running as guest that don't get TSX_CTRL. */ if (!(ia32_cap & ARCH_CAP_TAA_NO) && (cpu_has(c, X86_FEATURE_RTM) || (ia32_cap & ARCH_CAP_TSX_CTRL_MSR))) setup_force_cpu_bug(X86_BUG_TAA); /* * SRBDS affects CPUs which support RDRAND or RDSEED and are listed * in the vulnerability blacklist. */ if ((cpu_has(c, X86_FEATURE_RDRAND) || cpu_has(c, X86_FEATURE_RDSEED)) && cpu_matches(cpu_vuln_blacklist, SRBDS)) setup_force_cpu_bug(X86_BUG_SRBDS); if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN)) return; /* Rogue Data Cache Load? No! */ if (ia32_cap & ARCH_CAP_RDCL_NO) return; setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN); if (cpu_matches(cpu_vuln_whitelist, NO_L1TF)) return; setup_force_cpu_bug(X86_BUG_L1TF); } /* * The NOPL instruction is supposed to exist on all CPUs of family >= 6; * unfortunately, that's not true in practice because of early VIA * chips and (more importantly) broken virtualizers that are not easy * to detect. In the latter case it doesn't even *fail* reliably, so * probing for it doesn't even work. Disable it completely on 32-bit * unless we can find a reliable way to detect all the broken cases. * Enable it explicitly on 64-bit for non-constant inputs of cpu_has(). */ static void detect_nopl(void) { #ifdef CONFIG_X86_32 setup_clear_cpu_cap(X86_FEATURE_NOPL); #else setup_force_cpu_cap(X86_FEATURE_NOPL); #endif } /* * Do minimum CPU detection early. * Fields really needed: vendor, cpuid_level, family, model, mask, * cache alignment. * The others are not touched to avoid unwanted side effects. * * WARNING: this function is only called on the boot CPU. Don't add code * here that is supposed to run on all CPUs. */ static void __init early_identify_cpu(struct cpuinfo_x86 *c) { #ifdef CONFIG_X86_64 c->x86_clflush_size = 64; c->x86_phys_bits = 36; c->x86_virt_bits = 48; #else c->x86_clflush_size = 32; c->x86_phys_bits = 32; c->x86_virt_bits = 32; #endif c->x86_cache_alignment = c->x86_clflush_size; memset(&c->x86_capability, 0, sizeof(c->x86_capability)); c->extended_cpuid_level = 0; if (!have_cpuid_p()) identify_cpu_without_cpuid(c); /* cyrix could have cpuid enabled via c_identify()*/ if (have_cpuid_p()) { cpu_detect(c); get_cpu_vendor(c); get_cpu_cap(c); get_cpu_address_sizes(c); setup_force_cpu_cap(X86_FEATURE_CPUID); if (this_cpu->c_early_init) this_cpu->c_early_init(c); c->cpu_index = 0; filter_cpuid_features(c, false); if (this_cpu->c_bsp_init) this_cpu->c_bsp_init(c); } else { setup_clear_cpu_cap(X86_FEATURE_CPUID); } setup_force_cpu_cap(X86_FEATURE_ALWAYS); cpu_set_bug_bits(c); cpu_set_core_cap_bits(c); fpu__init_system(c); #ifdef CONFIG_X86_32 /* * Regardless of whether PCID is enumerated, the SDM says * that it can't be enabled in 32-bit mode. */ setup_clear_cpu_cap(X86_FEATURE_PCID); #endif /* * Later in the boot process pgtable_l5_enabled() relies on * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not * enabled by this point we need to clear the feature bit to avoid * false-positives at the later stage. * * pgtable_l5_enabled() can be false here for several reasons: * - 5-level paging is disabled compile-time; * - it's 32-bit kernel; * - machine doesn't support 5-level paging; * - user specified 'no5lvl' in kernel command line. */ if (!pgtable_l5_enabled()) setup_clear_cpu_cap(X86_FEATURE_LA57); detect_nopl(); } void __init early_cpu_init(void) { const struct cpu_dev *const *cdev; int count = 0; #ifdef CONFIG_PROCESSOR_SELECT pr_info("KERNEL supported cpus:\n"); #endif for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) { const struct cpu_dev *cpudev = *cdev; if (count >= X86_VENDOR_NUM) break; cpu_devs[count] = cpudev; count++; #ifdef CONFIG_PROCESSOR_SELECT { unsigned int j; for (j = 0; j < 2; j++) { if (!cpudev->c_ident[j]) continue; pr_info(" %s %s\n", cpudev->c_vendor, cpudev->c_ident[j]); } } #endif } early_identify_cpu(&boot_cpu_data); } static void detect_null_seg_behavior(struct cpuinfo_x86 *c) { #ifdef CONFIG_X86_64 /* * Empirically, writing zero to a segment selector on AMD does * not clear the base, whereas writing zero to a segment * selector on Intel does clear the base. Intel's behavior * allows slightly faster context switches in the common case * where GS is unused by the prev and next threads. * * Since neither vendor documents this anywhere that I can see, * detect it directly instead of hardcoding the choice by * vendor. * * I've designated AMD's behavior as the "bug" because it's * counterintuitive and less friendly. */ unsigned long old_base, tmp; rdmsrl(MSR_FS_BASE, old_base); wrmsrl(MSR_FS_BASE, 1); loadsegment(fs, 0); rdmsrl(MSR_FS_BASE, tmp); if (tmp != 0) set_cpu_bug(c, X86_BUG_NULL_SEG); wrmsrl(MSR_FS_BASE, old_base); #endif } static void generic_identify(struct cpuinfo_x86 *c) { c->extended_cpuid_level = 0; if (!have_cpuid_p()) identify_cpu_without_cpuid(c); /* cyrix could have cpuid enabled via c_identify()*/ if (!have_cpuid_p()) return; cpu_detect(c); get_cpu_vendor(c); get_cpu_cap(c); get_cpu_address_sizes(c); if (c->cpuid_level >= 0x00000001) { c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF; #ifdef CONFIG_X86_32 # ifdef CONFIG_SMP c->apicid = apic->phys_pkg_id(c->initial_apicid, 0); # else c->apicid = c->initial_apicid; # endif #endif c->phys_proc_id = c->initial_apicid; } get_model_name(c); /* Default name */ detect_null_seg_behavior(c); /* * ESPFIX is a strange bug. All real CPUs have it. Paravirt * systems that run Linux at CPL > 0 may or may not have the * issue, but, even if they have the issue, there's absolutely * nothing we can do about it because we can't use the real IRET * instruction. * * NB: For the time being, only 32-bit kernels support * X86_BUG_ESPFIX as such. 64-bit kernels directly choose * whether to apply espfix using paravirt hooks. If any * non-paravirt system ever shows up that does *not* have the * ESPFIX issue, we can change this. */ #ifdef CONFIG_X86_32 # ifdef CONFIG_PARAVIRT_XXL do { extern void native_iret(void); if (pv_ops.cpu.iret == native_iret) set_cpu_bug(c, X86_BUG_ESPFIX); } while (0); # else set_cpu_bug(c, X86_BUG_ESPFIX); # endif #endif } /* * Validate that ACPI/mptables have the same information about the * effective APIC id and update the package map. */ static void validate_apic_and_package_id(struct cpuinfo_x86 *c) { #ifdef CONFIG_SMP unsigned int apicid, cpu = smp_processor_id(); apicid = apic->cpu_present_to_apicid(cpu); if (apicid != c->apicid) { pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n", cpu, apicid, c->initial_apicid); } BUG_ON(topology_update_package_map(c->phys_proc_id, cpu)); BUG_ON(topology_update_die_map(c->cpu_die_id, cpu)); #else c->logical_proc_id = 0; #endif } /* * This does the hard work of actually picking apart the CPU stuff... */ static void identify_cpu(struct cpuinfo_x86 *c) { int i; c->loops_per_jiffy = loops_per_jiffy; c->x86_cache_size = 0; c->x86_vendor = X86_VENDOR_UNKNOWN; c->x86_model = c->x86_stepping = 0; /* So far unknown... */ c->x86_vendor_id[0] = '\0'; /* Unset */ c->x86_model_id[0] = '\0'; /* Unset */ c->x86_max_cores = 1; c->x86_coreid_bits = 0; c->cu_id = 0xff; #ifdef CONFIG_X86_64 c->x86_clflush_size = 64; c->x86_phys_bits = 36; c->x86_virt_bits = 48; #else c->cpuid_level = -1; /* CPUID not detected */ c->x86_clflush_size = 32; c->x86_phys_bits = 32; c->x86_virt_bits = 32; #endif c->x86_cache_alignment = c->x86_clflush_size; memset(&c->x86_capability, 0, sizeof(c->x86_capability)); #ifdef CONFIG_X86_VMX_FEATURE_NAMES memset(&c->vmx_capability, 0, sizeof(c->vmx_capability)); #endif generic_identify(c); if (this_cpu->c_identify) this_cpu->c_identify(c); /* Clear/Set all flags overridden by options, after probe */ apply_forced_caps(c); #ifdef CONFIG_X86_64 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0); #endif /* * Vendor-specific initialization. In this section we * canonicalize the feature flags, meaning if there are * features a certain CPU supports which CPUID doesn't * tell us, CPUID claiming incorrect flags, or other bugs, * we handle them here. * * At the end of this section, c->x86_capability better * indicate the features this CPU genuinely supports! */ if (this_cpu->c_init) this_cpu->c_init(c); /* Disable the PN if appropriate */ squash_the_stupid_serial_number(c); /* Set up SMEP/SMAP/UMIP */ setup_smep(c); setup_smap(c); setup_umip(c); /* Enable FSGSBASE instructions if available. */ if (cpu_has(c, X86_FEATURE_FSGSBASE)) { cr4_set_bits(X86_CR4_FSGSBASE); elf_hwcap2 |= HWCAP2_FSGSBASE; } /* * The vendor-specific functions might have changed features. * Now we do "generic changes." */ /* Filter out anything that depends on CPUID levels we don't have */ filter_cpuid_features(c, true); /* If the model name is still unset, do table lookup. */ if (!c->x86_model_id[0]) { const char *p; p = table_lookup_model(c); if (p) strcpy(c->x86_model_id, p); else /* Last resort... */ sprintf(c->x86_model_id, "%02x/%02x", c->x86, c->x86_model); } #ifdef CONFIG_X86_64 detect_ht(c); #endif x86_init_rdrand(c); setup_pku(c); /* * Clear/Set all flags overridden by options, need do it * before following smp all cpus cap AND. */ apply_forced_caps(c); /* * On SMP, boot_cpu_data holds the common feature set between * all CPUs; so make sure that we indicate which features are * common between the CPUs. The first time this routine gets * executed, c == &boot_cpu_data. */ if (c != &boot_cpu_data) { /* AND the already accumulated flags with these */ for (i = 0; i < NCAPINTS; i++) boot_cpu_data.x86_capability[i] &= c->x86_capability[i]; /* OR, i.e. replicate the bug flags */ for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++) c->x86_capability[i] |= boot_cpu_data.x86_capability[i]; } /* Init Machine Check Exception if available. */ mcheck_cpu_init(c); select_idle_routine(c); #ifdef CONFIG_NUMA numa_add_cpu(smp_processor_id()); #endif } /* * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions * on 32-bit kernels: */ #ifdef CONFIG_X86_32 void enable_sep_cpu(void) { struct tss_struct *tss; int cpu; if (!boot_cpu_has(X86_FEATURE_SEP)) return; cpu = get_cpu(); tss = &per_cpu(cpu_tss_rw, cpu); /* * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field -- * see the big comment in struct x86_hw_tss's definition. */ tss->x86_tss.ss1 = __KERNEL_CS; wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0); wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0); wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0); put_cpu(); } #endif void __init identify_boot_cpu(void) { identify_cpu(&boot_cpu_data); #ifdef CONFIG_X86_32 sysenter_setup(); enable_sep_cpu(); #endif cpu_detect_tlb(&boot_cpu_data); setup_cr_pinning(); tsx_init(); } void identify_secondary_cpu(struct cpuinfo_x86 *c) { BUG_ON(c == &boot_cpu_data); identify_cpu(c); #ifdef CONFIG_X86_32 enable_sep_cpu(); #endif mtrr_ap_init(); validate_apic_and_package_id(c); x86_spec_ctrl_setup_ap(); update_srbds_msr(); } static __init int setup_noclflush(char *arg) { setup_clear_cpu_cap(X86_FEATURE_CLFLUSH); setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT); return 1; } __setup("noclflush", setup_noclflush); void print_cpu_info(struct cpuinfo_x86 *c) { const char *vendor = NULL; if (c->x86_vendor < X86_VENDOR_NUM) { vendor = this_cpu->c_vendor; } else { if (c->cpuid_level >= 0) vendor = c->x86_vendor_id; } if (vendor && !strstr(c->x86_model_id, vendor)) pr_cont("%s ", vendor); if (c->x86_model_id[0]) pr_cont("%s", c->x86_model_id); else pr_cont("%d86", c->x86); pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model); if (c->x86_stepping || c->cpuid_level >= 0) pr_cont(", stepping: 0x%x)\n", c->x86_stepping); else pr_cont(")\n"); } /* * clearcpuid= was already parsed in fpu__init_parse_early_param. * But we need to keep a dummy __setup around otherwise it would * show up as an environment variable for init. */ static __init int setup_clearcpuid(char *arg) { return 1; } __setup("clearcpuid=", setup_clearcpuid); #ifdef CONFIG_X86_64 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data, fixed_percpu_data) __aligned(PAGE_SIZE) __visible; EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data); /* * The following percpu variables are hot. Align current_task to * cacheline size such that they fall in the same cacheline. */ DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned = &init_task; EXPORT_PER_CPU_SYMBOL(current_task); DEFINE_PER_CPU(struct irq_stack *, hardirq_stack_ptr); DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1; DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT; EXPORT_PER_CPU_SYMBOL(__preempt_count); /* May not be marked __init: used by software suspend */ void syscall_init(void) { wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS); wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64); #ifdef CONFIG_IA32_EMULATION wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat); /* * This only works on Intel CPUs. * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP. * This does not cause SYSENTER to jump to the wrong location, because * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit). */ wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS); wrmsrl_safe(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1)); wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat); #else wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret); wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG); wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL); wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL); #endif /* Flags to clear on syscall */ wrmsrl(MSR_SYSCALL_MASK, X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF| X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT); } #else /* CONFIG_X86_64 */ DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task; EXPORT_PER_CPU_SYMBOL(current_task); DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT; EXPORT_PER_CPU_SYMBOL(__preempt_count); /* * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find * the top of the kernel stack. Use an extra percpu variable to track the * top of the kernel stack directly. */ DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) = (unsigned long)&init_thread_union + THREAD_SIZE; EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack); #ifdef CONFIG_STACKPROTECTOR DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary); #endif #endif /* CONFIG_X86_64 */ /* * Clear all 6 debug registers: */ static void clear_all_debug_regs(void) { int i; for (i = 0; i < 8; i++) { /* Ignore db4, db5 */ if ((i == 4) || (i == 5)) continue; set_debugreg(0, i); } } #ifdef CONFIG_KGDB /* * Restore debug regs if using kgdbwait and you have a kernel debugger * connection established. */ static void dbg_restore_debug_regs(void) { if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break)) arch_kgdb_ops.correct_hw_break(); } #else /* ! CONFIG_KGDB */ #define dbg_restore_debug_regs() #endif /* ! CONFIG_KGDB */ static void wait_for_master_cpu(int cpu) { #ifdef CONFIG_SMP /* * wait for ACK from master CPU before continuing * with AP initialization */ WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)); while (!cpumask_test_cpu(cpu, cpu_callout_mask)) cpu_relax(); #endif } #ifdef CONFIG_X86_64 static inline void setup_getcpu(int cpu) { unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu)); struct desc_struct d = { }; if (boot_cpu_has(X86_FEATURE_RDTSCP)) write_rdtscp_aux(cpudata); /* Store CPU and node number in limit. */ d.limit0 = cpudata; d.limit1 = cpudata >> 16; d.type = 5; /* RO data, expand down, accessed */ d.dpl = 3; /* Visible to user code */ d.s = 1; /* Not a system segment */ d.p = 1; /* Present */ d.d = 1; /* 32-bit */ write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S); } static inline void ucode_cpu_init(int cpu) { if (cpu) load_ucode_ap(); } static inline void tss_setup_ist(struct tss_struct *tss) { /* Set up the per-CPU TSS IST stacks */ tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF); tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI); tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB); tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE); } #else /* CONFIG_X86_64 */ static inline void setup_getcpu(int cpu) { } static inline void ucode_cpu_init(int cpu) { show_ucode_info_early(); } static inline void tss_setup_ist(struct tss_struct *tss) { } #endif /* !CONFIG_X86_64 */ static inline void tss_setup_io_bitmap(struct tss_struct *tss) { tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID; #ifdef CONFIG_X86_IOPL_IOPERM tss->io_bitmap.prev_max = 0; tss->io_bitmap.prev_sequence = 0; memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap)); /* * Invalidate the extra array entry past the end of the all * permission bitmap as required by the hardware. */ tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL; #endif } /* * cpu_init() initializes state that is per-CPU. Some data is already * initialized (naturally) in the bootstrap process, such as the GDT * and IDT. We reload them nevertheless, this function acts as a * 'CPU state barrier', nothing should get across. */ void cpu_init(void) { struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw); struct task_struct *cur = current; int cpu = raw_smp_processor_id(); wait_for_master_cpu(cpu); ucode_cpu_init(cpu); #ifdef CONFIG_NUMA if (this_cpu_read(numa_node) == 0 && early_cpu_to_node(cpu) != NUMA_NO_NODE) set_numa_node(early_cpu_to_node(cpu)); #endif setup_getcpu(cpu); pr_debug("Initializing CPU#%d\n", cpu); if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) || boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE)) cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE); /* * Initialize the per-CPU GDT with the boot GDT, * and set up the GDT descriptor: */ switch_to_new_gdt(cpu); load_current_idt(); if (IS_ENABLED(CONFIG_X86_64)) { loadsegment(fs, 0); memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8); syscall_init(); wrmsrl(MSR_FS_BASE, 0); wrmsrl(MSR_KERNEL_GS_BASE, 0); barrier(); x2apic_setup(); } mmgrab(&init_mm); cur->active_mm = &init_mm; BUG_ON(cur->mm); initialize_tlbstate_and_flush(); enter_lazy_tlb(&init_mm, cur); /* Initialize the TSS. */ tss_setup_ist(tss); tss_setup_io_bitmap(tss); set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss); load_TR_desc(); /* * sp0 points to the entry trampoline stack regardless of what task * is running. */ load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1)); load_mm_ldt(&init_mm); clear_all_debug_regs(); dbg_restore_debug_regs(); doublefault_init_cpu_tss(); fpu__init_cpu(); if (is_uv_system()) uv_cpu_init(); load_fixmap_gdt(cpu); } /* * The microcode loader calls this upon late microcode load to recheck features, * only when microcode has been updated. Caller holds microcode_mutex and CPU * hotplug lock. */ void microcode_check(void) { struct cpuinfo_x86 info; perf_check_microcode(); /* Reload CPUID max function as it might've changed. */ info.cpuid_level = cpuid_eax(0); /* * Copy all capability leafs to pick up the synthetic ones so that * memcmp() below doesn't fail on that. The ones coming from CPUID will * get overwritten in get_cpu_cap(). */ memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)); get_cpu_cap(&info); if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability))) return; pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n"); pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n"); } /* * Invoked from core CPU hotplug code after hotplug operations */ void arch_smt_update(void) { /* Handle the speculative execution misfeatures */ cpu_bugs_smt_update(); /* Check whether IPI broadcasting can be enabled */ apic_smt_update(); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1