Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Vivek Goyal | 2092 | 86.95% | 5 | 16.13% |
Thiago Jung Bauermann | 131 | 5.44% | 1 | 3.23% |
Kairui Song | 55 | 2.29% | 3 | 9.68% |
Philipp Rudo | 30 | 1.25% | 1 | 3.23% |
Dave Young | 30 | 1.25% | 3 | 9.68% |
Baoquan He | 24 | 1.00% | 1 | 3.23% |
Ingo Molnar | 15 | 0.62% | 6 | 19.35% |
KarimAllah Ahmed | 15 | 0.62% | 1 | 3.23% |
Ard Biesheuvel | 2 | 0.08% | 1 | 3.23% |
Chen Yu | 2 | 0.08% | 1 | 3.23% |
Denys Vlasenko | 2 | 0.08% | 1 | 3.23% |
Thomas Gleixner | 2 | 0.08% | 1 | 3.23% |
David Howells | 2 | 0.08% | 2 | 6.45% |
Yannik Sembritzki | 1 | 0.04% | 1 | 3.23% |
Adam Buchbinder | 1 | 0.04% | 1 | 3.23% |
Mauro Carvalho Chehab | 1 | 0.04% | 1 | 3.23% |
AKASHI Takahiro | 1 | 0.04% | 1 | 3.23% |
Total | 2406 | 31 |
// SPDX-License-Identifier: GPL-2.0-only /* * Kexec bzImage loader * * Copyright (C) 2014 Red Hat Inc. * Authors: * Vivek Goyal <vgoyal@redhat.com> */ #define pr_fmt(fmt) "kexec-bzImage64: " fmt #include <linux/string.h> #include <linux/printk.h> #include <linux/errno.h> #include <linux/slab.h> #include <linux/kexec.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/efi.h> #include <linux/verification.h> #include <asm/bootparam.h> #include <asm/setup.h> #include <asm/crash.h> #include <asm/efi.h> #include <asm/e820/api.h> #include <asm/kexec-bzimage64.h> #define MAX_ELFCOREHDR_STR_LEN 30 /* elfcorehdr=0x<64bit-value> */ /* * Defines lowest physical address for various segments. Not sure where * exactly these limits came from. Current bzimage64 loader in kexec-tools * uses these so I am retaining it. It can be changed over time as we gain * more insight. */ #define MIN_PURGATORY_ADDR 0x3000 #define MIN_BOOTPARAM_ADDR 0x3000 #define MIN_KERNEL_LOAD_ADDR 0x100000 #define MIN_INITRD_LOAD_ADDR 0x1000000 /* * This is a place holder for all boot loader specific data structure which * gets allocated in one call but gets freed much later during cleanup * time. Right now there is only one field but it can grow as need be. */ struct bzimage64_data { /* * Temporary buffer to hold bootparams buffer. This should be * freed once the bootparam segment has been loaded. */ void *bootparams_buf; }; static int setup_initrd(struct boot_params *params, unsigned long initrd_load_addr, unsigned long initrd_len) { params->hdr.ramdisk_image = initrd_load_addr & 0xffffffffUL; params->hdr.ramdisk_size = initrd_len & 0xffffffffUL; params->ext_ramdisk_image = initrd_load_addr >> 32; params->ext_ramdisk_size = initrd_len >> 32; return 0; } static int setup_cmdline(struct kimage *image, struct boot_params *params, unsigned long bootparams_load_addr, unsigned long cmdline_offset, char *cmdline, unsigned long cmdline_len) { char *cmdline_ptr = ((char *)params) + cmdline_offset; unsigned long cmdline_ptr_phys, len = 0; uint32_t cmdline_low_32, cmdline_ext_32; if (image->type == KEXEC_TYPE_CRASH) { len = sprintf(cmdline_ptr, "elfcorehdr=0x%lx ", image->arch.elf_load_addr); } memcpy(cmdline_ptr + len, cmdline, cmdline_len); cmdline_len += len; cmdline_ptr[cmdline_len - 1] = '\0'; pr_debug("Final command line is: %s\n", cmdline_ptr); cmdline_ptr_phys = bootparams_load_addr + cmdline_offset; cmdline_low_32 = cmdline_ptr_phys & 0xffffffffUL; cmdline_ext_32 = cmdline_ptr_phys >> 32; params->hdr.cmd_line_ptr = cmdline_low_32; if (cmdline_ext_32) params->ext_cmd_line_ptr = cmdline_ext_32; return 0; } static int setup_e820_entries(struct boot_params *params) { unsigned int nr_e820_entries; nr_e820_entries = e820_table_kexec->nr_entries; /* TODO: Pass entries more than E820_MAX_ENTRIES_ZEROPAGE in bootparams setup data */ if (nr_e820_entries > E820_MAX_ENTRIES_ZEROPAGE) nr_e820_entries = E820_MAX_ENTRIES_ZEROPAGE; params->e820_entries = nr_e820_entries; memcpy(¶ms->e820_table, &e820_table_kexec->entries, nr_e820_entries*sizeof(struct e820_entry)); return 0; } #ifdef CONFIG_EFI static int setup_efi_info_memmap(struct boot_params *params, unsigned long params_load_addr, unsigned int efi_map_offset, unsigned int efi_map_sz) { void *efi_map = (void *)params + efi_map_offset; unsigned long efi_map_phys_addr = params_load_addr + efi_map_offset; struct efi_info *ei = ¶ms->efi_info; if (!efi_map_sz) return 0; efi_runtime_map_copy(efi_map, efi_map_sz); ei->efi_memmap = efi_map_phys_addr & 0xffffffff; ei->efi_memmap_hi = efi_map_phys_addr >> 32; ei->efi_memmap_size = efi_map_sz; return 0; } static int prepare_add_efi_setup_data(struct boot_params *params, unsigned long params_load_addr, unsigned int efi_setup_data_offset) { unsigned long setup_data_phys; struct setup_data *sd = (void *)params + efi_setup_data_offset; struct efi_setup_data *esd = (void *)sd + sizeof(struct setup_data); esd->fw_vendor = efi_fw_vendor; esd->tables = efi_config_table; esd->smbios = efi.smbios; sd->type = SETUP_EFI; sd->len = sizeof(struct efi_setup_data); /* Add setup data */ setup_data_phys = params_load_addr + efi_setup_data_offset; sd->next = params->hdr.setup_data; params->hdr.setup_data = setup_data_phys; return 0; } static int setup_efi_state(struct boot_params *params, unsigned long params_load_addr, unsigned int efi_map_offset, unsigned int efi_map_sz, unsigned int efi_setup_data_offset) { struct efi_info *current_ei = &boot_params.efi_info; struct efi_info *ei = ¶ms->efi_info; if (!efi_enabled(EFI_RUNTIME_SERVICES)) return 0; if (!current_ei->efi_memmap_size) return 0; params->secure_boot = boot_params.secure_boot; ei->efi_loader_signature = current_ei->efi_loader_signature; ei->efi_systab = current_ei->efi_systab; ei->efi_systab_hi = current_ei->efi_systab_hi; ei->efi_memdesc_version = current_ei->efi_memdesc_version; ei->efi_memdesc_size = efi_get_runtime_map_desc_size(); setup_efi_info_memmap(params, params_load_addr, efi_map_offset, efi_map_sz); prepare_add_efi_setup_data(params, params_load_addr, efi_setup_data_offset); return 0; } #endif /* CONFIG_EFI */ static int setup_boot_parameters(struct kimage *image, struct boot_params *params, unsigned long params_load_addr, unsigned int efi_map_offset, unsigned int efi_map_sz, unsigned int efi_setup_data_offset) { unsigned int nr_e820_entries; unsigned long long mem_k, start, end; int i, ret = 0; /* Get subarch from existing bootparams */ params->hdr.hardware_subarch = boot_params.hdr.hardware_subarch; /* Copying screen_info will do? */ memcpy(¶ms->screen_info, &boot_params.screen_info, sizeof(struct screen_info)); /* Fill in memsize later */ params->screen_info.ext_mem_k = 0; params->alt_mem_k = 0; /* Always fill in RSDP: it is either 0 or a valid value */ params->acpi_rsdp_addr = boot_params.acpi_rsdp_addr; /* Default APM info */ memset(¶ms->apm_bios_info, 0, sizeof(params->apm_bios_info)); /* Default drive info */ memset(¶ms->hd0_info, 0, sizeof(params->hd0_info)); memset(¶ms->hd1_info, 0, sizeof(params->hd1_info)); if (image->type == KEXEC_TYPE_CRASH) { ret = crash_setup_memmap_entries(image, params); if (ret) return ret; } else setup_e820_entries(params); nr_e820_entries = params->e820_entries; for (i = 0; i < nr_e820_entries; i++) { if (params->e820_table[i].type != E820_TYPE_RAM) continue; start = params->e820_table[i].addr; end = params->e820_table[i].addr + params->e820_table[i].size - 1; if ((start <= 0x100000) && end > 0x100000) { mem_k = (end >> 10) - (0x100000 >> 10); params->screen_info.ext_mem_k = mem_k; params->alt_mem_k = mem_k; if (mem_k > 0xfc00) params->screen_info.ext_mem_k = 0xfc00; /* 64M*/ if (mem_k > 0xffffffff) params->alt_mem_k = 0xffffffff; } } #ifdef CONFIG_EFI /* Setup EFI state */ setup_efi_state(params, params_load_addr, efi_map_offset, efi_map_sz, efi_setup_data_offset); #endif /* Setup EDD info */ memcpy(params->eddbuf, boot_params.eddbuf, EDDMAXNR * sizeof(struct edd_info)); params->eddbuf_entries = boot_params.eddbuf_entries; memcpy(params->edd_mbr_sig_buffer, boot_params.edd_mbr_sig_buffer, EDD_MBR_SIG_MAX * sizeof(unsigned int)); return ret; } static int bzImage64_probe(const char *buf, unsigned long len) { int ret = -ENOEXEC; struct setup_header *header; /* kernel should be at least two sectors long */ if (len < 2 * 512) { pr_err("File is too short to be a bzImage\n"); return ret; } header = (struct setup_header *)(buf + offsetof(struct boot_params, hdr)); if (memcmp((char *)&header->header, "HdrS", 4) != 0) { pr_err("Not a bzImage\n"); return ret; } if (header->boot_flag != 0xAA55) { pr_err("No x86 boot sector present\n"); return ret; } if (header->version < 0x020C) { pr_err("Must be at least protocol version 2.12\n"); return ret; } if (!(header->loadflags & LOADED_HIGH)) { pr_err("zImage not a bzImage\n"); return ret; } if (!(header->xloadflags & XLF_KERNEL_64)) { pr_err("Not a bzImage64. XLF_KERNEL_64 is not set.\n"); return ret; } if (!(header->xloadflags & XLF_CAN_BE_LOADED_ABOVE_4G)) { pr_err("XLF_CAN_BE_LOADED_ABOVE_4G is not set.\n"); return ret; } /* * Can't handle 32bit EFI as it does not allow loading kernel * above 4G. This should be handled by 32bit bzImage loader */ if (efi_enabled(EFI_RUNTIME_SERVICES) && !efi_enabled(EFI_64BIT)) { pr_debug("EFI is 32 bit. Can't load kernel above 4G.\n"); return ret; } if (!(header->xloadflags & XLF_5LEVEL) && pgtable_l5_enabled()) { pr_err("bzImage cannot handle 5-level paging mode.\n"); return ret; } /* I've got a bzImage */ pr_debug("It's a relocatable bzImage64\n"); ret = 0; return ret; } static void *bzImage64_load(struct kimage *image, char *kernel, unsigned long kernel_len, char *initrd, unsigned long initrd_len, char *cmdline, unsigned long cmdline_len) { struct setup_header *header; int setup_sects, kern16_size, ret = 0; unsigned long setup_header_size, params_cmdline_sz; struct boot_params *params; unsigned long bootparam_load_addr, kernel_load_addr, initrd_load_addr; struct bzimage64_data *ldata; struct kexec_entry64_regs regs64; void *stack; unsigned int setup_hdr_offset = offsetof(struct boot_params, hdr); unsigned int efi_map_offset, efi_map_sz, efi_setup_data_offset; struct kexec_buf kbuf = { .image = image, .buf_max = ULONG_MAX, .top_down = true }; struct kexec_buf pbuf = { .image = image, .buf_min = MIN_PURGATORY_ADDR, .buf_max = ULONG_MAX, .top_down = true }; header = (struct setup_header *)(kernel + setup_hdr_offset); setup_sects = header->setup_sects; if (setup_sects == 0) setup_sects = 4; kern16_size = (setup_sects + 1) * 512; if (kernel_len < kern16_size) { pr_err("bzImage truncated\n"); return ERR_PTR(-ENOEXEC); } if (cmdline_len > header->cmdline_size) { pr_err("Kernel command line too long\n"); return ERR_PTR(-EINVAL); } /* * In case of crash dump, we will append elfcorehdr=<addr> to * command line. Make sure it does not overflow */ if (cmdline_len + MAX_ELFCOREHDR_STR_LEN > header->cmdline_size) { pr_debug("Appending elfcorehdr=<addr> to command line exceeds maximum allowed length\n"); return ERR_PTR(-EINVAL); } /* Allocate and load backup region */ if (image->type == KEXEC_TYPE_CRASH) { ret = crash_load_segments(image); if (ret) return ERR_PTR(ret); } /* * Load purgatory. For 64bit entry point, purgatory code can be * anywhere. */ ret = kexec_load_purgatory(image, &pbuf); if (ret) { pr_err("Loading purgatory failed\n"); return ERR_PTR(ret); } pr_debug("Loaded purgatory at 0x%lx\n", pbuf.mem); /* * Load Bootparams and cmdline and space for efi stuff. * * Allocate memory together for multiple data structures so * that they all can go in single area/segment and we don't * have to create separate segment for each. Keeps things * little bit simple */ efi_map_sz = efi_get_runtime_map_size(); params_cmdline_sz = sizeof(struct boot_params) + cmdline_len + MAX_ELFCOREHDR_STR_LEN; params_cmdline_sz = ALIGN(params_cmdline_sz, 16); kbuf.bufsz = params_cmdline_sz + ALIGN(efi_map_sz, 16) + sizeof(struct setup_data) + sizeof(struct efi_setup_data); params = kzalloc(kbuf.bufsz, GFP_KERNEL); if (!params) return ERR_PTR(-ENOMEM); efi_map_offset = params_cmdline_sz; efi_setup_data_offset = efi_map_offset + ALIGN(efi_map_sz, 16); /* Copy setup header onto bootparams. Documentation/x86/boot.rst */ setup_header_size = 0x0202 + kernel[0x0201] - setup_hdr_offset; /* Is there a limit on setup header size? */ memcpy(¶ms->hdr, (kernel + setup_hdr_offset), setup_header_size); kbuf.buffer = params; kbuf.memsz = kbuf.bufsz; kbuf.buf_align = 16; kbuf.buf_min = MIN_BOOTPARAM_ADDR; ret = kexec_add_buffer(&kbuf); if (ret) goto out_free_params; bootparam_load_addr = kbuf.mem; pr_debug("Loaded boot_param, command line and misc at 0x%lx bufsz=0x%lx memsz=0x%lx\n", bootparam_load_addr, kbuf.bufsz, kbuf.bufsz); /* Load kernel */ kbuf.buffer = kernel + kern16_size; kbuf.bufsz = kernel_len - kern16_size; kbuf.memsz = PAGE_ALIGN(header->init_size); kbuf.buf_align = header->kernel_alignment; kbuf.buf_min = MIN_KERNEL_LOAD_ADDR; kbuf.mem = KEXEC_BUF_MEM_UNKNOWN; ret = kexec_add_buffer(&kbuf); if (ret) goto out_free_params; kernel_load_addr = kbuf.mem; pr_debug("Loaded 64bit kernel at 0x%lx bufsz=0x%lx memsz=0x%lx\n", kernel_load_addr, kbuf.bufsz, kbuf.memsz); /* Load initrd high */ if (initrd) { kbuf.buffer = initrd; kbuf.bufsz = kbuf.memsz = initrd_len; kbuf.buf_align = PAGE_SIZE; kbuf.buf_min = MIN_INITRD_LOAD_ADDR; kbuf.mem = KEXEC_BUF_MEM_UNKNOWN; ret = kexec_add_buffer(&kbuf); if (ret) goto out_free_params; initrd_load_addr = kbuf.mem; pr_debug("Loaded initrd at 0x%lx bufsz=0x%lx memsz=0x%lx\n", initrd_load_addr, initrd_len, initrd_len); setup_initrd(params, initrd_load_addr, initrd_len); } setup_cmdline(image, params, bootparam_load_addr, sizeof(struct boot_params), cmdline, cmdline_len); /* bootloader info. Do we need a separate ID for kexec kernel loader? */ params->hdr.type_of_loader = 0x0D << 4; params->hdr.loadflags = 0; /* Setup purgatory regs for entry */ ret = kexec_purgatory_get_set_symbol(image, "entry64_regs", ®s64, sizeof(regs64), 1); if (ret) goto out_free_params; regs64.rbx = 0; /* Bootstrap Processor */ regs64.rsi = bootparam_load_addr; regs64.rip = kernel_load_addr + 0x200; stack = kexec_purgatory_get_symbol_addr(image, "stack_end"); if (IS_ERR(stack)) { pr_err("Could not find address of symbol stack_end\n"); ret = -EINVAL; goto out_free_params; } regs64.rsp = (unsigned long)stack; ret = kexec_purgatory_get_set_symbol(image, "entry64_regs", ®s64, sizeof(regs64), 0); if (ret) goto out_free_params; ret = setup_boot_parameters(image, params, bootparam_load_addr, efi_map_offset, efi_map_sz, efi_setup_data_offset); if (ret) goto out_free_params; /* Allocate loader specific data */ ldata = kzalloc(sizeof(struct bzimage64_data), GFP_KERNEL); if (!ldata) { ret = -ENOMEM; goto out_free_params; } /* * Store pointer to params so that it could be freed after loading * params segment has been loaded and contents have been copied * somewhere else. */ ldata->bootparams_buf = params; return ldata; out_free_params: kfree(params); return ERR_PTR(ret); } /* This cleanup function is called after various segments have been loaded */ static int bzImage64_cleanup(void *loader_data) { struct bzimage64_data *ldata = loader_data; if (!ldata) return 0; kfree(ldata->bootparams_buf); ldata->bootparams_buf = NULL; return 0; } #ifdef CONFIG_KEXEC_BZIMAGE_VERIFY_SIG static int bzImage64_verify_sig(const char *kernel, unsigned long kernel_len) { int ret; ret = verify_pefile_signature(kernel, kernel_len, VERIFY_USE_SECONDARY_KEYRING, VERIFYING_KEXEC_PE_SIGNATURE); if (ret == -ENOKEY && IS_ENABLED(CONFIG_INTEGRITY_PLATFORM_KEYRING)) { ret = verify_pefile_signature(kernel, kernel_len, VERIFY_USE_PLATFORM_KEYRING, VERIFYING_KEXEC_PE_SIGNATURE); } return ret; } #endif const struct kexec_file_ops kexec_bzImage64_ops = { .probe = bzImage64_probe, .load = bzImage64_load, .cleanup = bzImage64_cleanup, #ifdef CONFIG_KEXEC_BZIMAGE_VERIFY_SIG .verify_sig = bzImage64_verify_sig, #endif };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1