Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Andrzej Zaborowski | 2267 | 64.55% | 2 | 9.09% |
Tadeusz Struk | 623 | 17.74% | 2 | 9.09% |
Herbert Xu | 380 | 10.82% | 6 | 27.27% |
Denis Kenzior | 82 | 2.33% | 1 | 4.55% |
Eric Biggers | 79 | 2.25% | 4 | 18.18% |
Vitaly Chikunov | 73 | 2.08% | 2 | 9.09% |
Waiman Long | 3 | 0.09% | 1 | 4.55% |
Thomas Gleixner | 2 | 0.06% | 1 | 4.55% |
Jason A. Donenfeld | 1 | 0.03% | 1 | 4.55% |
Jia-Ju Bai | 1 | 0.03% | 1 | 4.55% |
Tudor-Dan Ambarus | 1 | 0.03% | 1 | 4.55% |
Total | 3512 | 22 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * RSA padding templates. * * Copyright (c) 2015 Intel Corporation */ #include <crypto/algapi.h> #include <crypto/akcipher.h> #include <crypto/internal/akcipher.h> #include <crypto/internal/rsa.h> #include <linux/err.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/random.h> /* * Hash algorithm OIDs plus ASN.1 DER wrappings [RFC4880 sec 5.2.2]. */ static const u8 rsa_digest_info_md5[] = { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, /* OID */ 0x05, 0x00, 0x04, 0x10 }; static const u8 rsa_digest_info_sha1[] = { 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14 }; static const u8 rsa_digest_info_rmd160[] = { 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x24, 0x03, 0x02, 0x01, 0x05, 0x00, 0x04, 0x14 }; static const u8 rsa_digest_info_sha224[] = { 0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1c }; static const u8 rsa_digest_info_sha256[] = { 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20 }; static const u8 rsa_digest_info_sha384[] = { 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30 }; static const u8 rsa_digest_info_sha512[] = { 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40 }; static const struct rsa_asn1_template { const char *name; const u8 *data; size_t size; } rsa_asn1_templates[] = { #define _(X) { #X, rsa_digest_info_##X, sizeof(rsa_digest_info_##X) } _(md5), _(sha1), _(rmd160), _(sha256), _(sha384), _(sha512), _(sha224), { NULL } #undef _ }; static const struct rsa_asn1_template *rsa_lookup_asn1(const char *name) { const struct rsa_asn1_template *p; for (p = rsa_asn1_templates; p->name; p++) if (strcmp(name, p->name) == 0) return p; return NULL; } struct pkcs1pad_ctx { struct crypto_akcipher *child; unsigned int key_size; }; struct pkcs1pad_inst_ctx { struct crypto_akcipher_spawn spawn; const struct rsa_asn1_template *digest_info; }; struct pkcs1pad_request { struct scatterlist in_sg[2], out_sg[1]; uint8_t *in_buf, *out_buf; struct akcipher_request child_req; }; static int pkcs1pad_set_pub_key(struct crypto_akcipher *tfm, const void *key, unsigned int keylen) { struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); int err; ctx->key_size = 0; err = crypto_akcipher_set_pub_key(ctx->child, key, keylen); if (err) return err; /* Find out new modulus size from rsa implementation */ err = crypto_akcipher_maxsize(ctx->child); if (err > PAGE_SIZE) return -ENOTSUPP; ctx->key_size = err; return 0; } static int pkcs1pad_set_priv_key(struct crypto_akcipher *tfm, const void *key, unsigned int keylen) { struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); int err; ctx->key_size = 0; err = crypto_akcipher_set_priv_key(ctx->child, key, keylen); if (err) return err; /* Find out new modulus size from rsa implementation */ err = crypto_akcipher_maxsize(ctx->child); if (err > PAGE_SIZE) return -ENOTSUPP; ctx->key_size = err; return 0; } static unsigned int pkcs1pad_get_max_size(struct crypto_akcipher *tfm) { struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); /* * The maximum destination buffer size for the encrypt/sign operations * will be the same as for RSA, even though it's smaller for * decrypt/verify. */ return ctx->key_size; } static void pkcs1pad_sg_set_buf(struct scatterlist *sg, void *buf, size_t len, struct scatterlist *next) { int nsegs = next ? 2 : 1; sg_init_table(sg, nsegs); sg_set_buf(sg, buf, len); if (next) sg_chain(sg, nsegs, next); } static int pkcs1pad_encrypt_sign_complete(struct akcipher_request *req, int err) { struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); unsigned int pad_len; unsigned int len; u8 *out_buf; if (err) goto out; len = req_ctx->child_req.dst_len; pad_len = ctx->key_size - len; /* Four billion to one */ if (likely(!pad_len)) goto out; out_buf = kzalloc(ctx->key_size, GFP_KERNEL); err = -ENOMEM; if (!out_buf) goto out; sg_copy_to_buffer(req->dst, sg_nents_for_len(req->dst, len), out_buf + pad_len, len); sg_copy_from_buffer(req->dst, sg_nents_for_len(req->dst, ctx->key_size), out_buf, ctx->key_size); kfree_sensitive(out_buf); out: req->dst_len = ctx->key_size; kfree(req_ctx->in_buf); return err; } static void pkcs1pad_encrypt_sign_complete_cb( struct crypto_async_request *child_async_req, int err) { struct akcipher_request *req = child_async_req->data; struct crypto_async_request async_req; if (err == -EINPROGRESS) return; async_req.data = req->base.data; async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req)); async_req.flags = child_async_req->flags; req->base.complete(&async_req, pkcs1pad_encrypt_sign_complete(req, err)); } static int pkcs1pad_encrypt(struct akcipher_request *req) { struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); int err; unsigned int i, ps_end; if (!ctx->key_size) return -EINVAL; if (req->src_len > ctx->key_size - 11) return -EOVERFLOW; if (req->dst_len < ctx->key_size) { req->dst_len = ctx->key_size; return -EOVERFLOW; } req_ctx->in_buf = kmalloc(ctx->key_size - 1 - req->src_len, GFP_KERNEL); if (!req_ctx->in_buf) return -ENOMEM; ps_end = ctx->key_size - req->src_len - 2; req_ctx->in_buf[0] = 0x02; for (i = 1; i < ps_end; i++) req_ctx->in_buf[i] = 1 + prandom_u32_max(255); req_ctx->in_buf[ps_end] = 0x00; pkcs1pad_sg_set_buf(req_ctx->in_sg, req_ctx->in_buf, ctx->key_size - 1 - req->src_len, req->src); akcipher_request_set_tfm(&req_ctx->child_req, ctx->child); akcipher_request_set_callback(&req_ctx->child_req, req->base.flags, pkcs1pad_encrypt_sign_complete_cb, req); /* Reuse output buffer */ akcipher_request_set_crypt(&req_ctx->child_req, req_ctx->in_sg, req->dst, ctx->key_size - 1, req->dst_len); err = crypto_akcipher_encrypt(&req_ctx->child_req); if (err != -EINPROGRESS && err != -EBUSY) return pkcs1pad_encrypt_sign_complete(req, err); return err; } static int pkcs1pad_decrypt_complete(struct akcipher_request *req, int err) { struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); unsigned int dst_len; unsigned int pos; u8 *out_buf; if (err) goto done; err = -EINVAL; dst_len = req_ctx->child_req.dst_len; if (dst_len < ctx->key_size - 1) goto done; out_buf = req_ctx->out_buf; if (dst_len == ctx->key_size) { if (out_buf[0] != 0x00) /* Decrypted value had no leading 0 byte */ goto done; dst_len--; out_buf++; } if (out_buf[0] != 0x02) goto done; for (pos = 1; pos < dst_len; pos++) if (out_buf[pos] == 0x00) break; if (pos < 9 || pos == dst_len) goto done; pos++; err = 0; if (req->dst_len < dst_len - pos) err = -EOVERFLOW; req->dst_len = dst_len - pos; if (!err) sg_copy_from_buffer(req->dst, sg_nents_for_len(req->dst, req->dst_len), out_buf + pos, req->dst_len); done: kfree_sensitive(req_ctx->out_buf); return err; } static void pkcs1pad_decrypt_complete_cb( struct crypto_async_request *child_async_req, int err) { struct akcipher_request *req = child_async_req->data; struct crypto_async_request async_req; if (err == -EINPROGRESS) return; async_req.data = req->base.data; async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req)); async_req.flags = child_async_req->flags; req->base.complete(&async_req, pkcs1pad_decrypt_complete(req, err)); } static int pkcs1pad_decrypt(struct akcipher_request *req) { struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); int err; if (!ctx->key_size || req->src_len != ctx->key_size) return -EINVAL; req_ctx->out_buf = kmalloc(ctx->key_size, GFP_KERNEL); if (!req_ctx->out_buf) return -ENOMEM; pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf, ctx->key_size, NULL); akcipher_request_set_tfm(&req_ctx->child_req, ctx->child); akcipher_request_set_callback(&req_ctx->child_req, req->base.flags, pkcs1pad_decrypt_complete_cb, req); /* Reuse input buffer, output to a new buffer */ akcipher_request_set_crypt(&req_ctx->child_req, req->src, req_ctx->out_sg, req->src_len, ctx->key_size); err = crypto_akcipher_decrypt(&req_ctx->child_req); if (err != -EINPROGRESS && err != -EBUSY) return pkcs1pad_decrypt_complete(req, err); return err; } static int pkcs1pad_sign(struct akcipher_request *req) { struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); struct akcipher_instance *inst = akcipher_alg_instance(tfm); struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst); const struct rsa_asn1_template *digest_info = ictx->digest_info; int err; unsigned int ps_end, digest_size = 0; if (!ctx->key_size) return -EINVAL; if (digest_info) digest_size = digest_info->size; if (req->src_len + digest_size > ctx->key_size - 11) return -EOVERFLOW; if (req->dst_len < ctx->key_size) { req->dst_len = ctx->key_size; return -EOVERFLOW; } req_ctx->in_buf = kmalloc(ctx->key_size - 1 - req->src_len, GFP_KERNEL); if (!req_ctx->in_buf) return -ENOMEM; ps_end = ctx->key_size - digest_size - req->src_len - 2; req_ctx->in_buf[0] = 0x01; memset(req_ctx->in_buf + 1, 0xff, ps_end - 1); req_ctx->in_buf[ps_end] = 0x00; if (digest_info) memcpy(req_ctx->in_buf + ps_end + 1, digest_info->data, digest_info->size); pkcs1pad_sg_set_buf(req_ctx->in_sg, req_ctx->in_buf, ctx->key_size - 1 - req->src_len, req->src); akcipher_request_set_tfm(&req_ctx->child_req, ctx->child); akcipher_request_set_callback(&req_ctx->child_req, req->base.flags, pkcs1pad_encrypt_sign_complete_cb, req); /* Reuse output buffer */ akcipher_request_set_crypt(&req_ctx->child_req, req_ctx->in_sg, req->dst, ctx->key_size - 1, req->dst_len); err = crypto_akcipher_decrypt(&req_ctx->child_req); if (err != -EINPROGRESS && err != -EBUSY) return pkcs1pad_encrypt_sign_complete(req, err); return err; } static int pkcs1pad_verify_complete(struct akcipher_request *req, int err) { struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); struct akcipher_instance *inst = akcipher_alg_instance(tfm); struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst); const struct rsa_asn1_template *digest_info = ictx->digest_info; unsigned int dst_len; unsigned int pos; u8 *out_buf; if (err) goto done; err = -EINVAL; dst_len = req_ctx->child_req.dst_len; if (dst_len < ctx->key_size - 1) goto done; out_buf = req_ctx->out_buf; if (dst_len == ctx->key_size) { if (out_buf[0] != 0x00) /* Decrypted value had no leading 0 byte */ goto done; dst_len--; out_buf++; } err = -EBADMSG; if (out_buf[0] != 0x01) goto done; for (pos = 1; pos < dst_len; pos++) if (out_buf[pos] != 0xff) break; if (pos < 9 || pos == dst_len || out_buf[pos] != 0x00) goto done; pos++; if (digest_info) { if (crypto_memneq(out_buf + pos, digest_info->data, digest_info->size)) goto done; pos += digest_info->size; } err = 0; if (req->dst_len != dst_len - pos) { err = -EKEYREJECTED; req->dst_len = dst_len - pos; goto done; } /* Extract appended digest. */ sg_pcopy_to_buffer(req->src, sg_nents_for_len(req->src, req->src_len + req->dst_len), req_ctx->out_buf + ctx->key_size, req->dst_len, ctx->key_size); /* Do the actual verification step. */ if (memcmp(req_ctx->out_buf + ctx->key_size, out_buf + pos, req->dst_len) != 0) err = -EKEYREJECTED; done: kfree_sensitive(req_ctx->out_buf); return err; } static void pkcs1pad_verify_complete_cb( struct crypto_async_request *child_async_req, int err) { struct akcipher_request *req = child_async_req->data; struct crypto_async_request async_req; if (err == -EINPROGRESS) return; async_req.data = req->base.data; async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req)); async_req.flags = child_async_req->flags; req->base.complete(&async_req, pkcs1pad_verify_complete(req, err)); } /* * The verify operation is here for completeness similar to the verification * defined in RFC2313 section 10.2 except that block type 0 is not accepted, * as in RFC2437. RFC2437 section 9.2 doesn't define any operation to * retrieve the DigestInfo from a signature, instead the user is expected * to call the sign operation to generate the expected signature and compare * signatures instead of the message-digests. */ static int pkcs1pad_verify(struct akcipher_request *req) { struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); int err; if (WARN_ON(req->dst) || WARN_ON(!req->dst_len) || !ctx->key_size || req->src_len < ctx->key_size) return -EINVAL; req_ctx->out_buf = kmalloc(ctx->key_size + req->dst_len, GFP_KERNEL); if (!req_ctx->out_buf) return -ENOMEM; pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf, ctx->key_size, NULL); akcipher_request_set_tfm(&req_ctx->child_req, ctx->child); akcipher_request_set_callback(&req_ctx->child_req, req->base.flags, pkcs1pad_verify_complete_cb, req); /* Reuse input buffer, output to a new buffer */ akcipher_request_set_crypt(&req_ctx->child_req, req->src, req_ctx->out_sg, req->src_len, ctx->key_size); err = crypto_akcipher_encrypt(&req_ctx->child_req); if (err != -EINPROGRESS && err != -EBUSY) return pkcs1pad_verify_complete(req, err); return err; } static int pkcs1pad_init_tfm(struct crypto_akcipher *tfm) { struct akcipher_instance *inst = akcipher_alg_instance(tfm); struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst); struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); struct crypto_akcipher *child_tfm; child_tfm = crypto_spawn_akcipher(&ictx->spawn); if (IS_ERR(child_tfm)) return PTR_ERR(child_tfm); ctx->child = child_tfm; return 0; } static void pkcs1pad_exit_tfm(struct crypto_akcipher *tfm) { struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); crypto_free_akcipher(ctx->child); } static void pkcs1pad_free(struct akcipher_instance *inst) { struct pkcs1pad_inst_ctx *ctx = akcipher_instance_ctx(inst); struct crypto_akcipher_spawn *spawn = &ctx->spawn; crypto_drop_akcipher(spawn); kfree(inst); } static int pkcs1pad_create(struct crypto_template *tmpl, struct rtattr **tb) { u32 mask; struct akcipher_instance *inst; struct pkcs1pad_inst_ctx *ctx; struct akcipher_alg *rsa_alg; const char *hash_name; int err; err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_AKCIPHER, &mask); if (err) return err; inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL); if (!inst) return -ENOMEM; ctx = akcipher_instance_ctx(inst); err = crypto_grab_akcipher(&ctx->spawn, akcipher_crypto_instance(inst), crypto_attr_alg_name(tb[1]), 0, mask); if (err) goto err_free_inst; rsa_alg = crypto_spawn_akcipher_alg(&ctx->spawn); err = -ENAMETOOLONG; hash_name = crypto_attr_alg_name(tb[2]); if (IS_ERR(hash_name)) { if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, "pkcs1pad(%s)", rsa_alg->base.cra_name) >= CRYPTO_MAX_ALG_NAME) goto err_free_inst; if (snprintf(inst->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "pkcs1pad(%s)", rsa_alg->base.cra_driver_name) >= CRYPTO_MAX_ALG_NAME) goto err_free_inst; } else { ctx->digest_info = rsa_lookup_asn1(hash_name); if (!ctx->digest_info) { err = -EINVAL; goto err_free_inst; } if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, "pkcs1pad(%s,%s)", rsa_alg->base.cra_name, hash_name) >= CRYPTO_MAX_ALG_NAME) goto err_free_inst; if (snprintf(inst->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "pkcs1pad(%s,%s)", rsa_alg->base.cra_driver_name, hash_name) >= CRYPTO_MAX_ALG_NAME) goto err_free_inst; } inst->alg.base.cra_priority = rsa_alg->base.cra_priority; inst->alg.base.cra_ctxsize = sizeof(struct pkcs1pad_ctx); inst->alg.init = pkcs1pad_init_tfm; inst->alg.exit = pkcs1pad_exit_tfm; inst->alg.encrypt = pkcs1pad_encrypt; inst->alg.decrypt = pkcs1pad_decrypt; inst->alg.sign = pkcs1pad_sign; inst->alg.verify = pkcs1pad_verify; inst->alg.set_pub_key = pkcs1pad_set_pub_key; inst->alg.set_priv_key = pkcs1pad_set_priv_key; inst->alg.max_size = pkcs1pad_get_max_size; inst->alg.reqsize = sizeof(struct pkcs1pad_request) + rsa_alg->reqsize; inst->free = pkcs1pad_free; err = akcipher_register_instance(tmpl, inst); if (err) { err_free_inst: pkcs1pad_free(inst); } return err; } struct crypto_template rsa_pkcs1pad_tmpl = { .name = "pkcs1pad", .create = pkcs1pad_create, .module = THIS_MODULE, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1