Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Zhichang Yuan | 1390 | 53.36% | 1 | 10.00% |
John Garry | 1215 | 46.64% | 9 | 90.00% |
Total | 2605 | 10 |
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2017 Hisilicon Limited, All Rights Reserved. * Author: Zhichang Yuan <yuanzhichang@hisilicon.com> * Author: Zou Rongrong <zourongrong@huawei.com> * Author: John Garry <john.garry@huawei.com> */ #include <linux/acpi.h> #include <linux/console.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/logic_pio.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_platform.h> #include <linux/pci.h> #include <linux/serial_8250.h> #include <linux/slab.h> #define DRV_NAME "hisi-lpc" /* * Setting this bit means each IO operation will target a different port * address; 0 means repeated IO operations will use the same port, * such as BT. */ #define FG_INCRADDR_LPC 0x02 struct lpc_cycle_para { unsigned int opflags; unsigned int csize; /* data length of each operation */ }; struct hisi_lpc_dev { spinlock_t cycle_lock; void __iomem *membase; struct logic_pio_hwaddr *io_host; }; /* The max IO cycle counts supported is four per operation at maximum */ #define LPC_MAX_DWIDTH 4 #define LPC_REG_STARTUP_SIGNAL 0x00 #define LPC_REG_STARTUP_SIGNAL_START BIT(0) #define LPC_REG_OP_STATUS 0x04 #define LPC_REG_OP_STATUS_IDLE BIT(0) #define LPC_REG_OP_STATUS_FINISHED BIT(1) #define LPC_REG_OP_LEN 0x10 /* LPC cycles count per start */ #define LPC_REG_CMD 0x14 #define LPC_REG_CMD_OP BIT(0) /* 0: read, 1: write */ #define LPC_REG_CMD_SAMEADDR BIT(3) #define LPC_REG_ADDR 0x20 /* target address */ #define LPC_REG_WDATA 0x24 /* write FIFO */ #define LPC_REG_RDATA 0x28 /* read FIFO */ /* The minimal nanosecond interval for each query on LPC cycle status */ #define LPC_NSEC_PERWAIT 100 /* * The maximum waiting time is about 128us. It is specific for stream I/O, * such as ins. * * The fastest IO cycle time is about 390ns, but the worst case will wait * for extra 256 lpc clocks, so (256 + 13) * 30ns = 8 us. The maximum burst * cycles is 16. So, the maximum waiting time is about 128us under worst * case. * * Choose 1300 as the maximum. */ #define LPC_MAX_WAITCNT 1300 /* About 10us. This is specific for single IO operations, such as inb */ #define LPC_PEROP_WAITCNT 100 static int wait_lpc_idle(void __iomem *mbase, unsigned int waitcnt) { u32 status; do { status = readl(mbase + LPC_REG_OP_STATUS); if (status & LPC_REG_OP_STATUS_IDLE) return (status & LPC_REG_OP_STATUS_FINISHED) ? 0 : -EIO; ndelay(LPC_NSEC_PERWAIT); } while (--waitcnt); return -ETIME; } /* * hisi_lpc_target_in - trigger a series of LPC cycles for read operation * @lpcdev: pointer to hisi lpc device * @para: some parameters used to control the lpc I/O operations * @addr: the lpc I/O target port address * @buf: where the read back data is stored * @opcnt: how many I/O operations required, i.e. data width * * Returns 0 on success, non-zero on fail. */ static int hisi_lpc_target_in(struct hisi_lpc_dev *lpcdev, struct lpc_cycle_para *para, unsigned long addr, unsigned char *buf, unsigned long opcnt) { unsigned int cmd_word; unsigned int waitcnt; unsigned long flags; int ret; if (!buf || !opcnt || !para || !para->csize || !lpcdev) return -EINVAL; cmd_word = 0; /* IO mode, Read */ waitcnt = LPC_PEROP_WAITCNT; if (!(para->opflags & FG_INCRADDR_LPC)) { cmd_word |= LPC_REG_CMD_SAMEADDR; waitcnt = LPC_MAX_WAITCNT; } /* whole operation must be atomic */ spin_lock_irqsave(&lpcdev->cycle_lock, flags); writel_relaxed(opcnt, lpcdev->membase + LPC_REG_OP_LEN); writel_relaxed(cmd_word, lpcdev->membase + LPC_REG_CMD); writel_relaxed(addr, lpcdev->membase + LPC_REG_ADDR); writel(LPC_REG_STARTUP_SIGNAL_START, lpcdev->membase + LPC_REG_STARTUP_SIGNAL); /* whether the operation is finished */ ret = wait_lpc_idle(lpcdev->membase, waitcnt); if (ret) { spin_unlock_irqrestore(&lpcdev->cycle_lock, flags); return ret; } readsb(lpcdev->membase + LPC_REG_RDATA, buf, opcnt); spin_unlock_irqrestore(&lpcdev->cycle_lock, flags); return 0; } /* * hisi_lpc_target_out - trigger a series of LPC cycles for write operation * @lpcdev: pointer to hisi lpc device * @para: some parameters used to control the lpc I/O operations * @addr: the lpc I/O target port address * @buf: where the data to be written is stored * @opcnt: how many I/O operations required, i.e. data width * * Returns 0 on success, non-zero on fail. */ static int hisi_lpc_target_out(struct hisi_lpc_dev *lpcdev, struct lpc_cycle_para *para, unsigned long addr, const unsigned char *buf, unsigned long opcnt) { unsigned int waitcnt; unsigned long flags; u32 cmd_word; int ret; if (!buf || !opcnt || !para || !lpcdev) return -EINVAL; /* default is increasing address */ cmd_word = LPC_REG_CMD_OP; /* IO mode, write */ waitcnt = LPC_PEROP_WAITCNT; if (!(para->opflags & FG_INCRADDR_LPC)) { cmd_word |= LPC_REG_CMD_SAMEADDR; waitcnt = LPC_MAX_WAITCNT; } spin_lock_irqsave(&lpcdev->cycle_lock, flags); writel_relaxed(opcnt, lpcdev->membase + LPC_REG_OP_LEN); writel_relaxed(cmd_word, lpcdev->membase + LPC_REG_CMD); writel_relaxed(addr, lpcdev->membase + LPC_REG_ADDR); writesb(lpcdev->membase + LPC_REG_WDATA, buf, opcnt); writel(LPC_REG_STARTUP_SIGNAL_START, lpcdev->membase + LPC_REG_STARTUP_SIGNAL); /* whether the operation is finished */ ret = wait_lpc_idle(lpcdev->membase, waitcnt); spin_unlock_irqrestore(&lpcdev->cycle_lock, flags); return ret; } static unsigned long hisi_lpc_pio_to_addr(struct hisi_lpc_dev *lpcdev, unsigned long pio) { return pio - lpcdev->io_host->io_start + lpcdev->io_host->hw_start; } /* * hisi_lpc_comm_in - input the data in a single operation * @hostdata: pointer to the device information relevant to LPC controller * @pio: the target I/O port address * @dwidth: the data length required to read from the target I/O port * * When success, data is returned. Otherwise, ~0 is returned. */ static u32 hisi_lpc_comm_in(void *hostdata, unsigned long pio, size_t dwidth) { struct hisi_lpc_dev *lpcdev = hostdata; struct lpc_cycle_para iopara; unsigned long addr; __le32 rd_data = 0; int ret; if (!lpcdev || !dwidth || dwidth > LPC_MAX_DWIDTH) return ~0; addr = hisi_lpc_pio_to_addr(lpcdev, pio); iopara.opflags = FG_INCRADDR_LPC; iopara.csize = dwidth; ret = hisi_lpc_target_in(lpcdev, &iopara, addr, (unsigned char *)&rd_data, dwidth); if (ret) return ~0; return le32_to_cpu(rd_data); } /* * hisi_lpc_comm_out - output the data in a single operation * @hostdata: pointer to the device information relevant to LPC controller * @pio: the target I/O port address * @val: a value to be output from caller, maximum is four bytes * @dwidth: the data width required writing to the target I/O port * * This function corresponds to out(b,w,l) only. */ static void hisi_lpc_comm_out(void *hostdata, unsigned long pio, u32 val, size_t dwidth) { struct hisi_lpc_dev *lpcdev = hostdata; struct lpc_cycle_para iopara; const unsigned char *buf; unsigned long addr; __le32 _val = cpu_to_le32(val); if (!lpcdev || !dwidth || dwidth > LPC_MAX_DWIDTH) return; buf = (const unsigned char *)&_val; addr = hisi_lpc_pio_to_addr(lpcdev, pio); iopara.opflags = FG_INCRADDR_LPC; iopara.csize = dwidth; hisi_lpc_target_out(lpcdev, &iopara, addr, buf, dwidth); } /* * hisi_lpc_comm_ins - input the data in the buffer in multiple operations * @hostdata: pointer to the device information relevant to LPC controller * @pio: the target I/O port address * @buffer: a buffer where read/input data bytes are stored * @dwidth: the data width required writing to the target I/O port * @count: how many data units whose length is dwidth will be read * * When success, the data read back is stored in buffer pointed by buffer. * Returns 0 on success, -errno otherwise. */ static u32 hisi_lpc_comm_ins(void *hostdata, unsigned long pio, void *buffer, size_t dwidth, unsigned int count) { struct hisi_lpc_dev *lpcdev = hostdata; unsigned char *buf = buffer; struct lpc_cycle_para iopara; unsigned long addr; if (!lpcdev || !buf || !count || !dwidth || dwidth > LPC_MAX_DWIDTH) return -EINVAL; iopara.opflags = 0; if (dwidth > 1) iopara.opflags |= FG_INCRADDR_LPC; iopara.csize = dwidth; addr = hisi_lpc_pio_to_addr(lpcdev, pio); do { int ret; ret = hisi_lpc_target_in(lpcdev, &iopara, addr, buf, dwidth); if (ret) return ret; buf += dwidth; } while (--count); return 0; } /* * hisi_lpc_comm_outs - output the data in the buffer in multiple operations * @hostdata: pointer to the device information relevant to LPC controller * @pio: the target I/O port address * @buffer: a buffer where write/output data bytes are stored * @dwidth: the data width required writing to the target I/O port * @count: how many data units whose length is dwidth will be written */ static void hisi_lpc_comm_outs(void *hostdata, unsigned long pio, const void *buffer, size_t dwidth, unsigned int count) { struct hisi_lpc_dev *lpcdev = hostdata; struct lpc_cycle_para iopara; const unsigned char *buf = buffer; unsigned long addr; if (!lpcdev || !buf || !count || !dwidth || dwidth > LPC_MAX_DWIDTH) return; iopara.opflags = 0; if (dwidth > 1) iopara.opflags |= FG_INCRADDR_LPC; iopara.csize = dwidth; addr = hisi_lpc_pio_to_addr(lpcdev, pio); do { if (hisi_lpc_target_out(lpcdev, &iopara, addr, buf, dwidth)) break; buf += dwidth; } while (--count); } static const struct logic_pio_host_ops hisi_lpc_ops = { .in = hisi_lpc_comm_in, .out = hisi_lpc_comm_out, .ins = hisi_lpc_comm_ins, .outs = hisi_lpc_comm_outs, }; #ifdef CONFIG_ACPI static int hisi_lpc_acpi_xlat_io_res(struct acpi_device *adev, struct acpi_device *host, struct resource *res) { unsigned long sys_port; resource_size_t len = resource_size(res); sys_port = logic_pio_trans_hwaddr(&host->fwnode, res->start, len); if (sys_port == ~0UL) return -EFAULT; res->start = sys_port; res->end = sys_port + len; return 0; } /* * Released firmware describes the IO port max address as 0x3fff, which is * the max host bus address. Fixup to a proper range. This will probably * never be fixed in firmware. */ static void hisi_lpc_acpi_fixup_child_resource(struct device *hostdev, struct resource *r) { if (r->end != 0x3fff) return; if (r->start == 0xe4) r->end = 0xe4 + 0x04 - 1; else if (r->start == 0x2f8) r->end = 0x2f8 + 0x08 - 1; else dev_warn(hostdev, "unrecognised resource %pR to fixup, ignoring\n", r); } /* * hisi_lpc_acpi_set_io_res - set the resources for a child * @child: the device node to be updated the I/O resource * @hostdev: the device node associated with host controller * @res: double pointer to be set to the address of translated resources * @num_res: pointer to variable to hold the number of translated resources * * Returns 0 when successful, and a negative value for failure. * * For a given host controller, each child device will have an associated * host-relative address resource. This function will return the translated * logical PIO addresses for each child devices resources. */ static int hisi_lpc_acpi_set_io_res(struct device *child, struct device *hostdev, const struct resource **res, int *num_res) { struct acpi_device *adev; struct acpi_device *host; struct resource_entry *rentry; LIST_HEAD(resource_list); struct resource *resources; int count; int i; if (!child || !hostdev) return -EINVAL; host = to_acpi_device(hostdev); adev = to_acpi_device(child); if (!adev->status.present) { dev_dbg(child, "device is not present\n"); return -EIO; } if (acpi_device_enumerated(adev)) { dev_dbg(child, "has been enumerated\n"); return -EIO; } /* * The following code segment to retrieve the resources is common to * acpi_create_platform_device(), so consider a common helper function * in future. */ count = acpi_dev_get_resources(adev, &resource_list, NULL, NULL); if (count <= 0) { dev_dbg(child, "failed to get resources\n"); return count ? count : -EIO; } resources = devm_kcalloc(hostdev, count, sizeof(*resources), GFP_KERNEL); if (!resources) { dev_warn(hostdev, "could not allocate memory for %d resources\n", count); acpi_dev_free_resource_list(&resource_list); return -ENOMEM; } count = 0; list_for_each_entry(rentry, &resource_list, node) { resources[count] = *rentry->res; hisi_lpc_acpi_fixup_child_resource(hostdev, &resources[count]); count++; } acpi_dev_free_resource_list(&resource_list); /* translate the I/O resources */ for (i = 0; i < count; i++) { int ret; if (!(resources[i].flags & IORESOURCE_IO)) continue; ret = hisi_lpc_acpi_xlat_io_res(adev, host, &resources[i]); if (ret) { dev_err(child, "translate IO range %pR failed (%d)\n", &resources[i], ret); return ret; } } *res = resources; *num_res = count; return 0; } static int hisi_lpc_acpi_remove_subdev(struct device *dev, void *unused) { platform_device_unregister(to_platform_device(dev)); return 0; } struct hisi_lpc_acpi_cell { const char *hid; const char *name; void *pdata; size_t pdata_size; }; static void hisi_lpc_acpi_remove(struct device *hostdev) { struct acpi_device *adev = ACPI_COMPANION(hostdev); struct acpi_device *child; device_for_each_child(hostdev, NULL, hisi_lpc_acpi_remove_subdev); list_for_each_entry(child, &adev->children, node) acpi_device_clear_enumerated(child); } /* * hisi_lpc_acpi_probe - probe children for ACPI FW * @hostdev: LPC host device pointer * * Returns 0 when successful, and a negative value for failure. * * Create a platform device per child, fixing up the resources * from bus addresses to Logical PIO addresses. * */ static int hisi_lpc_acpi_probe(struct device *hostdev) { struct acpi_device *adev = ACPI_COMPANION(hostdev); struct acpi_device *child; int ret; /* Only consider the children of the host */ list_for_each_entry(child, &adev->children, node) { const char *hid = acpi_device_hid(child); const struct hisi_lpc_acpi_cell *cell; struct platform_device *pdev; const struct resource *res; bool found = false; int num_res; ret = hisi_lpc_acpi_set_io_res(&child->dev, &adev->dev, &res, &num_res); if (ret) { dev_warn(hostdev, "set resource fail (%d)\n", ret); goto fail; } cell = (struct hisi_lpc_acpi_cell []){ /* ipmi */ { .hid = "IPI0001", .name = "hisi-lpc-ipmi", }, /* 8250-compatible uart */ { .hid = "HISI1031", .name = "serial8250", .pdata = (struct plat_serial8250_port []) { { .iobase = res->start, .uartclk = 1843200, .iotype = UPIO_PORT, .flags = UPF_BOOT_AUTOCONF, }, {} }, .pdata_size = 2 * sizeof(struct plat_serial8250_port), }, {} }; for (; cell && cell->name; cell++) { if (!strcmp(cell->hid, hid)) { found = true; break; } } if (!found) { dev_warn(hostdev, "could not find cell for child device (%s), discarding\n", hid); continue; } pdev = platform_device_alloc(cell->name, PLATFORM_DEVID_AUTO); if (!pdev) { ret = -ENOMEM; goto fail; } pdev->dev.parent = hostdev; ACPI_COMPANION_SET(&pdev->dev, child); ret = platform_device_add_resources(pdev, res, num_res); if (ret) goto fail; ret = platform_device_add_data(pdev, cell->pdata, cell->pdata_size); if (ret) goto fail; ret = platform_device_add(pdev); if (ret) goto fail; acpi_device_set_enumerated(child); } return 0; fail: hisi_lpc_acpi_remove(hostdev); return ret; } static const struct acpi_device_id hisi_lpc_acpi_match[] = { {"HISI0191"}, {} }; #else static int hisi_lpc_acpi_probe(struct device *dev) { return -ENODEV; } static void hisi_lpc_acpi_remove(struct device *hostdev) { } #endif // CONFIG_ACPI /* * hisi_lpc_probe - the probe callback function for hisi lpc host, * will finish all the initialization. * @pdev: the platform device corresponding to hisi lpc host * * Returns 0 on success, non-zero on fail. */ static int hisi_lpc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct acpi_device *acpi_device = ACPI_COMPANION(dev); struct logic_pio_hwaddr *range; struct hisi_lpc_dev *lpcdev; resource_size_t io_end; struct resource *res; int ret; lpcdev = devm_kzalloc(dev, sizeof(*lpcdev), GFP_KERNEL); if (!lpcdev) return -ENOMEM; spin_lock_init(&lpcdev->cycle_lock); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); lpcdev->membase = devm_ioremap_resource(dev, res); if (IS_ERR(lpcdev->membase)) return PTR_ERR(lpcdev->membase); range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL); if (!range) return -ENOMEM; range->fwnode = dev->fwnode; range->flags = LOGIC_PIO_INDIRECT; range->size = PIO_INDIRECT_SIZE; range->hostdata = lpcdev; range->ops = &hisi_lpc_ops; lpcdev->io_host = range; ret = logic_pio_register_range(range); if (ret) { dev_err(dev, "register IO range failed (%d)!\n", ret); return ret; } /* register the LPC host PIO resources */ if (acpi_device) ret = hisi_lpc_acpi_probe(dev); else ret = of_platform_populate(dev->of_node, NULL, NULL, dev); if (ret) { logic_pio_unregister_range(range); return ret; } dev_set_drvdata(dev, lpcdev); io_end = lpcdev->io_host->io_start + lpcdev->io_host->size; dev_info(dev, "registered range [%pa - %pa]\n", &lpcdev->io_host->io_start, &io_end); return ret; } static int hisi_lpc_remove(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct acpi_device *acpi_device = ACPI_COMPANION(dev); struct hisi_lpc_dev *lpcdev = dev_get_drvdata(dev); struct logic_pio_hwaddr *range = lpcdev->io_host; if (acpi_device) hisi_lpc_acpi_remove(dev); else of_platform_depopulate(dev); logic_pio_unregister_range(range); return 0; } static const struct of_device_id hisi_lpc_of_match[] = { { .compatible = "hisilicon,hip06-lpc", }, { .compatible = "hisilicon,hip07-lpc", }, {} }; static struct platform_driver hisi_lpc_driver = { .driver = { .name = DRV_NAME, .of_match_table = hisi_lpc_of_match, .acpi_match_table = ACPI_PTR(hisi_lpc_acpi_match), }, .probe = hisi_lpc_probe, .remove = hisi_lpc_remove, }; builtin_platform_driver(hisi_lpc_driver);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1