Contributors: 25
Author Tokens Token Proportion Commits Commit Proportion
Harald Welte 9284 93.64% 3 5.88%
Dominik Brodowski 287 2.89% 17 33.33%
Alan Cox 116 1.17% 1 1.96%
Akinobu Mita 52 0.52% 3 5.88%
Jonathan Corbet 36 0.36% 1 1.96%
Arnd Bergmann 32 0.32% 2 3.92%
Al Viro 20 0.20% 3 5.88%
Kees Cook 19 0.19% 2 3.92%
Jiri Slaby 17 0.17% 2 3.92%
Olof Johansson 16 0.16% 1 1.96%
Dan Carpenter 9 0.09% 1 1.96%
Jia-Ju Bai 8 0.08% 1 1.96%
Nicolas Kaiser 3 0.03% 1 1.96%
Greg Kroah-Hartman 3 0.03% 2 3.92%
Roel Kluin 2 0.02% 1 1.96%
Mauro Carvalho Chehab 2 0.02% 1 1.96%
Arjan van de Ven 1 0.01% 1 1.96%
Alexey Dobriyan 1 0.01% 1 1.96%
Masahiro Yamada 1 0.01% 1 1.96%
Lucas De Marchi 1 0.01% 1 1.96%
Kirill Smelkov 1 0.01% 1 1.96%
Joe Perches 1 0.01% 1 1.96%
Nikanth Karthikesan 1 0.01% 1 1.96%
Michael Opdenacker 1 0.01% 1 1.96%
Tony Jones 1 0.01% 1 1.96%
Total 9915 51


/*
  * A driver for the PCMCIA Smartcard Reader "Omnikey CardMan Mobile 4000"
  *
  * cm4000_cs.c support.linux@omnikey.com
  *
  * Tue Oct 23 11:32:43 GMT 2001 herp - cleaned up header files
  * Sun Jan 20 10:11:15 MET 2002 herp - added modversion header files
  * Thu Nov 14 16:34:11 GMT 2002 mh   - added PPS functionality
  * Tue Nov 19 16:36:27 GMT 2002 mh   - added SUSPEND/RESUME functionailty
  * Wed Jul 28 12:55:01 CEST 2004 mh  - kernel 2.6 adjustments
  *
  * current version: 2.4.0gm4
  *
  * (C) 2000,2001,2002,2003,2004 Omnikey AG
  *
  * (C) 2005-2006 Harald Welte <laforge@gnumonks.org>
  * 	- Adhere to Kernel process/coding-style.rst
  * 	- Port to 2.6.13 "new" style PCMCIA
  * 	- Check for copy_{from,to}_user return values
  * 	- Use nonseekable_open()
  * 	- add class interface for udev device creation
  *
  * All rights reserved. Licensed under dual BSD/GPL license.
  */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/delay.h>
#include <linux/bitrev.h>
#include <linux/mutex.h>
#include <linux/uaccess.h>
#include <linux/io.h>

#include <pcmcia/cistpl.h>
#include <pcmcia/cisreg.h>
#include <pcmcia/ciscode.h>
#include <pcmcia/ds.h>

#include <linux/cm4000_cs.h>

/* #define ATR_CSUM */

#define reader_to_dev(x)	(&x->p_dev->dev)

/* n (debug level) is ignored */
/* additional debug output may be enabled by re-compiling with
 * CM4000_DEBUG set */
/* #define CM4000_DEBUG */
#define DEBUGP(n, rdr, x, args...) do { 		\
		dev_dbg(reader_to_dev(rdr), "%s:" x, 	\
			   __func__ , ## args);		\
	} while (0)

static DEFINE_MUTEX(cmm_mutex);

#define	T_1SEC		(HZ)
#define	T_10MSEC	msecs_to_jiffies(10)
#define	T_20MSEC	msecs_to_jiffies(20)
#define	T_40MSEC	msecs_to_jiffies(40)
#define	T_50MSEC	msecs_to_jiffies(50)
#define	T_100MSEC	msecs_to_jiffies(100)
#define	T_500MSEC	msecs_to_jiffies(500)

static void cm4000_release(struct pcmcia_device *link);

static int major;		/* major number we get from the kernel */

/* note: the first state has to have number 0 always */

#define	M_FETCH_ATR	0
#define	M_TIMEOUT_WAIT	1
#define	M_READ_ATR_LEN	2
#define	M_READ_ATR	3
#define	M_ATR_PRESENT	4
#define	M_BAD_CARD	5
#define M_CARDOFF	6

#define	LOCK_IO			0
#define	LOCK_MONITOR		1

#define IS_AUTOPPS_ACT		 6
#define	IS_PROCBYTE_PRESENT	 7
#define	IS_INVREV		 8
#define IS_ANY_T0		 9
#define	IS_ANY_T1		10
#define	IS_ATR_PRESENT		11
#define	IS_ATR_VALID		12
#define	IS_CMM_ABSENT		13
#define	IS_BAD_LENGTH		14
#define	IS_BAD_CSUM		15
#define	IS_BAD_CARD		16

#define REG_FLAGS0(x)		(x + 0)
#define REG_FLAGS1(x)		(x + 1)
#define REG_NUM_BYTES(x)	(x + 2)
#define REG_BUF_ADDR(x)		(x + 3)
#define REG_BUF_DATA(x)		(x + 4)
#define REG_NUM_SEND(x)		(x + 5)
#define REG_BAUDRATE(x)		(x + 6)
#define REG_STOPBITS(x)		(x + 7)

struct cm4000_dev {
	struct pcmcia_device *p_dev;

	unsigned char atr[MAX_ATR];
	unsigned char rbuf[512];
	unsigned char sbuf[512];

	wait_queue_head_t devq;		/* when removing cardman must not be
					   zeroed! */

	wait_queue_head_t ioq;		/* if IO is locked, wait on this Q */
	wait_queue_head_t atrq;		/* wait for ATR valid */
	wait_queue_head_t readq;	/* used by write to wake blk.read */

	/* warning: do not move this fields.
	 * initialising to zero depends on it - see ZERO_DEV below.  */
	unsigned char atr_csum;
	unsigned char atr_len_retry;
	unsigned short atr_len;
	unsigned short rlen;	/* bytes avail. after write */
	unsigned short rpos;	/* latest read pos. write zeroes */
	unsigned char procbyte;	/* T=0 procedure byte */
	unsigned char mstate;	/* state of card monitor */
	unsigned char cwarn;	/* slow down warning */
	unsigned char flags0;	/* cardman IO-flags 0 */
	unsigned char flags1;	/* cardman IO-flags 1 */
	unsigned int mdelay;	/* variable monitor speeds, in jiffies */

	unsigned int baudv;	/* baud value for speed */
	unsigned char ta1;
	unsigned char proto;	/* T=0, T=1, ... */
	unsigned long flags;	/* lock+flags (MONITOR,IO,ATR) * for concurrent
				   access */

	unsigned char pts[4];

	struct timer_list timer;	/* used to keep monitor running */
	int monitor_running;
};

#define	ZERO_DEV(dev)  						\
	memset(&dev->atr_csum,0,				\
		sizeof(struct cm4000_dev) - 			\
		offsetof(struct cm4000_dev, atr_csum))

static struct pcmcia_device *dev_table[CM4000_MAX_DEV];
static struct class *cmm_class;

/* This table doesn't use spaces after the comma between fields and thus
 * violates process/coding-style.rst.  However, I don't really think wrapping it around will
 * make it any clearer to read -HW */
static unsigned char fi_di_table[10][14] = {
/*FI     00   01   02   03   04   05   06   07   08   09   10   11   12   13 */
/*DI */
/* 0 */ {0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11},
/* 1 */ {0x01,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x91,0x11,0x11,0x11,0x11},
/* 2 */ {0x02,0x12,0x22,0x32,0x11,0x11,0x11,0x11,0x11,0x92,0xA2,0xB2,0x11,0x11},
/* 3 */ {0x03,0x13,0x23,0x33,0x43,0x53,0x63,0x11,0x11,0x93,0xA3,0xB3,0xC3,0xD3},
/* 4 */ {0x04,0x14,0x24,0x34,0x44,0x54,0x64,0x11,0x11,0x94,0xA4,0xB4,0xC4,0xD4},
/* 5 */ {0x00,0x15,0x25,0x35,0x45,0x55,0x65,0x11,0x11,0x95,0xA5,0xB5,0xC5,0xD5},
/* 6 */ {0x06,0x16,0x26,0x36,0x46,0x56,0x66,0x11,0x11,0x96,0xA6,0xB6,0xC6,0xD6},
/* 7 */ {0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11},
/* 8 */ {0x08,0x11,0x28,0x38,0x48,0x58,0x68,0x11,0x11,0x98,0xA8,0xB8,0xC8,0xD8},
/* 9 */ {0x09,0x19,0x29,0x39,0x49,0x59,0x69,0x11,0x11,0x99,0xA9,0xB9,0xC9,0xD9}
};

#ifndef CM4000_DEBUG
#define	xoutb	outb
#define	xinb	inb
#else
static inline void xoutb(unsigned char val, unsigned short port)
{
	pr_debug("outb(val=%.2x,port=%.4x)\n", val, port);
	outb(val, port);
}
static inline unsigned char xinb(unsigned short port)
{
	unsigned char val;

	val = inb(port);
	pr_debug("%.2x=inb(%.4x)\n", val, port);

	return val;
}
#endif

static inline unsigned char invert_revert(unsigned char ch)
{
	return bitrev8(~ch);
}

static void str_invert_revert(unsigned char *b, int len)
{
	int i;

	for (i = 0; i < len; i++)
		b[i] = invert_revert(b[i]);
}

#define	ATRLENCK(dev,pos) \
	if (pos>=dev->atr_len || pos>=MAX_ATR) \
		goto return_0;

static unsigned int calc_baudv(unsigned char fidi)
{
	unsigned int wcrcf, wbrcf, fi_rfu, di_rfu;

	fi_rfu = 372;
	di_rfu = 1;

	/* FI */
	switch ((fidi >> 4) & 0x0F) {
	case 0x00:
		wcrcf = 372;
		break;
	case 0x01:
		wcrcf = 372;
		break;
	case 0x02:
		wcrcf = 558;
		break;
	case 0x03:
		wcrcf = 744;
		break;
	case 0x04:
		wcrcf = 1116;
		break;
	case 0x05:
		wcrcf = 1488;
		break;
	case 0x06:
		wcrcf = 1860;
		break;
	case 0x07:
		wcrcf = fi_rfu;
		break;
	case 0x08:
		wcrcf = fi_rfu;
		break;
	case 0x09:
		wcrcf = 512;
		break;
	case 0x0A:
		wcrcf = 768;
		break;
	case 0x0B:
		wcrcf = 1024;
		break;
	case 0x0C:
		wcrcf = 1536;
		break;
	case 0x0D:
		wcrcf = 2048;
		break;
	default:
		wcrcf = fi_rfu;
		break;
	}

	/* DI */
	switch (fidi & 0x0F) {
	case 0x00:
		wbrcf = di_rfu;
		break;
	case 0x01:
		wbrcf = 1;
		break;
	case 0x02:
		wbrcf = 2;
		break;
	case 0x03:
		wbrcf = 4;
		break;
	case 0x04:
		wbrcf = 8;
		break;
	case 0x05:
		wbrcf = 16;
		break;
	case 0x06:
		wbrcf = 32;
		break;
	case 0x07:
		wbrcf = di_rfu;
		break;
	case 0x08:
		wbrcf = 12;
		break;
	case 0x09:
		wbrcf = 20;
		break;
	default:
		wbrcf = di_rfu;
		break;
	}

	return (wcrcf / wbrcf);
}

static unsigned short io_read_num_rec_bytes(unsigned int iobase,
					    unsigned short *s)
{
	unsigned short tmp;

	tmp = *s = 0;
	do {
		*s = tmp;
		tmp = inb(REG_NUM_BYTES(iobase)) |
				(inb(REG_FLAGS0(iobase)) & 4 ? 0x100 : 0);
	} while (tmp != *s);

	return *s;
}

static int parse_atr(struct cm4000_dev *dev)
{
	unsigned char any_t1, any_t0;
	unsigned char ch, ifno;
	int ix, done;

	DEBUGP(3, dev, "-> parse_atr: dev->atr_len = %i\n", dev->atr_len);

	if (dev->atr_len < 3) {
		DEBUGP(5, dev, "parse_atr: atr_len < 3\n");
		return 0;
	}

	if (dev->atr[0] == 0x3f)
		set_bit(IS_INVREV, &dev->flags);
	else
		clear_bit(IS_INVREV, &dev->flags);
	ix = 1;
	ifno = 1;
	ch = dev->atr[1];
	dev->proto = 0;		/* XXX PROTO */
	any_t1 = any_t0 = done = 0;
	dev->ta1 = 0x11;	/* defaults to 9600 baud */
	do {
		if (ifno == 1 && (ch & 0x10)) {
			/* read first interface byte and TA1 is present */
			dev->ta1 = dev->atr[2];
			DEBUGP(5, dev, "Card says FiDi is 0x%.2x\n", dev->ta1);
			ifno++;
		} else if ((ifno == 2) && (ch & 0x10)) { /* TA(2) */
			dev->ta1 = 0x11;
			ifno++;
		}

		DEBUGP(5, dev, "Yi=%.2x\n", ch & 0xf0);
		ix += ((ch & 0x10) >> 4)	/* no of int.face chars */
		    +((ch & 0x20) >> 5)
		    + ((ch & 0x40) >> 6)
		    + ((ch & 0x80) >> 7);
		/* ATRLENCK(dev,ix); */
		if (ch & 0x80) {	/* TDi */
			ch = dev->atr[ix];
			if ((ch & 0x0f)) {
				any_t1 = 1;
				DEBUGP(5, dev, "card is capable of T=1\n");
			} else {
				any_t0 = 1;
				DEBUGP(5, dev, "card is capable of T=0\n");
			}
		} else
			done = 1;
	} while (!done);

	DEBUGP(5, dev, "ix=%d noHist=%d any_t1=%d\n",
	      ix, dev->atr[1] & 15, any_t1);
	if (ix + 1 + (dev->atr[1] & 0x0f) + any_t1 != dev->atr_len) {
		DEBUGP(5, dev, "length error\n");
		return 0;
	}
	if (any_t0)
		set_bit(IS_ANY_T0, &dev->flags);

	if (any_t1) {		/* compute csum */
		dev->atr_csum = 0;
#ifdef ATR_CSUM
		for (i = 1; i < dev->atr_len; i++)
			dev->atr_csum ^= dev->atr[i];
		if (dev->atr_csum) {
			set_bit(IS_BAD_CSUM, &dev->flags);
			DEBUGP(5, dev, "bad checksum\n");
			goto return_0;
		}
#endif
		if (any_t0 == 0)
			dev->proto = 1;	/* XXX PROTO */
		set_bit(IS_ANY_T1, &dev->flags);
	}

	return 1;
}

struct card_fixup {
	char atr[12];
	u_int8_t atr_len;
	u_int8_t stopbits;
};

static struct card_fixup card_fixups[] = {
	{	/* ACOS */
		.atr = { 0x3b, 0xb3, 0x11, 0x00, 0x00, 0x41, 0x01 },
		.atr_len = 7,
		.stopbits = 0x03,
	},
	{	/* Motorola */
		.atr = {0x3b, 0x76, 0x13, 0x00, 0x00, 0x80, 0x62, 0x07,
			0x41, 0x81, 0x81 },
		.atr_len = 11,
		.stopbits = 0x04,
	},
};

static void set_cardparameter(struct cm4000_dev *dev)
{
	int i;
	unsigned int iobase = dev->p_dev->resource[0]->start;
	u_int8_t stopbits = 0x02; /* ISO default */

	DEBUGP(3, dev, "-> set_cardparameter\n");

	dev->flags1 = dev->flags1 | (((dev->baudv - 1) & 0x0100) >> 8);
	xoutb(dev->flags1, REG_FLAGS1(iobase));
	DEBUGP(5, dev, "flags1 = 0x%02x\n", dev->flags1);

	/* set baudrate */
	xoutb((unsigned char)((dev->baudv - 1) & 0xFF), REG_BAUDRATE(iobase));

	DEBUGP(5, dev, "baudv = %i -> write 0x%02x\n", dev->baudv,
	      ((dev->baudv - 1) & 0xFF));

	/* set stopbits */
	for (i = 0; i < ARRAY_SIZE(card_fixups); i++) {
		if (!memcmp(dev->atr, card_fixups[i].atr,
			    card_fixups[i].atr_len))
			stopbits = card_fixups[i].stopbits;
	}
	xoutb(stopbits, REG_STOPBITS(iobase));

	DEBUGP(3, dev, "<- set_cardparameter\n");
}

static int set_protocol(struct cm4000_dev *dev, struct ptsreq *ptsreq)
{

	unsigned long tmp, i;
	unsigned short num_bytes_read;
	unsigned char pts_reply[4];
	ssize_t rc;
	unsigned int iobase = dev->p_dev->resource[0]->start;

	rc = 0;

	DEBUGP(3, dev, "-> set_protocol\n");
	DEBUGP(5, dev, "ptsreq->Protocol = 0x%.8x, ptsreq->Flags=0x%.8x, "
		 "ptsreq->pts1=0x%.2x, ptsreq->pts2=0x%.2x, "
		 "ptsreq->pts3=0x%.2x\n", (unsigned int)ptsreq->protocol,
		 (unsigned int)ptsreq->flags, ptsreq->pts1, ptsreq->pts2,
		 ptsreq->pts3);

	/* Fill PTS structure */
	dev->pts[0] = 0xff;
	dev->pts[1] = 0x00;
	tmp = ptsreq->protocol;
	while ((tmp = (tmp >> 1)) > 0)
		dev->pts[1]++;
	dev->proto = dev->pts[1];	/* Set new protocol */
	dev->pts[1] = (0x01 << 4) | (dev->pts[1]);

	/* Correct Fi/Di according to CM4000 Fi/Di table */
	DEBUGP(5, dev, "Ta(1) from ATR is 0x%.2x\n", dev->ta1);
	/* set Fi/Di according to ATR TA(1) */
	dev->pts[2] = fi_di_table[dev->ta1 & 0x0F][(dev->ta1 >> 4) & 0x0F];

	/* Calculate PCK character */
	dev->pts[3] = dev->pts[0] ^ dev->pts[1] ^ dev->pts[2];

	DEBUGP(5, dev, "pts0=%.2x, pts1=%.2x, pts2=%.2x, pts3=%.2x\n",
	       dev->pts[0], dev->pts[1], dev->pts[2], dev->pts[3]);

	/* check card convention */
	if (test_bit(IS_INVREV, &dev->flags))
		str_invert_revert(dev->pts, 4);

	/* reset SM */
	xoutb(0x80, REG_FLAGS0(iobase));

	/* Enable access to the message buffer */
	DEBUGP(5, dev, "Enable access to the messages buffer\n");
	dev->flags1 = 0x20	/* T_Active */
	    | (test_bit(IS_INVREV, &dev->flags) ? 0x02 : 0x00) /* inv parity */
	    | ((dev->baudv >> 8) & 0x01);	/* MSB-baud */
	xoutb(dev->flags1, REG_FLAGS1(iobase));

	DEBUGP(5, dev, "Enable message buffer -> flags1 = 0x%.2x\n",
	       dev->flags1);

	/* write challenge to the buffer */
	DEBUGP(5, dev, "Write challenge to buffer: ");
	for (i = 0; i < 4; i++) {
		xoutb(i, REG_BUF_ADDR(iobase));
		xoutb(dev->pts[i], REG_BUF_DATA(iobase));	/* buf data */
#ifdef CM4000_DEBUG
		pr_debug("0x%.2x ", dev->pts[i]);
	}
	pr_debug("\n");
#else
	}
#endif

	/* set number of bytes to write */
	DEBUGP(5, dev, "Set number of bytes to write\n");
	xoutb(0x04, REG_NUM_SEND(iobase));

	/* Trigger CARDMAN CONTROLLER */
	xoutb(0x50, REG_FLAGS0(iobase));

	/* Monitor progress */
	/* wait for xmit done */
	DEBUGP(5, dev, "Waiting for NumRecBytes getting valid\n");

	for (i = 0; i < 100; i++) {
		if (inb(REG_FLAGS0(iobase)) & 0x08) {
			DEBUGP(5, dev, "NumRecBytes is valid\n");
			break;
		}
		usleep_range(10000, 11000);
	}
	if (i == 100) {
		DEBUGP(5, dev, "Timeout waiting for NumRecBytes getting "
		       "valid\n");
		rc = -EIO;
		goto exit_setprotocol;
	}

	DEBUGP(5, dev, "Reading NumRecBytes\n");
	for (i = 0; i < 100; i++) {
		io_read_num_rec_bytes(iobase, &num_bytes_read);
		if (num_bytes_read >= 4) {
			DEBUGP(2, dev, "NumRecBytes = %i\n", num_bytes_read);
			break;
		}
		usleep_range(10000, 11000);
	}

	/* check whether it is a short PTS reply? */
	if (num_bytes_read == 3)
		i = 0;

	if (i == 100) {
		DEBUGP(5, dev, "Timeout reading num_bytes_read\n");
		rc = -EIO;
		goto exit_setprotocol;
	}

	DEBUGP(5, dev, "Reset the CARDMAN CONTROLLER\n");
	xoutb(0x80, REG_FLAGS0(iobase));

	/* Read PPS reply */
	DEBUGP(5, dev, "Read PPS reply\n");
	for (i = 0; i < num_bytes_read; i++) {
		xoutb(i, REG_BUF_ADDR(iobase));
		pts_reply[i] = inb(REG_BUF_DATA(iobase));
	}

#ifdef CM4000_DEBUG
	DEBUGP(2, dev, "PTSreply: ");
	for (i = 0; i < num_bytes_read; i++) {
		pr_debug("0x%.2x ", pts_reply[i]);
	}
	pr_debug("\n");
#endif	/* CM4000_DEBUG */

	DEBUGP(5, dev, "Clear Tactive in Flags1\n");
	xoutb(0x20, REG_FLAGS1(iobase));

	/* Compare ptsreq and ptsreply */
	if ((dev->pts[0] == pts_reply[0]) &&
	    (dev->pts[1] == pts_reply[1]) &&
	    (dev->pts[2] == pts_reply[2]) && (dev->pts[3] == pts_reply[3])) {
		/* setcardparameter according to PPS */
		dev->baudv = calc_baudv(dev->pts[2]);
		set_cardparameter(dev);
	} else if ((dev->pts[0] == pts_reply[0]) &&
		   ((dev->pts[1] & 0xef) == pts_reply[1]) &&
		   ((pts_reply[0] ^ pts_reply[1]) == pts_reply[2])) {
		/* short PTS reply, set card parameter to default values */
		dev->baudv = calc_baudv(0x11);
		set_cardparameter(dev);
	} else
		rc = -EIO;

exit_setprotocol:
	DEBUGP(3, dev, "<- set_protocol\n");
	return rc;
}

static int io_detect_cm4000(unsigned int iobase, struct cm4000_dev *dev)
{

	/* note: statemachine is assumed to be reset */
	if (inb(REG_FLAGS0(iobase)) & 8) {
		clear_bit(IS_ATR_VALID, &dev->flags);
		set_bit(IS_CMM_ABSENT, &dev->flags);
		return 0;	/* detect CMM = 1 -> failure */
	}
	/* xoutb(0x40, REG_FLAGS1(iobase)); detectCMM */
	xoutb(dev->flags1 | 0x40, REG_FLAGS1(iobase));
	if ((inb(REG_FLAGS0(iobase)) & 8) == 0) {
		clear_bit(IS_ATR_VALID, &dev->flags);
		set_bit(IS_CMM_ABSENT, &dev->flags);
		return 0;	/* detect CMM=0 -> failure */
	}
	/* clear detectCMM again by restoring original flags1 */
	xoutb(dev->flags1, REG_FLAGS1(iobase));
	return 1;
}

static void terminate_monitor(struct cm4000_dev *dev)
{

	/* tell the monitor to stop and wait until
	 * it terminates.
	 */
	DEBUGP(3, dev, "-> terminate_monitor\n");
	wait_event_interruptible(dev->devq,
				 test_and_set_bit(LOCK_MONITOR,
						  (void *)&dev->flags));

	/* now, LOCK_MONITOR has been set.
	 * allow a last cycle in the monitor.
	 * the monitor will indicate that it has
	 * finished by clearing this bit.
	 */
	DEBUGP(5, dev, "Now allow last cycle of monitor!\n");
	while (test_bit(LOCK_MONITOR, (void *)&dev->flags))
		msleep(25);

	DEBUGP(5, dev, "Delete timer\n");
	del_timer_sync(&dev->timer);
#ifdef CM4000_DEBUG
	dev->monitor_running = 0;
#endif

	DEBUGP(3, dev, "<- terminate_monitor\n");
}

/*
 * monitor the card every 50msec. as a side-effect, retrieve the
 * atr once a card is inserted. another side-effect of retrieving the
 * atr is that the card will be powered on, so there is no need to
 * power on the card explicitly from the application: the driver
 * is already doing that for you.
 */

static void monitor_card(struct timer_list *t)
{
	struct cm4000_dev *dev = from_timer(dev, t, timer);
	unsigned int iobase = dev->p_dev->resource[0]->start;
	unsigned short s;
	struct ptsreq ptsreq;
	int i, atrc;

	DEBUGP(7, dev, "->  monitor_card\n");

	/* if someone has set the lock for us: we're done! */
	if (test_and_set_bit(LOCK_MONITOR, &dev->flags)) {
		DEBUGP(4, dev, "About to stop monitor\n");
		/* no */
		dev->rlen =
		    dev->rpos =
		    dev->atr_csum = dev->atr_len_retry = dev->cwarn = 0;
		dev->mstate = M_FETCH_ATR;
		clear_bit(LOCK_MONITOR, &dev->flags);
		/* close et al. are sleeping on devq, so wake it */
		wake_up_interruptible(&dev->devq);
		DEBUGP(2, dev, "<- monitor_card (we are done now)\n");
		return;
	}

	/* try to lock io: if it is already locked, just add another timer */
	if (test_and_set_bit(LOCK_IO, (void *)&dev->flags)) {
		DEBUGP(4, dev, "Couldn't get IO lock\n");
		goto return_with_timer;
	}

	/* is a card/a reader inserted at all ? */
	dev->flags0 = xinb(REG_FLAGS0(iobase));
	DEBUGP(7, dev, "dev->flags0 = 0x%2x\n", dev->flags0);
	DEBUGP(7, dev, "smartcard present: %s\n",
	       dev->flags0 & 1 ? "yes" : "no");
	DEBUGP(7, dev, "cardman present: %s\n",
	       dev->flags0 == 0xff ? "no" : "yes");

	if ((dev->flags0 & 1) == 0	/* no smartcard inserted */
	    || dev->flags0 == 0xff) {	/* no cardman inserted */
		/* no */
		dev->rlen =
		    dev->rpos =
		    dev->atr_csum = dev->atr_len_retry = dev->cwarn = 0;
		dev->mstate = M_FETCH_ATR;

		dev->flags &= 0x000000ff; /* only keep IO and MONITOR locks */

		if (dev->flags0 == 0xff) {
			DEBUGP(4, dev, "set IS_CMM_ABSENT bit\n");
			set_bit(IS_CMM_ABSENT, &dev->flags);
		} else if (test_bit(IS_CMM_ABSENT, &dev->flags)) {
			DEBUGP(4, dev, "clear IS_CMM_ABSENT bit "
			       "(card is removed)\n");
			clear_bit(IS_CMM_ABSENT, &dev->flags);
		}

		goto release_io;
	} else if ((dev->flags0 & 1) && test_bit(IS_CMM_ABSENT, &dev->flags)) {
		/* cardman and card present but cardman was absent before
		 * (after suspend with inserted card) */
		DEBUGP(4, dev, "clear IS_CMM_ABSENT bit (card is inserted)\n");
		clear_bit(IS_CMM_ABSENT, &dev->flags);
	}

	if (test_bit(IS_ATR_VALID, &dev->flags) == 1) {
		DEBUGP(7, dev, "believe ATR is already valid (do nothing)\n");
		goto release_io;
	}

	switch (dev->mstate) {
	case M_CARDOFF: {
		unsigned char flags0;

		DEBUGP(4, dev, "M_CARDOFF\n");
		flags0 = inb(REG_FLAGS0(iobase));
		if (flags0 & 0x02) {
			/* wait until Flags0 indicate power is off */
			dev->mdelay = T_10MSEC;
		} else {
			/* Flags0 indicate power off and no card inserted now;
			 * Reset CARDMAN CONTROLLER */
			xoutb(0x80, REG_FLAGS0(iobase));

			/* prepare for fetching ATR again: after card off ATR
			 * is read again automatically */
			dev->rlen =
			    dev->rpos =
			    dev->atr_csum =
			    dev->atr_len_retry = dev->cwarn = 0;
			dev->mstate = M_FETCH_ATR;

			/* minimal gap between CARDOFF and read ATR is 50msec */
			dev->mdelay = T_50MSEC;
		}
		break;
	}
	case M_FETCH_ATR:
		DEBUGP(4, dev, "M_FETCH_ATR\n");
		xoutb(0x80, REG_FLAGS0(iobase));
		DEBUGP(4, dev, "Reset BAUDV to 9600\n");
		dev->baudv = 0x173;	/* 9600 */
		xoutb(0x02, REG_STOPBITS(iobase));	/* stopbits=2 */
		xoutb(0x73, REG_BAUDRATE(iobase));	/* baud value */
		xoutb(0x21, REG_FLAGS1(iobase));	/* T_Active=1, baud
							   value */
		/* warm start vs. power on: */
		xoutb(dev->flags0 & 2 ? 0x46 : 0x44, REG_FLAGS0(iobase));
		dev->mdelay = T_40MSEC;
		dev->mstate = M_TIMEOUT_WAIT;
		break;
	case M_TIMEOUT_WAIT:
		DEBUGP(4, dev, "M_TIMEOUT_WAIT\n");
		/* numRecBytes */
		io_read_num_rec_bytes(iobase, &dev->atr_len);
		dev->mdelay = T_10MSEC;
		dev->mstate = M_READ_ATR_LEN;
		break;
	case M_READ_ATR_LEN:
		DEBUGP(4, dev, "M_READ_ATR_LEN\n");
		/* infinite loop possible, since there is no timeout */

#define	MAX_ATR_LEN_RETRY	100

		if (dev->atr_len == io_read_num_rec_bytes(iobase, &s)) {
			if (dev->atr_len_retry++ >= MAX_ATR_LEN_RETRY) {					/* + XX msec */
				dev->mdelay = T_10MSEC;
				dev->mstate = M_READ_ATR;
			}
		} else {
			dev->atr_len = s;
			dev->atr_len_retry = 0;	/* set new timeout */
		}

		DEBUGP(4, dev, "Current ATR_LEN = %i\n", dev->atr_len);
		break;
	case M_READ_ATR:
		DEBUGP(4, dev, "M_READ_ATR\n");
		xoutb(0x80, REG_FLAGS0(iobase));	/* reset SM */
		for (i = 0; i < dev->atr_len; i++) {
			xoutb(i, REG_BUF_ADDR(iobase));
			dev->atr[i] = inb(REG_BUF_DATA(iobase));
		}
		/* Deactivate T_Active flags */
		DEBUGP(4, dev, "Deactivate T_Active flags\n");
		dev->flags1 = 0x01;
		xoutb(dev->flags1, REG_FLAGS1(iobase));

		/* atr is present (which doesn't mean it's valid) */
		set_bit(IS_ATR_PRESENT, &dev->flags);
		if (dev->atr[0] == 0x03)
			str_invert_revert(dev->atr, dev->atr_len);
		atrc = parse_atr(dev);
		if (atrc == 0) {	/* atr invalid */
			dev->mdelay = 0;
			dev->mstate = M_BAD_CARD;
		} else {
			dev->mdelay = T_50MSEC;
			dev->mstate = M_ATR_PRESENT;
			set_bit(IS_ATR_VALID, &dev->flags);
		}

		if (test_bit(IS_ATR_VALID, &dev->flags) == 1) {
			DEBUGP(4, dev, "monitor_card: ATR valid\n");
 			/* if ta1 == 0x11, no PPS necessary (default values) */
			/* do not do PPS with multi protocol cards */
			if ((test_bit(IS_AUTOPPS_ACT, &dev->flags) == 0) &&
			    (dev->ta1 != 0x11) &&
			    !(test_bit(IS_ANY_T0, &dev->flags) &&
			    test_bit(IS_ANY_T1, &dev->flags))) {
				DEBUGP(4, dev, "Perform AUTOPPS\n");
				set_bit(IS_AUTOPPS_ACT, &dev->flags);
				ptsreq.protocol = (0x01 << dev->proto);
				ptsreq.flags = 0x01;
				ptsreq.pts1 = 0x00;
				ptsreq.pts2 = 0x00;
				ptsreq.pts3 = 0x00;
				if (set_protocol(dev, &ptsreq) == 0) {
					DEBUGP(4, dev, "AUTOPPS ret SUCC\n");
					clear_bit(IS_AUTOPPS_ACT, &dev->flags);
					wake_up_interruptible(&dev->atrq);
				} else {
					DEBUGP(4, dev, "AUTOPPS failed: "
					       "repower using defaults\n");
					/* prepare for repowering  */
					clear_bit(IS_ATR_PRESENT, &dev->flags);
					clear_bit(IS_ATR_VALID, &dev->flags);
					dev->rlen =
					    dev->rpos =
					    dev->atr_csum =
					    dev->atr_len_retry = dev->cwarn = 0;
					dev->mstate = M_FETCH_ATR;

					dev->mdelay = T_50MSEC;
				}
			} else {
				/* for cards which use slightly different
				 * params (extra guard time) */
				set_cardparameter(dev);
				if (test_bit(IS_AUTOPPS_ACT, &dev->flags) == 1)
					DEBUGP(4, dev, "AUTOPPS already active "
					       "2nd try:use default values\n");
				if (dev->ta1 == 0x11)
					DEBUGP(4, dev, "No AUTOPPS necessary "
					       "TA(1)==0x11\n");
				if (test_bit(IS_ANY_T0, &dev->flags)
				    && test_bit(IS_ANY_T1, &dev->flags))
					DEBUGP(4, dev, "Do NOT perform AUTOPPS "
					       "with multiprotocol cards\n");
				clear_bit(IS_AUTOPPS_ACT, &dev->flags);
				wake_up_interruptible(&dev->atrq);
			}
		} else {
			DEBUGP(4, dev, "ATR invalid\n");
			wake_up_interruptible(&dev->atrq);
		}
		break;
	case M_BAD_CARD:
		DEBUGP(4, dev, "M_BAD_CARD\n");
		/* slow down warning, but prompt immediately after insertion */
		if (dev->cwarn == 0 || dev->cwarn == 10) {
			set_bit(IS_BAD_CARD, &dev->flags);
			dev_warn(&dev->p_dev->dev, MODULE_NAME ": ");
			if (test_bit(IS_BAD_CSUM, &dev->flags)) {
				DEBUGP(4, dev, "ATR checksum (0x%.2x, should "
				       "be zero) failed\n", dev->atr_csum);
			}
#ifdef CM4000_DEBUG
			else if (test_bit(IS_BAD_LENGTH, &dev->flags)) {
				DEBUGP(4, dev, "ATR length error\n");
			} else {
				DEBUGP(4, dev, "card damaged or wrong way "
					"inserted\n");
			}
#endif
			dev->cwarn = 0;
			wake_up_interruptible(&dev->atrq);	/* wake open */
		}
		dev->cwarn++;
		dev->mdelay = T_100MSEC;
		dev->mstate = M_FETCH_ATR;
		break;
	default:
		DEBUGP(7, dev, "Unknown action\n");
		break;		/* nothing */
	}

release_io:
	DEBUGP(7, dev, "release_io\n");
	clear_bit(LOCK_IO, &dev->flags);
	wake_up_interruptible(&dev->ioq);	/* whoever needs IO */

return_with_timer:
	DEBUGP(7, dev, "<- monitor_card (returns with timer)\n");
	mod_timer(&dev->timer, jiffies + dev->mdelay);
	clear_bit(LOCK_MONITOR, &dev->flags);
}

/* Interface to userland (file_operations) */

static ssize_t cmm_read(struct file *filp, __user char *buf, size_t count,
			loff_t *ppos)
{
	struct cm4000_dev *dev = filp->private_data;
	unsigned int iobase = dev->p_dev->resource[0]->start;
	ssize_t rc;
	int i, j, k;

	DEBUGP(2, dev, "-> cmm_read(%s,%d)\n", current->comm, current->pid);

	if (count == 0)		/* according to manpage */
		return 0;

	if (!pcmcia_dev_present(dev->p_dev) || /* device removed */
	    test_bit(IS_CMM_ABSENT, &dev->flags))
		return -ENODEV;

	if (test_bit(IS_BAD_CSUM, &dev->flags))
		return -EIO;

	/* also see the note about this in cmm_write */
	if (wait_event_interruptible
	    (dev->atrq,
	     ((filp->f_flags & O_NONBLOCK)
	      || (test_bit(IS_ATR_PRESENT, (void *)&dev->flags) != 0)))) {
		if (filp->f_flags & O_NONBLOCK)
			return -EAGAIN;
		return -ERESTARTSYS;
	}

	if (test_bit(IS_ATR_VALID, &dev->flags) == 0)
		return -EIO;

	/* this one implements blocking IO */
	if (wait_event_interruptible
	    (dev->readq,
	     ((filp->f_flags & O_NONBLOCK) || (dev->rpos < dev->rlen)))) {
		if (filp->f_flags & O_NONBLOCK)
			return -EAGAIN;
		return -ERESTARTSYS;
	}

	/* lock io */
	if (wait_event_interruptible
	    (dev->ioq,
	     ((filp->f_flags & O_NONBLOCK)
	      || (test_and_set_bit(LOCK_IO, (void *)&dev->flags) == 0)))) {
		if (filp->f_flags & O_NONBLOCK)
			return -EAGAIN;
		return -ERESTARTSYS;
	}

	rc = 0;
	dev->flags0 = inb(REG_FLAGS0(iobase));
	if ((dev->flags0 & 1) == 0	/* no smartcard inserted */
	    || dev->flags0 == 0xff) {	/* no cardman inserted */
		clear_bit(IS_ATR_VALID, &dev->flags);
		if (dev->flags0 & 1) {
			set_bit(IS_CMM_ABSENT, &dev->flags);
			rc = -ENODEV;
		} else {
			rc = -EIO;
		}
		goto release_io;
	}

	DEBUGP(4, dev, "begin read answer\n");
	j = min(count, (size_t)(dev->rlen - dev->rpos));
	k = dev->rpos;
	if (k + j > 255)
		j = 256 - k;
	DEBUGP(4, dev, "read1 j=%d\n", j);
	for (i = 0; i < j; i++) {
		xoutb(k++, REG_BUF_ADDR(iobase));
		dev->rbuf[i] = xinb(REG_BUF_DATA(iobase));
	}
	j = min(count, (size_t)(dev->rlen - dev->rpos));
	if (k + j > 255) {
		DEBUGP(4, dev, "read2 j=%d\n", j);
		dev->flags1 |= 0x10;	/* MSB buf addr set */
		xoutb(dev->flags1, REG_FLAGS1(iobase));
		for (; i < j; i++) {
			xoutb(k++, REG_BUF_ADDR(iobase));
			dev->rbuf[i] = xinb(REG_BUF_DATA(iobase));
		}
	}

	if (dev->proto == 0 && count > dev->rlen - dev->rpos && i) {
		DEBUGP(4, dev, "T=0 and count > buffer\n");
		dev->rbuf[i] = dev->rbuf[i - 1];
		dev->rbuf[i - 1] = dev->procbyte;
		j++;
	}
	count = j;

	dev->rpos = dev->rlen + 1;

	/* Clear T1Active */
	DEBUGP(4, dev, "Clear T1Active\n");
	dev->flags1 &= 0xdf;
	xoutb(dev->flags1, REG_FLAGS1(iobase));

	xoutb(0, REG_FLAGS1(iobase));	/* clear detectCMM */
	/* last check before exit */
	if (!io_detect_cm4000(iobase, dev)) {
		rc = -ENODEV;
		goto release_io;
	}

	if (test_bit(IS_INVREV, &dev->flags) && count > 0)
		str_invert_revert(dev->rbuf, count);

	if (copy_to_user(buf, dev->rbuf, count))
		rc = -EFAULT;

release_io:
	clear_bit(LOCK_IO, &dev->flags);
	wake_up_interruptible(&dev->ioq);

	DEBUGP(2, dev, "<- cmm_read returns: rc = %zi\n",
	       (rc < 0 ? rc : count));
	return rc < 0 ? rc : count;
}

static ssize_t cmm_write(struct file *filp, const char __user *buf,
			 size_t count, loff_t *ppos)
{
	struct cm4000_dev *dev = filp->private_data;
	unsigned int iobase = dev->p_dev->resource[0]->start;
	unsigned short s;
	unsigned char tmp;
	unsigned char infolen;
	unsigned char sendT0;
	unsigned short nsend;
	unsigned short nr;
	ssize_t rc;
	int i;

	DEBUGP(2, dev, "-> cmm_write(%s,%d)\n", current->comm, current->pid);

	if (count == 0)		/* according to manpage */
		return 0;

	if (dev->proto == 0 && count < 4) {
		/* T0 must have at least 4 bytes */
		DEBUGP(4, dev, "T0 short write\n");
		return -EIO;
	}

	nr = count & 0x1ff;	/* max bytes to write */

	sendT0 = dev->proto ? 0 : nr > 5 ? 0x08 : 0;

	if (!pcmcia_dev_present(dev->p_dev) || /* device removed */
	    test_bit(IS_CMM_ABSENT, &dev->flags))
		return -ENODEV;

	if (test_bit(IS_BAD_CSUM, &dev->flags)) {
		DEBUGP(4, dev, "bad csum\n");
		return -EIO;
	}

	/*
	 * wait for atr to become valid.
	 * note: it is important to lock this code. if we dont, the monitor
	 * could be run between test_bit and the call to sleep on the
	 * atr-queue.  if *then* the monitor detects atr valid, it will wake up
	 * any process on the atr-queue, *but* since we have been interrupted,
	 * we do not yet sleep on this queue. this would result in a missed
	 * wake_up and the calling process would sleep forever (until
	 * interrupted).  also, do *not* restore_flags before sleep_on, because
	 * this could result in the same situation!
	 */
	if (wait_event_interruptible
	    (dev->atrq,
	     ((filp->f_flags & O_NONBLOCK)
	      || (test_bit(IS_ATR_PRESENT, (void *)&dev->flags) != 0)))) {
		if (filp->f_flags & O_NONBLOCK)
			return -EAGAIN;
		return -ERESTARTSYS;
	}

	if (test_bit(IS_ATR_VALID, &dev->flags) == 0) {	/* invalid atr */
		DEBUGP(4, dev, "invalid ATR\n");
		return -EIO;
	}

	/* lock io */
	if (wait_event_interruptible
	    (dev->ioq,
	     ((filp->f_flags & O_NONBLOCK)
	      || (test_and_set_bit(LOCK_IO, (void *)&dev->flags) == 0)))) {
		if (filp->f_flags & O_NONBLOCK)
			return -EAGAIN;
		return -ERESTARTSYS;
	}

	if (copy_from_user(dev->sbuf, buf, ((count > 512) ? 512 : count)))
		return -EFAULT;

	rc = 0;
	dev->flags0 = inb(REG_FLAGS0(iobase));
	if ((dev->flags0 & 1) == 0	/* no smartcard inserted */
	    || dev->flags0 == 0xff) {	/* no cardman inserted */
		clear_bit(IS_ATR_VALID, &dev->flags);
		if (dev->flags0 & 1) {
			set_bit(IS_CMM_ABSENT, &dev->flags);
			rc = -ENODEV;
		} else {
			DEBUGP(4, dev, "IO error\n");
			rc = -EIO;
		}
		goto release_io;
	}

	xoutb(0x80, REG_FLAGS0(iobase));	/* reset SM  */

	if (!io_detect_cm4000(iobase, dev)) {
		rc = -ENODEV;
		goto release_io;
	}

	/* reflect T=0 send/read mode in flags1 */
	dev->flags1 |= (sendT0);

	set_cardparameter(dev);

	/* dummy read, reset flag procedure received */
	tmp = inb(REG_FLAGS1(iobase));

	dev->flags1 = 0x20	/* T_Active */
	    | (sendT0)
	    | (test_bit(IS_INVREV, &dev->flags) ? 2 : 0)/* inverse parity  */
	    | (((dev->baudv - 1) & 0x0100) >> 8);	/* MSB-Baud */
	DEBUGP(1, dev, "set dev->flags1 = 0x%.2x\n", dev->flags1);
	xoutb(dev->flags1, REG_FLAGS1(iobase));

	/* xmit data */
	DEBUGP(4, dev, "Xmit data\n");
	for (i = 0; i < nr; i++) {
		if (i >= 256) {
			dev->flags1 = 0x20	/* T_Active */
			    | (sendT0)	/* SendT0 */
				/* inverse parity: */
			    | (test_bit(IS_INVREV, &dev->flags) ? 2 : 0)
			    | (((dev->baudv - 1) & 0x0100) >> 8) /* MSB-Baud */
			    | 0x10;	/* set address high */
			DEBUGP(4, dev, "dev->flags = 0x%.2x - set address "
			       "high\n", dev->flags1);
			xoutb(dev->flags1, REG_FLAGS1(iobase));
		}
		if (test_bit(IS_INVREV, &dev->flags)) {
			DEBUGP(4, dev, "Apply inverse convention for 0x%.2x "
				"-> 0x%.2x\n", (unsigned char)dev->sbuf[i],
			      invert_revert(dev->sbuf[i]));
			xoutb(i, REG_BUF_ADDR(iobase));
			xoutb(invert_revert(dev->sbuf[i]),
			      REG_BUF_DATA(iobase));
		} else {
			xoutb(i, REG_BUF_ADDR(iobase));
			xoutb(dev->sbuf[i], REG_BUF_DATA(iobase));
		}
	}
	DEBUGP(4, dev, "Xmit done\n");

	if (dev->proto == 0) {
		/* T=0 proto: 0 byte reply  */
		if (nr == 4) {
			DEBUGP(4, dev, "T=0 assumes 0 byte reply\n");
			xoutb(i, REG_BUF_ADDR(iobase));
			if (test_bit(IS_INVREV, &dev->flags))
				xoutb(0xff, REG_BUF_DATA(iobase));
			else
				xoutb(0x00, REG_BUF_DATA(iobase));
		}

		/* numSendBytes */
		if (sendT0)
			nsend = nr;
		else {
			if (nr == 4)
				nsend = 5;
			else {
				nsend = 5 + (unsigned char)dev->sbuf[4];
				if (dev->sbuf[4] == 0)
					nsend += 0x100;
			}
		}
	} else
		nsend = nr;

	/* T0: output procedure byte */
	if (test_bit(IS_INVREV, &dev->flags)) {
		DEBUGP(4, dev, "T=0 set Procedure byte (inverse-reverse) "
		       "0x%.2x\n", invert_revert(dev->sbuf[1]));
		xoutb(invert_revert(dev->sbuf[1]), REG_NUM_BYTES(iobase));
	} else {
		DEBUGP(4, dev, "T=0 set Procedure byte 0x%.2x\n", dev->sbuf[1]);
		xoutb(dev->sbuf[1], REG_NUM_BYTES(iobase));
	}

	DEBUGP(1, dev, "set NumSendBytes = 0x%.2x\n",
	       (unsigned char)(nsend & 0xff));
	xoutb((unsigned char)(nsend & 0xff), REG_NUM_SEND(iobase));

	DEBUGP(1, dev, "Trigger CARDMAN CONTROLLER (0x%.2x)\n",
	       0x40	/* SM_Active */
	      | (dev->flags0 & 2 ? 0 : 4)	/* power on if needed */
	      |(dev->proto ? 0x10 : 0x08)	/* T=1/T=0 */
	      |(nsend & 0x100) >> 8 /* MSB numSendBytes */ );
	xoutb(0x40		/* SM_Active */
	      | (dev->flags0 & 2 ? 0 : 4)	/* power on if needed */
	      |(dev->proto ? 0x10 : 0x08)	/* T=1/T=0 */
	      |(nsend & 0x100) >> 8,	/* MSB numSendBytes */
	      REG_FLAGS0(iobase));

	/* wait for xmit done */
	if (dev->proto == 1) {
		DEBUGP(4, dev, "Wait for xmit done\n");
		for (i = 0; i < 1000; i++) {
			if (inb(REG_FLAGS0(iobase)) & 0x08)
				break;
			msleep_interruptible(10);
		}
		if (i == 1000) {
			DEBUGP(4, dev, "timeout waiting for xmit done\n");
			rc = -EIO;
			goto release_io;
		}
	}

	/* T=1: wait for infoLen */

	infolen = 0;
	if (dev->proto) {
		/* wait until infoLen is valid */
		for (i = 0; i < 6000; i++) {	/* max waiting time of 1 min */
			io_read_num_rec_bytes(iobase, &s);
			if (s >= 3) {
				infolen = inb(REG_FLAGS1(iobase));
				DEBUGP(4, dev, "infolen=%d\n", infolen);
				break;
			}
			msleep_interruptible(10);
		}
		if (i == 6000) {
			DEBUGP(4, dev, "timeout waiting for infoLen\n");
			rc = -EIO;
			goto release_io;
		}
	} else
		clear_bit(IS_PROCBYTE_PRESENT, &dev->flags);

	/* numRecBytes | bit9 of numRecytes */
	io_read_num_rec_bytes(iobase, &dev->rlen);
	for (i = 0; i < 600; i++) {	/* max waiting time of 2 sec */
		if (dev->proto) {
			if (dev->rlen >= infolen + 4)
				break;
		}
		msleep_interruptible(10);
		/* numRecBytes | bit9 of numRecytes */
		io_read_num_rec_bytes(iobase, &s);
		if (s > dev->rlen) {
			DEBUGP(1, dev, "NumRecBytes inc (reset timeout)\n");
			i = 0;	/* reset timeout */
			dev->rlen = s;
		}
		/* T=0: we are done when numRecBytes doesn't
		 *      increment any more and NoProcedureByte
		 *      is set and numRecBytes == bytes sent + 6
		 *      (header bytes + data + 1 for sw2)
		 *      except when the card replies an error
		 *      which means, no data will be sent back.
		 */
		else if (dev->proto == 0) {
			if ((inb(REG_BUF_ADDR(iobase)) & 0x80)) {
				/* no procedure byte received since last read */
				DEBUGP(1, dev, "NoProcedure byte set\n");
				/* i=0; */
			} else {
				/* procedure byte received since last read */
				DEBUGP(1, dev, "NoProcedure byte unset "
					"(reset timeout)\n");
				dev->procbyte = inb(REG_FLAGS1(iobase));
				DEBUGP(1, dev, "Read procedure byte 0x%.2x\n",
				      dev->procbyte);
				i = 0;	/* resettimeout */
			}
			if (inb(REG_FLAGS0(iobase)) & 0x08) {
				DEBUGP(1, dev, "T0Done flag (read reply)\n");
				break;
			}
		}
		if (dev->proto)
			infolen = inb(REG_FLAGS1(iobase));
	}
	if (i == 600) {
		DEBUGP(1, dev, "timeout waiting for numRecBytes\n");
		rc = -EIO;
		goto release_io;
	} else {
		if (dev->proto == 0) {
			DEBUGP(1, dev, "Wait for T0Done bit to be  set\n");
			for (i = 0; i < 1000; i++) {
				if (inb(REG_FLAGS0(iobase)) & 0x08)
					break;
				msleep_interruptible(10);
			}
			if (i == 1000) {
				DEBUGP(1, dev, "timeout waiting for T0Done\n");
				rc = -EIO;
				goto release_io;
			}

			dev->procbyte = inb(REG_FLAGS1(iobase));
			DEBUGP(4, dev, "Read procedure byte 0x%.2x\n",
			      dev->procbyte);

			io_read_num_rec_bytes(iobase, &dev->rlen);
			DEBUGP(4, dev, "Read NumRecBytes = %i\n", dev->rlen);

		}
	}
	/* T=1: read offset=zero, T=0: read offset=after challenge */
	dev->rpos = dev->proto ? 0 : nr == 4 ? 5 : nr > dev->rlen ? 5 : nr;
	DEBUGP(4, dev, "dev->rlen = %i,  dev->rpos = %i, nr = %i\n",
	      dev->rlen, dev->rpos, nr);

release_io:
	DEBUGP(4, dev, "Reset SM\n");
	xoutb(0x80, REG_FLAGS0(iobase));	/* reset SM */

	if (rc < 0) {
		DEBUGP(4, dev, "Write failed but clear T_Active\n");
		dev->flags1 &= 0xdf;
		xoutb(dev->flags1, REG_FLAGS1(iobase));
	}

	clear_bit(LOCK_IO, &dev->flags);
	wake_up_interruptible(&dev->ioq);
	wake_up_interruptible(&dev->readq);	/* tell read we have data */

	/* ITSEC E2: clear write buffer */
	memset((char *)dev->sbuf, 0, 512);

	/* return error or actually written bytes */
	DEBUGP(2, dev, "<- cmm_write\n");
	return rc < 0 ? rc : nr;
}

static void start_monitor(struct cm4000_dev *dev)
{
	DEBUGP(3, dev, "-> start_monitor\n");
	if (!dev->monitor_running) {
		DEBUGP(5, dev, "create, init and add timer\n");
		timer_setup(&dev->timer, monitor_card, 0);
		dev->monitor_running = 1;
		mod_timer(&dev->timer, jiffies);
	} else
		DEBUGP(5, dev, "monitor already running\n");
	DEBUGP(3, dev, "<- start_monitor\n");
}

static void stop_monitor(struct cm4000_dev *dev)
{
	DEBUGP(3, dev, "-> stop_monitor\n");
	if (dev->monitor_running) {
		DEBUGP(5, dev, "stopping monitor\n");
		terminate_monitor(dev);
		/* reset monitor SM */
		clear_bit(IS_ATR_VALID, &dev->flags);
		clear_bit(IS_ATR_PRESENT, &dev->flags);
	} else
		DEBUGP(5, dev, "monitor already stopped\n");
	DEBUGP(3, dev, "<- stop_monitor\n");
}

static long cmm_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
	struct cm4000_dev *dev = filp->private_data;
	unsigned int iobase = dev->p_dev->resource[0]->start;
	struct inode *inode = file_inode(filp);
	struct pcmcia_device *link;
	int rc;
	void __user *argp = (void __user *)arg;
#ifdef CM4000_DEBUG
	char *ioctl_names[CM_IOC_MAXNR + 1] = {
		[_IOC_NR(CM_IOCGSTATUS)] "CM_IOCGSTATUS",
		[_IOC_NR(CM_IOCGATR)] "CM_IOCGATR",
		[_IOC_NR(CM_IOCARDOFF)] "CM_IOCARDOFF",
		[_IOC_NR(CM_IOCSPTS)] "CM_IOCSPTS",
		[_IOC_NR(CM_IOSDBGLVL)] "CM4000_DBGLVL",
	};
	DEBUGP(3, dev, "cmm_ioctl(device=%d.%d) %s\n", imajor(inode),
	       iminor(inode), ioctl_names[_IOC_NR(cmd)]);
#endif

	mutex_lock(&cmm_mutex);
	rc = -ENODEV;
	link = dev_table[iminor(inode)];
	if (!pcmcia_dev_present(link)) {
		DEBUGP(4, dev, "DEV_OK false\n");
		goto out;
	}

	if (test_bit(IS_CMM_ABSENT, &dev->flags)) {
		DEBUGP(4, dev, "CMM_ABSENT flag set\n");
		goto out;
	}
	rc = -EINVAL;

	if (_IOC_TYPE(cmd) != CM_IOC_MAGIC) {
		DEBUGP(4, dev, "ioctype mismatch\n");
		goto out;
	}
	if (_IOC_NR(cmd) > CM_IOC_MAXNR) {
		DEBUGP(4, dev, "iocnr mismatch\n");
		goto out;
	}
	rc = 0;

	switch (cmd) {
	case CM_IOCGSTATUS:
		DEBUGP(4, dev, " ... in CM_IOCGSTATUS\n");
		{
			int status;

			/* clear other bits, but leave inserted & powered as
			 * they are */
			status = dev->flags0 & 3;
			if (test_bit(IS_ATR_PRESENT, &dev->flags))
				status |= CM_ATR_PRESENT;
			if (test_bit(IS_ATR_VALID, &dev->flags))
				status |= CM_ATR_VALID;
			if (test_bit(IS_CMM_ABSENT, &dev->flags))
				status |= CM_NO_READER;
			if (test_bit(IS_BAD_CARD, &dev->flags))
				status |= CM_BAD_CARD;
			if (copy_to_user(argp, &status, sizeof(int)))
				rc = -EFAULT;
		}
		break;
	case CM_IOCGATR:
		DEBUGP(4, dev, "... in CM_IOCGATR\n");
		{
			struct atreq __user *atreq = argp;
			int tmp;
			/* allow nonblocking io and being interrupted */
			if (wait_event_interruptible
			    (dev->atrq,
			     ((filp->f_flags & O_NONBLOCK)
			      || (test_bit(IS_ATR_PRESENT, (void *)&dev->flags)
				  != 0)))) {
				if (filp->f_flags & O_NONBLOCK)
					rc = -EAGAIN;
				else
					rc = -ERESTARTSYS;
				break;
			}

			rc = -EFAULT;
			if (test_bit(IS_ATR_VALID, &dev->flags) == 0) {
				tmp = -1;
				if (copy_to_user(&(atreq->atr_len), &tmp,
						 sizeof(int)))
					break;
			} else {
				if (copy_to_user(atreq->atr, dev->atr,
						 dev->atr_len))
					break;

				tmp = dev->atr_len;
				if (copy_to_user(&(atreq->atr_len), &tmp, sizeof(int)))
					break;
			}
			rc = 0;
			break;
		}
	case CM_IOCARDOFF:

#ifdef CM4000_DEBUG
		DEBUGP(4, dev, "... in CM_IOCARDOFF\n");
		if (dev->flags0 & 0x01) {
			DEBUGP(4, dev, "    Card inserted\n");
		} else {
			DEBUGP(2, dev, "    No card inserted\n");
		}
		if (dev->flags0 & 0x02) {
			DEBUGP(4, dev, "    Card powered\n");
		} else {
			DEBUGP(2, dev, "    Card not powered\n");
		}
#endif

		/* is a card inserted and powered? */
		if ((dev->flags0 & 0x01) && (dev->flags0 & 0x02)) {

			/* get IO lock */
			if (wait_event_interruptible
			    (dev->ioq,
			     ((filp->f_flags & O_NONBLOCK)
			      || (test_and_set_bit(LOCK_IO, (void *)&dev->flags)
				  == 0)))) {
				if (filp->f_flags & O_NONBLOCK)
					rc = -EAGAIN;
				else
					rc = -ERESTARTSYS;
				break;
			}
			/* Set Flags0 = 0x42 */
			DEBUGP(4, dev, "Set Flags0=0x42 \n");
			xoutb(0x42, REG_FLAGS0(iobase));
			clear_bit(IS_ATR_PRESENT, &dev->flags);
			clear_bit(IS_ATR_VALID, &dev->flags);
			dev->mstate = M_CARDOFF;
			clear_bit(LOCK_IO, &dev->flags);
			if (wait_event_interruptible
			    (dev->atrq,
			     ((filp->f_flags & O_NONBLOCK)
			      || (test_bit(IS_ATR_VALID, (void *)&dev->flags) !=
				  0)))) {
				if (filp->f_flags & O_NONBLOCK)
					rc = -EAGAIN;
				else
					rc = -ERESTARTSYS;
				break;
			}
		}
		/* release lock */
		clear_bit(LOCK_IO, &dev->flags);
		wake_up_interruptible(&dev->ioq);

		rc = 0;
		break;
	case CM_IOCSPTS:
		{
			struct ptsreq krnptsreq;

			if (copy_from_user(&krnptsreq, argp,
					   sizeof(struct ptsreq))) {
				rc = -EFAULT;
				break;
			}

			rc = 0;
			DEBUGP(4, dev, "... in CM_IOCSPTS\n");
			/* wait for ATR to get valid */
			if (wait_event_interruptible
			    (dev->atrq,
			     ((filp->f_flags & O_NONBLOCK)
			      || (test_bit(IS_ATR_PRESENT, (void *)&dev->flags)
				  != 0)))) {
				if (filp->f_flags & O_NONBLOCK)
					rc = -EAGAIN;
				else
					rc = -ERESTARTSYS;
				break;
			}
			/* get IO lock */
			if (wait_event_interruptible
			    (dev->ioq,
			     ((filp->f_flags & O_NONBLOCK)
			      || (test_and_set_bit(LOCK_IO, (void *)&dev->flags)
				  == 0)))) {
				if (filp->f_flags & O_NONBLOCK)
					rc = -EAGAIN;
				else
					rc = -ERESTARTSYS;
				break;
			}

			if ((rc = set_protocol(dev, &krnptsreq)) != 0) {
				/* auto power_on again */
				dev->mstate = M_FETCH_ATR;
				clear_bit(IS_ATR_VALID, &dev->flags);
			}
			/* release lock */
			clear_bit(LOCK_IO, &dev->flags);
			wake_up_interruptible(&dev->ioq);

		}
		break;
#ifdef CM4000_DEBUG
	case CM_IOSDBGLVL:
		rc = -ENOTTY;
		break;
#endif
	default:
		DEBUGP(4, dev, "... in default (unknown IOCTL code)\n");
		rc = -ENOTTY;
	}
out:
	mutex_unlock(&cmm_mutex);
	return rc;
}

static int cmm_open(struct inode *inode, struct file *filp)
{
	struct cm4000_dev *dev;
	struct pcmcia_device *link;
	int minor = iminor(inode);
	int ret;

	if (minor >= CM4000_MAX_DEV)
		return -ENODEV;

	mutex_lock(&cmm_mutex);
	link = dev_table[minor];
	if (link == NULL || !pcmcia_dev_present(link)) {
		ret = -ENODEV;
		goto out;
	}

	if (link->open) {
		ret = -EBUSY;
		goto out;
	}

	dev = link->priv;
	filp->private_data = dev;

	DEBUGP(2, dev, "-> cmm_open(device=%d.%d process=%s,%d)\n",
	      imajor(inode), minor, current->comm, current->pid);

	/* init device variables, they may be "polluted" after close
	 * or, the device may never have been closed (i.e. open failed)
	 */

	ZERO_DEV(dev);

	/* opening will always block since the
	 * monitor will be started by open, which
	 * means we have to wait for ATR becoming
	 * valid = block until valid (or card
	 * inserted)
	 */
	if (filp->f_flags & O_NONBLOCK) {
		ret = -EAGAIN;
		goto out;
	}

	dev->mdelay = T_50MSEC;

	/* start monitoring the cardstatus */
	start_monitor(dev);

	link->open = 1;		/* only one open per device */

	DEBUGP(2, dev, "<- cmm_open\n");
	ret = stream_open(inode, filp);
out:
	mutex_unlock(&cmm_mutex);
	return ret;
}

static int cmm_close(struct inode *inode, struct file *filp)
{
	struct cm4000_dev *dev;
	struct pcmcia_device *link;
	int minor = iminor(inode);

	if (minor >= CM4000_MAX_DEV)
		return -ENODEV;

	link = dev_table[minor];
	if (link == NULL)
		return -ENODEV;

	dev = link->priv;

	DEBUGP(2, dev, "-> cmm_close(maj/min=%d.%d)\n",
	       imajor(inode), minor);

	stop_monitor(dev);

	ZERO_DEV(dev);

	link->open = 0;		/* only one open per device */
	wake_up(&dev->devq);	/* socket removed? */

	DEBUGP(2, dev, "cmm_close\n");
	return 0;
}

static void cmm_cm4000_release(struct pcmcia_device * link)
{
	struct cm4000_dev *dev = link->priv;

	/* dont terminate the monitor, rather rely on
	 * close doing that for us.
	 */
	DEBUGP(3, dev, "-> cmm_cm4000_release\n");
	while (link->open) {
		printk(KERN_INFO MODULE_NAME ": delaying release until "
		       "process has terminated\n");
		/* note: don't interrupt us:
		 * close the applications which own
		 * the devices _first_ !
		 */
		wait_event(dev->devq, (link->open == 0));
	}
	/* dev->devq=NULL;	this cannot be zeroed earlier */
	DEBUGP(3, dev, "<- cmm_cm4000_release\n");
	return;
}

/*==== Interface to PCMCIA Layer =======================================*/

static int cm4000_config_check(struct pcmcia_device *p_dev, void *priv_data)
{
	return pcmcia_request_io(p_dev);
}

static int cm4000_config(struct pcmcia_device * link, int devno)
{
	link->config_flags |= CONF_AUTO_SET_IO;

	/* read the config-tuples */
	if (pcmcia_loop_config(link, cm4000_config_check, NULL))
		goto cs_release;

	if (pcmcia_enable_device(link))
		goto cs_release;

	return 0;

cs_release:
	cm4000_release(link);
	return -ENODEV;
}

static int cm4000_suspend(struct pcmcia_device *link)
{
	struct cm4000_dev *dev;

	dev = link->priv;
	stop_monitor(dev);

	return 0;
}

static int cm4000_resume(struct pcmcia_device *link)
{
	struct cm4000_dev *dev;

	dev = link->priv;
	if (link->open)
		start_monitor(dev);

	return 0;
}

static void cm4000_release(struct pcmcia_device *link)
{
	cmm_cm4000_release(link);	/* delay release until device closed */
	pcmcia_disable_device(link);
}

static int cm4000_probe(struct pcmcia_device *link)
{
	struct cm4000_dev *dev;
	int i, ret;

	for (i = 0; i < CM4000_MAX_DEV; i++)
		if (dev_table[i] == NULL)
			break;

	if (i == CM4000_MAX_DEV) {
		printk(KERN_NOTICE MODULE_NAME ": all devices in use\n");
		return -ENODEV;
	}

	/* create a new cm4000_cs device */
	dev = kzalloc(sizeof(struct cm4000_dev), GFP_KERNEL);
	if (dev == NULL)
		return -ENOMEM;

	dev->p_dev = link;
	link->priv = dev;
	dev_table[i] = link;

	init_waitqueue_head(&dev->devq);
	init_waitqueue_head(&dev->ioq);
	init_waitqueue_head(&dev->atrq);
	init_waitqueue_head(&dev->readq);

	ret = cm4000_config(link, i);
	if (ret) {
		dev_table[i] = NULL;
		kfree(dev);
		return ret;
	}

	device_create(cmm_class, NULL, MKDEV(major, i), NULL, "cmm%d", i);

	return 0;
}

static void cm4000_detach(struct pcmcia_device *link)
{
	struct cm4000_dev *dev = link->priv;
	int devno;

	/* find device */
	for (devno = 0; devno < CM4000_MAX_DEV; devno++)
		if (dev_table[devno] == link)
			break;
	if (devno == CM4000_MAX_DEV)
		return;

	stop_monitor(dev);

	cm4000_release(link);

	dev_table[devno] = NULL;
	kfree(dev);

	device_destroy(cmm_class, MKDEV(major, devno));

	return;
}

static const struct file_operations cm4000_fops = {
	.owner	= THIS_MODULE,
	.read	= cmm_read,
	.write	= cmm_write,
	.unlocked_ioctl	= cmm_ioctl,
	.open	= cmm_open,
	.release= cmm_close,
	.llseek = no_llseek,
};

static const struct pcmcia_device_id cm4000_ids[] = {
	PCMCIA_DEVICE_MANF_CARD(0x0223, 0x0002),
	PCMCIA_DEVICE_PROD_ID12("CardMan", "4000", 0x2FB368CA, 0xA2BD8C39),
	PCMCIA_DEVICE_NULL,
};
MODULE_DEVICE_TABLE(pcmcia, cm4000_ids);

static struct pcmcia_driver cm4000_driver = {
	.owner	  = THIS_MODULE,
	.name	  = "cm4000_cs",
	.probe    = cm4000_probe,
	.remove   = cm4000_detach,
	.suspend  = cm4000_suspend,
	.resume   = cm4000_resume,
	.id_table = cm4000_ids,
};

static int __init cmm_init(void)
{
	int rc;

	cmm_class = class_create(THIS_MODULE, "cardman_4000");
	if (IS_ERR(cmm_class))
		return PTR_ERR(cmm_class);

	major = register_chrdev(0, DEVICE_NAME, &cm4000_fops);
	if (major < 0) {
		printk(KERN_WARNING MODULE_NAME
			": could not get major number\n");
		class_destroy(cmm_class);
		return major;
	}

	rc = pcmcia_register_driver(&cm4000_driver);
	if (rc < 0) {
		unregister_chrdev(major, DEVICE_NAME);
		class_destroy(cmm_class);
		return rc;
	}

	return 0;
}

static void __exit cmm_exit(void)
{
	pcmcia_unregister_driver(&cm4000_driver);
	unregister_chrdev(major, DEVICE_NAME);
	class_destroy(cmm_class);
};

module_init(cmm_init);
module_exit(cmm_exit);
MODULE_LICENSE("Dual BSD/GPL");