Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Geert Uytterhoeven | 1793 | 55.96% | 21 | 58.33% |
Sergei Shtylyov | 640 | 19.98% | 4 | 11.11% |
Takeshi Kihara | 603 | 18.82% | 4 | 11.11% |
Niklas Söderlund | 106 | 3.31% | 2 | 5.56% |
Wolfram Sang | 46 | 1.44% | 3 | 8.33% |
Simon Horman | 16 | 0.50% | 2 | 5.56% |
Total | 3204 | 36 |
// SPDX-License-Identifier: GPL-2.0 /* * R-Car Gen3 Clock Pulse Generator * * Copyright (C) 2015-2018 Glider bvba * Copyright (C) 2019 Renesas Electronics Corp. * * Based on clk-rcar-gen3.c * * Copyright (C) 2015 Renesas Electronics Corp. */ #include <linux/bug.h> #include <linux/bitfield.h> #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/device.h> #include <linux/err.h> #include <linux/init.h> #include <linux/io.h> #include <linux/pm.h> #include <linux/slab.h> #include <linux/sys_soc.h> #include "renesas-cpg-mssr.h" #include "rcar-gen3-cpg.h" #define CPG_PLL0CR 0x00d8 #define CPG_PLL2CR 0x002c #define CPG_PLL4CR 0x01f4 #define CPG_RCKCR_CKSEL BIT(15) /* RCLK Clock Source Select */ static spinlock_t cpg_lock; static void cpg_reg_modify(void __iomem *reg, u32 clear, u32 set) { unsigned long flags; u32 val; spin_lock_irqsave(&cpg_lock, flags); val = readl(reg); val &= ~clear; val |= set; writel(val, reg); spin_unlock_irqrestore(&cpg_lock, flags); }; struct cpg_simple_notifier { struct notifier_block nb; void __iomem *reg; u32 saved; }; static int cpg_simple_notifier_call(struct notifier_block *nb, unsigned long action, void *data) { struct cpg_simple_notifier *csn = container_of(nb, struct cpg_simple_notifier, nb); switch (action) { case PM_EVENT_SUSPEND: csn->saved = readl(csn->reg); return NOTIFY_OK; case PM_EVENT_RESUME: writel(csn->saved, csn->reg); return NOTIFY_OK; } return NOTIFY_DONE; } static void cpg_simple_notifier_register(struct raw_notifier_head *notifiers, struct cpg_simple_notifier *csn) { csn->nb.notifier_call = cpg_simple_notifier_call; raw_notifier_chain_register(notifiers, &csn->nb); } /* * Z Clock & Z2 Clock * * Traits of this clock: * prepare - clk_prepare only ensures that parents are prepared * enable - clk_enable only ensures that parents are enabled * rate - rate is adjustable. clk->rate = (parent->rate * mult / 32 ) / 2 * parent - fixed parent. No clk_set_parent support */ #define CPG_FRQCRB 0x00000004 #define CPG_FRQCRB_KICK BIT(31) #define CPG_FRQCRC 0x000000e0 struct cpg_z_clk { struct clk_hw hw; void __iomem *reg; void __iomem *kick_reg; unsigned long mask; unsigned int fixed_div; }; #define to_z_clk(_hw) container_of(_hw, struct cpg_z_clk, hw) static unsigned long cpg_z_clk_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct cpg_z_clk *zclk = to_z_clk(hw); unsigned int mult; u32 val; val = readl(zclk->reg) & zclk->mask; mult = 32 - (val >> __ffs(zclk->mask)); return DIV_ROUND_CLOSEST_ULL((u64)parent_rate * mult, 32 * zclk->fixed_div); } static int cpg_z_clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { struct cpg_z_clk *zclk = to_z_clk(hw); unsigned int min_mult, max_mult, mult; unsigned long prate; prate = req->best_parent_rate / zclk->fixed_div; min_mult = max(div64_ul(req->min_rate * 32ULL, prate), 1ULL); max_mult = min(div64_ul(req->max_rate * 32ULL, prate), 32ULL); if (max_mult < min_mult) return -EINVAL; mult = div64_ul(req->rate * 32ULL, prate); mult = clamp(mult, min_mult, max_mult); req->rate = div_u64((u64)prate * mult, 32); return 0; } static int cpg_z_clk_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct cpg_z_clk *zclk = to_z_clk(hw); unsigned int mult; unsigned int i; mult = DIV64_U64_ROUND_CLOSEST(rate * 32ULL * zclk->fixed_div, parent_rate); mult = clamp(mult, 1U, 32U); if (readl(zclk->kick_reg) & CPG_FRQCRB_KICK) return -EBUSY; cpg_reg_modify(zclk->reg, zclk->mask, ((32 - mult) << __ffs(zclk->mask)) & zclk->mask); /* * Set KICK bit in FRQCRB to update hardware setting and wait for * clock change completion. */ cpg_reg_modify(zclk->kick_reg, 0, CPG_FRQCRB_KICK); /* * Note: There is no HW information about the worst case latency. * * Using experimental measurements, it seems that no more than * ~10 iterations are needed, independently of the CPU rate. * Since this value might be dependent of external xtal rate, pll1 * rate or even the other emulation clocks rate, use 1000 as a * "super" safe value. */ for (i = 1000; i; i--) { if (!(readl(zclk->kick_reg) & CPG_FRQCRB_KICK)) return 0; cpu_relax(); } return -ETIMEDOUT; } static const struct clk_ops cpg_z_clk_ops = { .recalc_rate = cpg_z_clk_recalc_rate, .determine_rate = cpg_z_clk_determine_rate, .set_rate = cpg_z_clk_set_rate, }; static struct clk * __init cpg_z_clk_register(const char *name, const char *parent_name, void __iomem *reg, unsigned int div, unsigned int offset) { struct clk_init_data init; struct cpg_z_clk *zclk; struct clk *clk; zclk = kzalloc(sizeof(*zclk), GFP_KERNEL); if (!zclk) return ERR_PTR(-ENOMEM); init.name = name; init.ops = &cpg_z_clk_ops; init.flags = 0; init.parent_names = &parent_name; init.num_parents = 1; zclk->reg = reg + CPG_FRQCRC; zclk->kick_reg = reg + CPG_FRQCRB; zclk->hw.init = &init; zclk->mask = GENMASK(offset + 4, offset); zclk->fixed_div = div; /* PLLVCO x 1/div x SYS-CPU divider */ clk = clk_register(NULL, &zclk->hw); if (IS_ERR(clk)) kfree(zclk); return clk; } /* * SDn Clock */ #define CPG_SD_STP_HCK BIT(9) #define CPG_SD_STP_CK BIT(8) #define CPG_SD_STP_MASK (CPG_SD_STP_HCK | CPG_SD_STP_CK) #define CPG_SD_FC_MASK (0x7 << 2 | 0x3 << 0) #define CPG_SD_DIV_TABLE_DATA(stp_hck, stp_ck, sd_srcfc, sd_fc, sd_div) \ { \ .val = ((stp_hck) ? CPG_SD_STP_HCK : 0) | \ ((stp_ck) ? CPG_SD_STP_CK : 0) | \ ((sd_srcfc) << 2) | \ ((sd_fc) << 0), \ .div = (sd_div), \ } struct sd_div_table { u32 val; unsigned int div; }; struct sd_clock { struct clk_hw hw; const struct sd_div_table *div_table; struct cpg_simple_notifier csn; unsigned int div_num; unsigned int cur_div_idx; }; /* SDn divider * sd_srcfc sd_fc div * stp_hck stp_ck (div) (div) = sd_srcfc x sd_fc *------------------------------------------------------------------- * 0 0 0 (1) 1 (4) 4 : SDR104 / HS200 / HS400 (8 TAP) * 0 0 1 (2) 1 (4) 8 : SDR50 * 1 0 2 (4) 1 (4) 16 : HS / SDR25 * 1 0 3 (8) 1 (4) 32 : NS / SDR12 * 1 0 4 (16) 1 (4) 64 * 0 0 0 (1) 0 (2) 2 * 0 0 1 (2) 0 (2) 4 : SDR104 / HS200 / HS400 (4 TAP) * 1 0 2 (4) 0 (2) 8 * 1 0 3 (8) 0 (2) 16 * 1 0 4 (16) 0 (2) 32 * * NOTE: There is a quirk option to ignore the first row of the dividers * table when searching for suitable settings. This is because HS400 on * early ES versions of H3 and M3-W requires a specific setting to work. */ static const struct sd_div_table cpg_sd_div_table[] = { /* CPG_SD_DIV_TABLE_DATA(stp_hck, stp_ck, sd_srcfc, sd_fc, sd_div) */ CPG_SD_DIV_TABLE_DATA(0, 0, 0, 1, 4), CPG_SD_DIV_TABLE_DATA(0, 0, 1, 1, 8), CPG_SD_DIV_TABLE_DATA(1, 0, 2, 1, 16), CPG_SD_DIV_TABLE_DATA(1, 0, 3, 1, 32), CPG_SD_DIV_TABLE_DATA(1, 0, 4, 1, 64), CPG_SD_DIV_TABLE_DATA(0, 0, 0, 0, 2), CPG_SD_DIV_TABLE_DATA(0, 0, 1, 0, 4), CPG_SD_DIV_TABLE_DATA(1, 0, 2, 0, 8), CPG_SD_DIV_TABLE_DATA(1, 0, 3, 0, 16), CPG_SD_DIV_TABLE_DATA(1, 0, 4, 0, 32), }; #define to_sd_clock(_hw) container_of(_hw, struct sd_clock, hw) static int cpg_sd_clock_enable(struct clk_hw *hw) { struct sd_clock *clock = to_sd_clock(hw); cpg_reg_modify(clock->csn.reg, CPG_SD_STP_MASK, clock->div_table[clock->cur_div_idx].val & CPG_SD_STP_MASK); return 0; } static void cpg_sd_clock_disable(struct clk_hw *hw) { struct sd_clock *clock = to_sd_clock(hw); cpg_reg_modify(clock->csn.reg, 0, CPG_SD_STP_MASK); } static int cpg_sd_clock_is_enabled(struct clk_hw *hw) { struct sd_clock *clock = to_sd_clock(hw); return !(readl(clock->csn.reg) & CPG_SD_STP_MASK); } static unsigned long cpg_sd_clock_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct sd_clock *clock = to_sd_clock(hw); return DIV_ROUND_CLOSEST(parent_rate, clock->div_table[clock->cur_div_idx].div); } static int cpg_sd_clock_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { unsigned long best_rate = ULONG_MAX, diff_min = ULONG_MAX; struct sd_clock *clock = to_sd_clock(hw); unsigned long calc_rate, diff; unsigned int i; for (i = 0; i < clock->div_num; i++) { calc_rate = DIV_ROUND_CLOSEST(req->best_parent_rate, clock->div_table[i].div); if (calc_rate < req->min_rate || calc_rate > req->max_rate) continue; diff = calc_rate > req->rate ? calc_rate - req->rate : req->rate - calc_rate; if (diff < diff_min) { best_rate = calc_rate; diff_min = diff; } } if (best_rate == ULONG_MAX) return -EINVAL; req->rate = best_rate; return 0; } static int cpg_sd_clock_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct sd_clock *clock = to_sd_clock(hw); unsigned int i; for (i = 0; i < clock->div_num; i++) if (rate == DIV_ROUND_CLOSEST(parent_rate, clock->div_table[i].div)) break; if (i >= clock->div_num) return -EINVAL; clock->cur_div_idx = i; cpg_reg_modify(clock->csn.reg, CPG_SD_STP_MASK | CPG_SD_FC_MASK, clock->div_table[i].val & (CPG_SD_STP_MASK | CPG_SD_FC_MASK)); return 0; } static const struct clk_ops cpg_sd_clock_ops = { .enable = cpg_sd_clock_enable, .disable = cpg_sd_clock_disable, .is_enabled = cpg_sd_clock_is_enabled, .recalc_rate = cpg_sd_clock_recalc_rate, .determine_rate = cpg_sd_clock_determine_rate, .set_rate = cpg_sd_clock_set_rate, }; static u32 cpg_quirks __initdata; #define PLL_ERRATA BIT(0) /* Missing PLL0/2/4 post-divider */ #define RCKCR_CKSEL BIT(1) /* Manual RCLK parent selection */ #define SD_SKIP_FIRST BIT(2) /* Skip first clock in SD table */ static struct clk * __init cpg_sd_clk_register(const char *name, void __iomem *base, unsigned int offset, const char *parent_name, struct raw_notifier_head *notifiers) { struct clk_init_data init; struct sd_clock *clock; struct clk *clk; u32 val; clock = kzalloc(sizeof(*clock), GFP_KERNEL); if (!clock) return ERR_PTR(-ENOMEM); init.name = name; init.ops = &cpg_sd_clock_ops; init.flags = CLK_SET_RATE_PARENT; init.parent_names = &parent_name; init.num_parents = 1; clock->csn.reg = base + offset; clock->hw.init = &init; clock->div_table = cpg_sd_div_table; clock->div_num = ARRAY_SIZE(cpg_sd_div_table); if (cpg_quirks & SD_SKIP_FIRST) { clock->div_table++; clock->div_num--; } val = readl(clock->csn.reg) & ~CPG_SD_FC_MASK; val |= CPG_SD_STP_MASK | (clock->div_table[0].val & CPG_SD_FC_MASK); writel(val, clock->csn.reg); clk = clk_register(NULL, &clock->hw); if (IS_ERR(clk)) goto free_clock; cpg_simple_notifier_register(notifiers, &clock->csn); return clk; free_clock: kfree(clock); return clk; } struct rpc_clock { struct clk_divider div; struct clk_gate gate; /* * One notifier covers both RPC and RPCD2 clocks as they are both * controlled by the same RPCCKCR register... */ struct cpg_simple_notifier csn; }; static const struct clk_div_table cpg_rpcsrc_div_table[] = { { 2, 5 }, { 3, 6 }, { 0, 0 }, }; static const struct clk_div_table cpg_rpc_div_table[] = { { 1, 2 }, { 3, 4 }, { 5, 6 }, { 7, 8 }, { 0, 0 }, }; static struct clk * __init cpg_rpc_clk_register(const char *name, void __iomem *base, const char *parent_name, struct raw_notifier_head *notifiers) { struct rpc_clock *rpc; struct clk *clk; rpc = kzalloc(sizeof(*rpc), GFP_KERNEL); if (!rpc) return ERR_PTR(-ENOMEM); rpc->div.reg = base + CPG_RPCCKCR; rpc->div.width = 3; rpc->div.table = cpg_rpc_div_table; rpc->div.lock = &cpg_lock; rpc->gate.reg = base + CPG_RPCCKCR; rpc->gate.bit_idx = 8; rpc->gate.flags = CLK_GATE_SET_TO_DISABLE; rpc->gate.lock = &cpg_lock; rpc->csn.reg = base + CPG_RPCCKCR; clk = clk_register_composite(NULL, name, &parent_name, 1, NULL, NULL, &rpc->div.hw, &clk_divider_ops, &rpc->gate.hw, &clk_gate_ops, CLK_SET_RATE_PARENT); if (IS_ERR(clk)) { kfree(rpc); return clk; } cpg_simple_notifier_register(notifiers, &rpc->csn); return clk; } struct rpcd2_clock { struct clk_fixed_factor fixed; struct clk_gate gate; }; static struct clk * __init cpg_rpcd2_clk_register(const char *name, void __iomem *base, const char *parent_name) { struct rpcd2_clock *rpcd2; struct clk *clk; rpcd2 = kzalloc(sizeof(*rpcd2), GFP_KERNEL); if (!rpcd2) return ERR_PTR(-ENOMEM); rpcd2->fixed.mult = 1; rpcd2->fixed.div = 2; rpcd2->gate.reg = base + CPG_RPCCKCR; rpcd2->gate.bit_idx = 9; rpcd2->gate.flags = CLK_GATE_SET_TO_DISABLE; rpcd2->gate.lock = &cpg_lock; clk = clk_register_composite(NULL, name, &parent_name, 1, NULL, NULL, &rpcd2->fixed.hw, &clk_fixed_factor_ops, &rpcd2->gate.hw, &clk_gate_ops, CLK_SET_RATE_PARENT); if (IS_ERR(clk)) kfree(rpcd2); return clk; } static const struct rcar_gen3_cpg_pll_config *cpg_pll_config __initdata; static unsigned int cpg_clk_extalr __initdata; static u32 cpg_mode __initdata; static const struct soc_device_attribute cpg_quirks_match[] __initconst = { { .soc_id = "r8a7795", .revision = "ES1.0", .data = (void *)(PLL_ERRATA | RCKCR_CKSEL | SD_SKIP_FIRST), }, { .soc_id = "r8a7795", .revision = "ES1.*", .data = (void *)(RCKCR_CKSEL | SD_SKIP_FIRST), }, { .soc_id = "r8a7795", .revision = "ES2.0", .data = (void *)SD_SKIP_FIRST, }, { .soc_id = "r8a7796", .revision = "ES1.0", .data = (void *)(RCKCR_CKSEL | SD_SKIP_FIRST), }, { .soc_id = "r8a7796", .revision = "ES1.1", .data = (void *)SD_SKIP_FIRST, }, { /* sentinel */ } }; struct clk * __init rcar_gen3_cpg_clk_register(struct device *dev, const struct cpg_core_clk *core, const struct cpg_mssr_info *info, struct clk **clks, void __iomem *base, struct raw_notifier_head *notifiers) { const struct clk *parent; unsigned int mult = 1; unsigned int div = 1; u32 value; parent = clks[core->parent & 0xffff]; /* some types use high bits */ if (IS_ERR(parent)) return ERR_CAST(parent); switch (core->type) { case CLK_TYPE_GEN3_MAIN: div = cpg_pll_config->extal_div; break; case CLK_TYPE_GEN3_PLL0: /* * PLL0 is a configurable multiplier clock. Register it as a * fixed factor clock for now as there's no generic multiplier * clock implementation and we currently have no need to change * the multiplier value. */ value = readl(base + CPG_PLL0CR); mult = (((value >> 24) & 0x7f) + 1) * 2; if (cpg_quirks & PLL_ERRATA) mult *= 2; break; case CLK_TYPE_GEN3_PLL1: mult = cpg_pll_config->pll1_mult; div = cpg_pll_config->pll1_div; break; case CLK_TYPE_GEN3_PLL2: /* * PLL2 is a configurable multiplier clock. Register it as a * fixed factor clock for now as there's no generic multiplier * clock implementation and we currently have no need to change * the multiplier value. */ value = readl(base + CPG_PLL2CR); mult = (((value >> 24) & 0x7f) + 1) * 2; if (cpg_quirks & PLL_ERRATA) mult *= 2; break; case CLK_TYPE_GEN3_PLL3: mult = cpg_pll_config->pll3_mult; div = cpg_pll_config->pll3_div; break; case CLK_TYPE_GEN3_PLL4: /* * PLL4 is a configurable multiplier clock. Register it as a * fixed factor clock for now as there's no generic multiplier * clock implementation and we currently have no need to change * the multiplier value. */ value = readl(base + CPG_PLL4CR); mult = (((value >> 24) & 0x7f) + 1) * 2; if (cpg_quirks & PLL_ERRATA) mult *= 2; break; case CLK_TYPE_GEN3_SD: return cpg_sd_clk_register(core->name, base, core->offset, __clk_get_name(parent), notifiers); case CLK_TYPE_GEN3_R: if (cpg_quirks & RCKCR_CKSEL) { struct cpg_simple_notifier *csn; csn = kzalloc(sizeof(*csn), GFP_KERNEL); if (!csn) return ERR_PTR(-ENOMEM); csn->reg = base + CPG_RCKCR; /* * RINT is default. * Only if EXTALR is populated, we switch to it. */ value = readl(csn->reg) & 0x3f; if (clk_get_rate(clks[cpg_clk_extalr])) { parent = clks[cpg_clk_extalr]; value |= CPG_RCKCR_CKSEL; } writel(value, csn->reg); cpg_simple_notifier_register(notifiers, csn); break; } /* Select parent clock of RCLK by MD28 */ if (cpg_mode & BIT(28)) parent = clks[cpg_clk_extalr]; break; case CLK_TYPE_GEN3_MDSEL: /* * Clock selectable between two parents and two fixed dividers * using a mode pin */ if (cpg_mode & BIT(core->offset)) { div = core->div & 0xffff; } else { parent = clks[core->parent >> 16]; if (IS_ERR(parent)) return ERR_CAST(parent); div = core->div >> 16; } mult = 1; break; case CLK_TYPE_GEN3_Z: return cpg_z_clk_register(core->name, __clk_get_name(parent), base, core->div, core->offset); case CLK_TYPE_GEN3_OSC: /* * Clock combining OSC EXTAL predivider and a fixed divider */ div = cpg_pll_config->osc_prediv * core->div; break; case CLK_TYPE_GEN3_RCKSEL: /* * Clock selectable between two parents and two fixed dividers * using RCKCR.CKSEL */ if (readl(base + CPG_RCKCR) & CPG_RCKCR_CKSEL) { div = core->div & 0xffff; } else { parent = clks[core->parent >> 16]; if (IS_ERR(parent)) return ERR_CAST(parent); div = core->div >> 16; } break; case CLK_TYPE_GEN3_RPCSRC: return clk_register_divider_table(NULL, core->name, __clk_get_name(parent), 0, base + CPG_RPCCKCR, 3, 2, 0, cpg_rpcsrc_div_table, &cpg_lock); case CLK_TYPE_GEN3_RPC: return cpg_rpc_clk_register(core->name, base, __clk_get_name(parent), notifiers); case CLK_TYPE_GEN3_RPCD2: return cpg_rpcd2_clk_register(core->name, base, __clk_get_name(parent)); default: return ERR_PTR(-EINVAL); } return clk_register_fixed_factor(NULL, core->name, __clk_get_name(parent), 0, mult, div); } int __init rcar_gen3_cpg_init(const struct rcar_gen3_cpg_pll_config *config, unsigned int clk_extalr, u32 mode) { const struct soc_device_attribute *attr; cpg_pll_config = config; cpg_clk_extalr = clk_extalr; cpg_mode = mode; attr = soc_device_match(cpg_quirks_match); if (attr) cpg_quirks = (uintptr_t)attr->data; pr_debug("%s: mode = 0x%x quirks = 0x%x\n", __func__, mode, cpg_quirks); spin_lock_init(&cpg_lock); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1