Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Gregory CLEMENT | 1546 | 82.50% | 4 | 57.14% |
Miquel Raynal | 255 | 13.61% | 1 | 14.29% |
Viresh Kumar | 60 | 3.20% | 1 | 14.29% |
Ivan Kokshaysky | 13 | 0.69% | 1 | 14.29% |
Total | 1874 | 7 |
// SPDX-License-Identifier: GPL-2.0+ /* * CPU frequency scaling support for Armada 37xx platform. * * Copyright (C) 2017 Marvell * * Gregory CLEMENT <gregory.clement@free-electrons.com> */ #include <linux/clk.h> #include <linux/cpu.h> #include <linux/cpufreq.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/of_address.h> #include <linux/of_device.h> #include <linux/of_irq.h> #include <linux/platform_device.h> #include <linux/pm_opp.h> #include <linux/regmap.h> #include <linux/slab.h> #include "cpufreq-dt.h" /* Power management in North Bridge register set */ #define ARMADA_37XX_NB_L0L1 0x18 #define ARMADA_37XX_NB_L2L3 0x1C #define ARMADA_37XX_NB_TBG_DIV_OFF 13 #define ARMADA_37XX_NB_TBG_DIV_MASK 0x7 #define ARMADA_37XX_NB_CLK_SEL_OFF 11 #define ARMADA_37XX_NB_CLK_SEL_MASK 0x1 #define ARMADA_37XX_NB_CLK_SEL_TBG 0x1 #define ARMADA_37XX_NB_TBG_SEL_OFF 9 #define ARMADA_37XX_NB_TBG_SEL_MASK 0x3 #define ARMADA_37XX_NB_VDD_SEL_OFF 6 #define ARMADA_37XX_NB_VDD_SEL_MASK 0x3 #define ARMADA_37XX_NB_CONFIG_SHIFT 16 #define ARMADA_37XX_NB_DYN_MOD 0x24 #define ARMADA_37XX_NB_CLK_SEL_EN BIT(26) #define ARMADA_37XX_NB_TBG_EN BIT(28) #define ARMADA_37XX_NB_DIV_EN BIT(29) #define ARMADA_37XX_NB_VDD_EN BIT(30) #define ARMADA_37XX_NB_DFS_EN BIT(31) #define ARMADA_37XX_NB_CPU_LOAD 0x30 #define ARMADA_37XX_NB_CPU_LOAD_MASK 0x3 #define ARMADA_37XX_DVFS_LOAD_0 0 #define ARMADA_37XX_DVFS_LOAD_1 1 #define ARMADA_37XX_DVFS_LOAD_2 2 #define ARMADA_37XX_DVFS_LOAD_3 3 /* AVS register set */ #define ARMADA_37XX_AVS_CTL0 0x0 #define ARMADA_37XX_AVS_ENABLE BIT(30) #define ARMADA_37XX_AVS_HIGH_VDD_LIMIT 16 #define ARMADA_37XX_AVS_LOW_VDD_LIMIT 22 #define ARMADA_37XX_AVS_VDD_MASK 0x3F #define ARMADA_37XX_AVS_CTL2 0x8 #define ARMADA_37XX_AVS_LOW_VDD_EN BIT(6) #define ARMADA_37XX_AVS_VSET(x) (0x1C + 4 * (x)) /* * On Armada 37xx the Power management manages 4 level of CPU load, * each level can be associated with a CPU clock source, a CPU * divider, a VDD level, etc... */ #define LOAD_LEVEL_NR 4 #define MIN_VOLT_MV 1000 /* AVS value for the corresponding voltage (in mV) */ static int avs_map[] = { 747, 758, 770, 782, 793, 805, 817, 828, 840, 852, 863, 875, 887, 898, 910, 922, 933, 945, 957, 968, 980, 992, 1003, 1015, 1027, 1038, 1050, 1062, 1073, 1085, 1097, 1108, 1120, 1132, 1143, 1155, 1167, 1178, 1190, 1202, 1213, 1225, 1237, 1248, 1260, 1272, 1283, 1295, 1307, 1318, 1330, 1342 }; struct armada37xx_cpufreq_state { struct regmap *regmap; u32 nb_l0l1; u32 nb_l2l3; u32 nb_dyn_mod; u32 nb_cpu_load; }; static struct armada37xx_cpufreq_state *armada37xx_cpufreq_state; struct armada_37xx_dvfs { u32 cpu_freq_max; u8 divider[LOAD_LEVEL_NR]; u32 avs[LOAD_LEVEL_NR]; }; static struct armada_37xx_dvfs armada_37xx_dvfs[] = { {.cpu_freq_max = 1200*1000*1000, .divider = {1, 2, 4, 6} }, {.cpu_freq_max = 1000*1000*1000, .divider = {1, 2, 4, 5} }, {.cpu_freq_max = 800*1000*1000, .divider = {1, 2, 3, 4} }, {.cpu_freq_max = 600*1000*1000, .divider = {2, 4, 5, 6} }, }; static struct armada_37xx_dvfs *armada_37xx_cpu_freq_info_get(u32 freq) { int i; for (i = 0; i < ARRAY_SIZE(armada_37xx_dvfs); i++) { if (freq == armada_37xx_dvfs[i].cpu_freq_max) return &armada_37xx_dvfs[i]; } pr_err("Unsupported CPU frequency %d MHz\n", freq/1000000); return NULL; } /* * Setup the four level managed by the hardware. Once the four level * will be configured then the DVFS will be enabled. */ static void __init armada37xx_cpufreq_dvfs_setup(struct regmap *base, struct clk *clk, u8 *divider) { int load_lvl; struct clk *parent; for (load_lvl = 0; load_lvl < LOAD_LEVEL_NR; load_lvl++) { unsigned int reg, mask, val, offset = 0; if (load_lvl <= ARMADA_37XX_DVFS_LOAD_1) reg = ARMADA_37XX_NB_L0L1; else reg = ARMADA_37XX_NB_L2L3; if (load_lvl == ARMADA_37XX_DVFS_LOAD_0 || load_lvl == ARMADA_37XX_DVFS_LOAD_2) offset += ARMADA_37XX_NB_CONFIG_SHIFT; /* Set cpu clock source, for all the level we use TBG */ val = ARMADA_37XX_NB_CLK_SEL_TBG << ARMADA_37XX_NB_CLK_SEL_OFF; mask = (ARMADA_37XX_NB_CLK_SEL_MASK << ARMADA_37XX_NB_CLK_SEL_OFF); /* * Set cpu divider based on the pre-computed array in * order to have balanced step. */ val |= divider[load_lvl] << ARMADA_37XX_NB_TBG_DIV_OFF; mask |= (ARMADA_37XX_NB_TBG_DIV_MASK << ARMADA_37XX_NB_TBG_DIV_OFF); /* Set VDD divider which is actually the load level. */ val |= load_lvl << ARMADA_37XX_NB_VDD_SEL_OFF; mask |= (ARMADA_37XX_NB_VDD_SEL_MASK << ARMADA_37XX_NB_VDD_SEL_OFF); val <<= offset; mask <<= offset; regmap_update_bits(base, reg, mask, val); } /* * Set cpu clock source, for all the level we keep the same * clock source that the one already configured. For this one * we need to use the clock framework */ parent = clk_get_parent(clk); clk_set_parent(clk, parent); } /* * Find out the armada 37x supported AVS value whose voltage value is * the round-up closest to the target voltage value. */ static u32 armada_37xx_avs_val_match(int target_vm) { u32 avs; /* Find out the round-up closest supported voltage value */ for (avs = 0; avs < ARRAY_SIZE(avs_map); avs++) if (avs_map[avs] >= target_vm) break; /* * If all supported voltages are smaller than target one, * choose the largest supported voltage */ if (avs == ARRAY_SIZE(avs_map)) avs = ARRAY_SIZE(avs_map) - 1; return avs; } /* * For Armada 37xx soc, L0(VSET0) VDD AVS value is set to SVC revision * value or a default value when SVC is not supported. * - L0 can be read out from the register of AVS_CTRL_0 and L0 voltage * can be got from the mapping table of avs_map. * - L1 voltage should be about 100mv smaller than L0 voltage * - L2 & L3 voltage should be about 150mv smaller than L0 voltage. * This function calculates L1 & L2 & L3 AVS values dynamically based * on L0 voltage and fill all AVS values to the AVS value table. */ static void __init armada37xx_cpufreq_avs_configure(struct regmap *base, struct armada_37xx_dvfs *dvfs) { unsigned int target_vm; int load_level = 0; u32 l0_vdd_min; if (base == NULL) return; /* Get L0 VDD min value */ regmap_read(base, ARMADA_37XX_AVS_CTL0, &l0_vdd_min); l0_vdd_min = (l0_vdd_min >> ARMADA_37XX_AVS_LOW_VDD_LIMIT) & ARMADA_37XX_AVS_VDD_MASK; if (l0_vdd_min >= ARRAY_SIZE(avs_map)) { pr_err("L0 VDD MIN %d is not correct.\n", l0_vdd_min); return; } dvfs->avs[0] = l0_vdd_min; if (avs_map[l0_vdd_min] <= MIN_VOLT_MV) { /* * If L0 voltage is smaller than 1000mv, then all VDD sets * use L0 voltage; */ u32 avs_min = armada_37xx_avs_val_match(MIN_VOLT_MV); for (load_level = 1; load_level < LOAD_LEVEL_NR; load_level++) dvfs->avs[load_level] = avs_min; return; } /* * L1 voltage is equal to L0 voltage - 100mv and it must be * larger than 1000mv */ target_vm = avs_map[l0_vdd_min] - 100; target_vm = target_vm > MIN_VOLT_MV ? target_vm : MIN_VOLT_MV; dvfs->avs[1] = armada_37xx_avs_val_match(target_vm); /* * L2 & L3 voltage is equal to L0 voltage - 150mv and it must * be larger than 1000mv */ target_vm = avs_map[l0_vdd_min] - 150; target_vm = target_vm > MIN_VOLT_MV ? target_vm : MIN_VOLT_MV; dvfs->avs[2] = dvfs->avs[3] = armada_37xx_avs_val_match(target_vm); } static void __init armada37xx_cpufreq_avs_setup(struct regmap *base, struct armada_37xx_dvfs *dvfs) { unsigned int avs_val = 0; int load_level = 0; if (base == NULL) return; /* Disable AVS before the configuration */ regmap_update_bits(base, ARMADA_37XX_AVS_CTL0, ARMADA_37XX_AVS_ENABLE, 0); /* Enable low voltage mode */ regmap_update_bits(base, ARMADA_37XX_AVS_CTL2, ARMADA_37XX_AVS_LOW_VDD_EN, ARMADA_37XX_AVS_LOW_VDD_EN); for (load_level = 1; load_level < LOAD_LEVEL_NR; load_level++) { avs_val = dvfs->avs[load_level]; regmap_update_bits(base, ARMADA_37XX_AVS_VSET(load_level-1), ARMADA_37XX_AVS_VDD_MASK << ARMADA_37XX_AVS_HIGH_VDD_LIMIT | ARMADA_37XX_AVS_VDD_MASK << ARMADA_37XX_AVS_LOW_VDD_LIMIT, avs_val << ARMADA_37XX_AVS_HIGH_VDD_LIMIT | avs_val << ARMADA_37XX_AVS_LOW_VDD_LIMIT); } /* Enable AVS after the configuration */ regmap_update_bits(base, ARMADA_37XX_AVS_CTL0, ARMADA_37XX_AVS_ENABLE, ARMADA_37XX_AVS_ENABLE); } static void armada37xx_cpufreq_disable_dvfs(struct regmap *base) { unsigned int reg = ARMADA_37XX_NB_DYN_MOD, mask = ARMADA_37XX_NB_DFS_EN; regmap_update_bits(base, reg, mask, 0); } static void __init armada37xx_cpufreq_enable_dvfs(struct regmap *base) { unsigned int val, reg = ARMADA_37XX_NB_CPU_LOAD, mask = ARMADA_37XX_NB_CPU_LOAD_MASK; /* Start with the highest load (0) */ val = ARMADA_37XX_DVFS_LOAD_0; regmap_update_bits(base, reg, mask, val); /* Now enable DVFS for the CPUs */ reg = ARMADA_37XX_NB_DYN_MOD; mask = ARMADA_37XX_NB_CLK_SEL_EN | ARMADA_37XX_NB_TBG_EN | ARMADA_37XX_NB_DIV_EN | ARMADA_37XX_NB_VDD_EN | ARMADA_37XX_NB_DFS_EN; regmap_update_bits(base, reg, mask, mask); } static int armada37xx_cpufreq_suspend(struct cpufreq_policy *policy) { struct armada37xx_cpufreq_state *state = armada37xx_cpufreq_state; regmap_read(state->regmap, ARMADA_37XX_NB_L0L1, &state->nb_l0l1); regmap_read(state->regmap, ARMADA_37XX_NB_L2L3, &state->nb_l2l3); regmap_read(state->regmap, ARMADA_37XX_NB_CPU_LOAD, &state->nb_cpu_load); regmap_read(state->regmap, ARMADA_37XX_NB_DYN_MOD, &state->nb_dyn_mod); return 0; } static int armada37xx_cpufreq_resume(struct cpufreq_policy *policy) { struct armada37xx_cpufreq_state *state = armada37xx_cpufreq_state; /* Ensure DVFS is disabled otherwise the following registers are RO */ armada37xx_cpufreq_disable_dvfs(state->regmap); regmap_write(state->regmap, ARMADA_37XX_NB_L0L1, state->nb_l0l1); regmap_write(state->regmap, ARMADA_37XX_NB_L2L3, state->nb_l2l3); regmap_write(state->regmap, ARMADA_37XX_NB_CPU_LOAD, state->nb_cpu_load); /* * NB_DYN_MOD register is the one that actually enable back DVFS if it * was enabled before the suspend operation. This must be done last * otherwise other registers are not writable. */ regmap_write(state->regmap, ARMADA_37XX_NB_DYN_MOD, state->nb_dyn_mod); return 0; } static int __init armada37xx_cpufreq_driver_init(void) { struct cpufreq_dt_platform_data pdata; struct armada_37xx_dvfs *dvfs; struct platform_device *pdev; unsigned long freq; unsigned int cur_frequency, base_frequency; struct regmap *nb_pm_base, *avs_base; struct device *cpu_dev; int load_lvl, ret; struct clk *clk, *parent; nb_pm_base = syscon_regmap_lookup_by_compatible("marvell,armada-3700-nb-pm"); if (IS_ERR(nb_pm_base)) return -ENODEV; avs_base = syscon_regmap_lookup_by_compatible("marvell,armada-3700-avs"); /* if AVS is not present don't use it but still try to setup dvfs */ if (IS_ERR(avs_base)) { pr_info("Syscon failed for Adapting Voltage Scaling: skip it\n"); avs_base = NULL; } /* Before doing any configuration on the DVFS first, disable it */ armada37xx_cpufreq_disable_dvfs(nb_pm_base); /* * On CPU 0 register the operating points supported (which are * the nominal CPU frequency and full integer divisions of * it). */ cpu_dev = get_cpu_device(0); if (!cpu_dev) { dev_err(cpu_dev, "Cannot get CPU\n"); return -ENODEV; } clk = clk_get(cpu_dev, 0); if (IS_ERR(clk)) { dev_err(cpu_dev, "Cannot get clock for CPU0\n"); return PTR_ERR(clk); } parent = clk_get_parent(clk); if (IS_ERR(parent)) { dev_err(cpu_dev, "Cannot get parent clock for CPU0\n"); clk_put(clk); return PTR_ERR(parent); } /* Get parent CPU frequency */ base_frequency = clk_get_rate(parent); if (!base_frequency) { dev_err(cpu_dev, "Failed to get parent clock rate for CPU\n"); clk_put(clk); return -EINVAL; } /* Get nominal (current) CPU frequency */ cur_frequency = clk_get_rate(clk); if (!cur_frequency) { dev_err(cpu_dev, "Failed to get clock rate for CPU\n"); clk_put(clk); return -EINVAL; } dvfs = armada_37xx_cpu_freq_info_get(cur_frequency); if (!dvfs) { clk_put(clk); return -EINVAL; } armada37xx_cpufreq_state = kmalloc(sizeof(*armada37xx_cpufreq_state), GFP_KERNEL); if (!armada37xx_cpufreq_state) { clk_put(clk); return -ENOMEM; } armada37xx_cpufreq_state->regmap = nb_pm_base; armada37xx_cpufreq_avs_configure(avs_base, dvfs); armada37xx_cpufreq_avs_setup(avs_base, dvfs); armada37xx_cpufreq_dvfs_setup(nb_pm_base, clk, dvfs->divider); clk_put(clk); for (load_lvl = ARMADA_37XX_DVFS_LOAD_0; load_lvl < LOAD_LEVEL_NR; load_lvl++) { unsigned long u_volt = avs_map[dvfs->avs[load_lvl]] * 1000; freq = base_frequency / dvfs->divider[load_lvl]; ret = dev_pm_opp_add(cpu_dev, freq, u_volt); if (ret) goto remove_opp; } /* Now that everything is setup, enable the DVFS at hardware level */ armada37xx_cpufreq_enable_dvfs(nb_pm_base); memset(&pdata, 0, sizeof(pdata)); pdata.suspend = armada37xx_cpufreq_suspend; pdata.resume = armada37xx_cpufreq_resume; pdev = platform_device_register_data(NULL, "cpufreq-dt", -1, &pdata, sizeof(pdata)); ret = PTR_ERR_OR_ZERO(pdev); if (ret) goto disable_dvfs; return 0; disable_dvfs: armada37xx_cpufreq_disable_dvfs(nb_pm_base); remove_opp: /* clean-up the already added opp before leaving */ while (load_lvl-- > ARMADA_37XX_DVFS_LOAD_0) { freq = cur_frequency / dvfs->divider[load_lvl]; dev_pm_opp_remove(cpu_dev, freq); } kfree(armada37xx_cpufreq_state); return ret; } /* late_initcall, to guarantee the driver is loaded after A37xx clock driver */ late_initcall(armada37xx_cpufreq_driver_init); MODULE_AUTHOR("Gregory CLEMENT <gregory.clement@free-electrons.com>"); MODULE_DESCRIPTION("Armada 37xx cpufreq driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1