Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jason Uhlenkott | 1690 | 85.22% | 4 | 18.18% |
Mauro Carvalho Chehab | 174 | 8.77% | 9 | 40.91% |
Dave Jiang | 50 | 2.52% | 2 | 9.09% |
Joe Perches | 36 | 1.82% | 1 | 4.55% |
Hitoshi Mitake | 23 | 1.16% | 2 | 9.09% |
Jingoo Han | 6 | 0.30% | 1 | 4.55% |
Doug Thompson | 2 | 0.10% | 1 | 4.55% |
Christoph Hellwig | 1 | 0.05% | 1 | 4.55% |
Al Viro | 1 | 0.05% | 1 | 4.55% |
Total | 1983 | 22 |
/* * Intel 3000/3010 Memory Controller kernel module * Copyright (C) 2007 Akamai Technologies, Inc. * Shamelessly copied from: * Intel D82875P Memory Controller kernel module * (C) 2003 Linux Networx (http://lnxi.com) * * This file may be distributed under the terms of the * GNU General Public License. */ #include <linux/module.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/pci_ids.h> #include <linux/edac.h> #include "edac_module.h" #define EDAC_MOD_STR "i3000_edac" #define I3000_RANKS 8 #define I3000_RANKS_PER_CHANNEL 4 #define I3000_CHANNELS 2 /* Intel 3000 register addresses - device 0 function 0 - DRAM Controller */ #define I3000_MCHBAR 0x44 /* MCH Memory Mapped Register BAR */ #define I3000_MCHBAR_MASK 0xffffc000 #define I3000_MMR_WINDOW_SIZE 16384 #define I3000_EDEAP 0x70 /* Extended DRAM Error Address Pointer (8b) * * 7:1 reserved * 0 bit 32 of address */ #define I3000_DEAP 0x58 /* DRAM Error Address Pointer (32b) * * 31:7 address * 6:1 reserved * 0 Error channel 0/1 */ #define I3000_DEAP_GRAIN (1 << 7) /* * Helper functions to decode the DEAP/EDEAP hardware registers. * * The type promotion here is deliberate; we're deriving an * unsigned long pfn and offset from hardware regs which are u8/u32. */ static inline unsigned long deap_pfn(u8 edeap, u32 deap) { deap >>= PAGE_SHIFT; deap |= (edeap & 1) << (32 - PAGE_SHIFT); return deap; } static inline unsigned long deap_offset(u32 deap) { return deap & ~(I3000_DEAP_GRAIN - 1) & ~PAGE_MASK; } static inline int deap_channel(u32 deap) { return deap & 1; } #define I3000_DERRSYN 0x5c /* DRAM Error Syndrome (8b) * * 7:0 DRAM ECC Syndrome */ #define I3000_ERRSTS 0xc8 /* Error Status Register (16b) * * 15:12 reserved * 11 MCH Thermal Sensor Event * for SMI/SCI/SERR * 10 reserved * 9 LOCK to non-DRAM Memory Flag (LCKF) * 8 Received Refresh Timeout Flag (RRTOF) * 7:2 reserved * 1 Multi-bit DRAM ECC Error Flag (DMERR) * 0 Single-bit DRAM ECC Error Flag (DSERR) */ #define I3000_ERRSTS_BITS 0x0b03 /* bits which indicate errors */ #define I3000_ERRSTS_UE 0x0002 #define I3000_ERRSTS_CE 0x0001 #define I3000_ERRCMD 0xca /* Error Command (16b) * * 15:12 reserved * 11 SERR on MCH Thermal Sensor Event * (TSESERR) * 10 reserved * 9 SERR on LOCK to non-DRAM Memory * (LCKERR) * 8 SERR on DRAM Refresh Timeout * (DRTOERR) * 7:2 reserved * 1 SERR Multi-Bit DRAM ECC Error * (DMERR) * 0 SERR on Single-Bit ECC Error * (DSERR) */ /* Intel MMIO register space - device 0 function 0 - MMR space */ #define I3000_DRB_SHIFT 25 /* 32MiB grain */ #define I3000_C0DRB 0x100 /* Channel 0 DRAM Rank Boundary (8b x 4) * * 7:0 Channel 0 DRAM Rank Boundary Address */ #define I3000_C1DRB 0x180 /* Channel 1 DRAM Rank Boundary (8b x 4) * * 7:0 Channel 1 DRAM Rank Boundary Address */ #define I3000_C0DRA 0x108 /* Channel 0 DRAM Rank Attribute (8b x 2) * * 7 reserved * 6:4 DRAM odd Rank Attribute * 3 reserved * 2:0 DRAM even Rank Attribute * * Each attribute defines the page * size of the corresponding rank: * 000: unpopulated * 001: reserved * 010: 4 KB * 011: 8 KB * 100: 16 KB * Others: reserved */ #define I3000_C1DRA 0x188 /* Channel 1 DRAM Rank Attribute (8b x 2) */ static inline unsigned char odd_rank_attrib(unsigned char dra) { return (dra & 0x70) >> 4; } static inline unsigned char even_rank_attrib(unsigned char dra) { return dra & 0x07; } #define I3000_C0DRC0 0x120 /* DRAM Controller Mode 0 (32b) * * 31:30 reserved * 29 Initialization Complete (IC) * 28:11 reserved * 10:8 Refresh Mode Select (RMS) * 7 reserved * 6:4 Mode Select (SMS) * 3:2 reserved * 1:0 DRAM Type (DT) */ #define I3000_C0DRC1 0x124 /* DRAM Controller Mode 1 (32b) * * 31 Enhanced Addressing Enable (ENHADE) * 30:0 reserved */ enum i3000p_chips { I3000 = 0, }; struct i3000_dev_info { const char *ctl_name; }; struct i3000_error_info { u16 errsts; u8 derrsyn; u8 edeap; u32 deap; u16 errsts2; }; static const struct i3000_dev_info i3000_devs[] = { [I3000] = { .ctl_name = "i3000"}, }; static struct pci_dev *mci_pdev; static int i3000_registered = 1; static struct edac_pci_ctl_info *i3000_pci; static void i3000_get_error_info(struct mem_ctl_info *mci, struct i3000_error_info *info) { struct pci_dev *pdev; pdev = to_pci_dev(mci->pdev); /* * This is a mess because there is no atomic way to read all the * registers at once and the registers can transition from CE being * overwritten by UE. */ pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts); if (!(info->errsts & I3000_ERRSTS_BITS)) return; pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap); pci_read_config_dword(pdev, I3000_DEAP, &info->deap); pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn); pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts2); /* * If the error is the same for both reads then the first set * of reads is valid. If there is a change then there is a CE * with no info and the second set of reads is valid and * should be UE info. */ if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) { pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap); pci_read_config_dword(pdev, I3000_DEAP, &info->deap); pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn); } /* * Clear any error bits. * (Yes, we really clear bits by writing 1 to them.) */ pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS, I3000_ERRSTS_BITS); } static int i3000_process_error_info(struct mem_ctl_info *mci, struct i3000_error_info *info, int handle_errors) { int row, multi_chan, channel; unsigned long pfn, offset; multi_chan = mci->csrows[0]->nr_channels - 1; if (!(info->errsts & I3000_ERRSTS_BITS)) return 0; if (!handle_errors) return 1; if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) { edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0, -1, -1, -1, "UE overwrote CE", ""); info->errsts = info->errsts2; } pfn = deap_pfn(info->edeap, info->deap); offset = deap_offset(info->deap); channel = deap_channel(info->deap); row = edac_mc_find_csrow_by_page(mci, pfn); if (info->errsts & I3000_ERRSTS_UE) edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, pfn, offset, 0, row, -1, -1, "i3000 UE", ""); else edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, pfn, offset, info->derrsyn, row, multi_chan ? channel : 0, -1, "i3000 CE", ""); return 1; } static void i3000_check(struct mem_ctl_info *mci) { struct i3000_error_info info; edac_dbg(1, "MC%d\n", mci->mc_idx); i3000_get_error_info(mci, &info); i3000_process_error_info(mci, &info, 1); } static int i3000_is_interleaved(const unsigned char *c0dra, const unsigned char *c1dra, const unsigned char *c0drb, const unsigned char *c1drb) { int i; /* * If the channels aren't populated identically then * we're not interleaved. */ for (i = 0; i < I3000_RANKS_PER_CHANNEL / 2; i++) if (odd_rank_attrib(c0dra[i]) != odd_rank_attrib(c1dra[i]) || even_rank_attrib(c0dra[i]) != even_rank_attrib(c1dra[i])) return 0; /* * If the rank boundaries for the two channels are different * then we're not interleaved. */ for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) if (c0drb[i] != c1drb[i]) return 0; return 1; } static int i3000_probe1(struct pci_dev *pdev, int dev_idx) { int rc; int i, j; struct mem_ctl_info *mci = NULL; struct edac_mc_layer layers[2]; unsigned long last_cumul_size, nr_pages; int interleaved, nr_channels; unsigned char dra[I3000_RANKS / 2], drb[I3000_RANKS]; unsigned char *c0dra = dra, *c1dra = &dra[I3000_RANKS_PER_CHANNEL / 2]; unsigned char *c0drb = drb, *c1drb = &drb[I3000_RANKS_PER_CHANNEL]; unsigned long mchbar; void __iomem *window; edac_dbg(0, "MC:\n"); pci_read_config_dword(pdev, I3000_MCHBAR, (u32 *) & mchbar); mchbar &= I3000_MCHBAR_MASK; window = ioremap(mchbar, I3000_MMR_WINDOW_SIZE); if (!window) { printk(KERN_ERR "i3000: cannot map mmio space at 0x%lx\n", mchbar); return -ENODEV; } c0dra[0] = readb(window + I3000_C0DRA + 0); /* ranks 0,1 */ c0dra[1] = readb(window + I3000_C0DRA + 1); /* ranks 2,3 */ c1dra[0] = readb(window + I3000_C1DRA + 0); /* ranks 0,1 */ c1dra[1] = readb(window + I3000_C1DRA + 1); /* ranks 2,3 */ for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) { c0drb[i] = readb(window + I3000_C0DRB + i); c1drb[i] = readb(window + I3000_C1DRB + i); } iounmap(window); /* * Figure out how many channels we have. * * If we have what the datasheet calls "asymmetric channels" * (essentially the same as what was called "virtual single * channel mode" in the i82875) then it's a single channel as * far as EDAC is concerned. */ interleaved = i3000_is_interleaved(c0dra, c1dra, c0drb, c1drb); nr_channels = interleaved ? 2 : 1; layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; layers[0].size = I3000_RANKS / nr_channels; layers[0].is_virt_csrow = true; layers[1].type = EDAC_MC_LAYER_CHANNEL; layers[1].size = nr_channels; layers[1].is_virt_csrow = false; mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, 0); if (!mci) return -ENOMEM; edac_dbg(3, "MC: init mci\n"); mci->pdev = &pdev->dev; mci->mtype_cap = MEM_FLAG_DDR2; mci->edac_ctl_cap = EDAC_FLAG_SECDED; mci->edac_cap = EDAC_FLAG_SECDED; mci->mod_name = EDAC_MOD_STR; mci->ctl_name = i3000_devs[dev_idx].ctl_name; mci->dev_name = pci_name(pdev); mci->edac_check = i3000_check; mci->ctl_page_to_phys = NULL; /* * The dram rank boundary (DRB) reg values are boundary addresses * for each DRAM rank with a granularity of 32MB. DRB regs are * cumulative; the last one will contain the total memory * contained in all ranks. * * If we're in interleaved mode then we're only walking through * the ranks of controller 0, so we double all the values we see. */ for (last_cumul_size = i = 0; i < mci->nr_csrows; i++) { u8 value; u32 cumul_size; struct csrow_info *csrow = mci->csrows[i]; value = drb[i]; cumul_size = value << (I3000_DRB_SHIFT - PAGE_SHIFT); if (interleaved) cumul_size <<= 1; edac_dbg(3, "MC: (%d) cumul_size 0x%x\n", i, cumul_size); if (cumul_size == last_cumul_size) continue; csrow->first_page = last_cumul_size; csrow->last_page = cumul_size - 1; nr_pages = cumul_size - last_cumul_size; last_cumul_size = cumul_size; for (j = 0; j < nr_channels; j++) { struct dimm_info *dimm = csrow->channels[j]->dimm; dimm->nr_pages = nr_pages / nr_channels; dimm->grain = I3000_DEAP_GRAIN; dimm->mtype = MEM_DDR2; dimm->dtype = DEV_UNKNOWN; dimm->edac_mode = EDAC_UNKNOWN; } } /* * Clear any error bits. * (Yes, we really clear bits by writing 1 to them.) */ pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS, I3000_ERRSTS_BITS); rc = -ENODEV; if (edac_mc_add_mc(mci)) { edac_dbg(3, "MC: failed edac_mc_add_mc()\n"); goto fail; } /* allocating generic PCI control info */ i3000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR); if (!i3000_pci) { printk(KERN_WARNING "%s(): Unable to create PCI control\n", __func__); printk(KERN_WARNING "%s(): PCI error report via EDAC not setup\n", __func__); } /* get this far and it's successful */ edac_dbg(3, "MC: success\n"); return 0; fail: if (mci) edac_mc_free(mci); return rc; } /* returns count (>= 0), or negative on error */ static int i3000_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { int rc; edac_dbg(0, "MC:\n"); if (pci_enable_device(pdev) < 0) return -EIO; rc = i3000_probe1(pdev, ent->driver_data); if (!mci_pdev) mci_pdev = pci_dev_get(pdev); return rc; } static void i3000_remove_one(struct pci_dev *pdev) { struct mem_ctl_info *mci; edac_dbg(0, "\n"); if (i3000_pci) edac_pci_release_generic_ctl(i3000_pci); mci = edac_mc_del_mc(&pdev->dev); if (!mci) return; edac_mc_free(mci); } static const struct pci_device_id i3000_pci_tbl[] = { { PCI_VEND_DEV(INTEL, 3000_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0, I3000}, { 0, } /* 0 terminated list. */ }; MODULE_DEVICE_TABLE(pci, i3000_pci_tbl); static struct pci_driver i3000_driver = { .name = EDAC_MOD_STR, .probe = i3000_init_one, .remove = i3000_remove_one, .id_table = i3000_pci_tbl, }; static int __init i3000_init(void) { int pci_rc; edac_dbg(3, "MC:\n"); /* Ensure that the OPSTATE is set correctly for POLL or NMI */ opstate_init(); pci_rc = pci_register_driver(&i3000_driver); if (pci_rc < 0) goto fail0; if (!mci_pdev) { i3000_registered = 0; mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_3000_HB, NULL); if (!mci_pdev) { edac_dbg(0, "i3000 pci_get_device fail\n"); pci_rc = -ENODEV; goto fail1; } pci_rc = i3000_init_one(mci_pdev, i3000_pci_tbl); if (pci_rc < 0) { edac_dbg(0, "i3000 init fail\n"); pci_rc = -ENODEV; goto fail1; } } return 0; fail1: pci_unregister_driver(&i3000_driver); fail0: pci_dev_put(mci_pdev); return pci_rc; } static void __exit i3000_exit(void) { edac_dbg(3, "MC:\n"); pci_unregister_driver(&i3000_driver); if (!i3000_registered) { i3000_remove_one(mci_pdev); pci_dev_put(mci_pdev); } } module_init(i3000_init); module_exit(i3000_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Akamai Technologies Arthur Ulfeldt/Jason Uhlenkott"); MODULE_DESCRIPTION("MC support for Intel 3000 memory hub controllers"); module_param(edac_op_state, int, 0444); MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1