Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ard Biesheuvel | 977 | 70.64% | 33 | 71.74% |
Mark Salter | 275 | 19.88% | 1 | 2.17% |
Arvind Sankar | 58 | 4.19% | 3 | 6.52% |
Mark Rutland | 26 | 1.88% | 1 | 2.17% |
Heinrich Schuchardt | 18 | 1.30% | 1 | 2.17% |
Linn Crosetto | 16 | 1.16% | 1 | 2.17% |
David Howells | 4 | 0.29% | 1 | 2.17% |
Matthew Garrett | 3 | 0.22% | 1 | 2.17% |
Thomas Gleixner | 2 | 0.14% | 1 | 2.17% |
Xinwei Kong | 2 | 0.14% | 1 | 2.17% |
Zou Wei | 1 | 0.07% | 1 | 2.17% |
Steve Capper | 1 | 0.07% | 1 | 2.17% |
Total | 1383 | 46 |
// SPDX-License-Identifier: GPL-2.0-only /* * EFI stub implementation that is shared by arm and arm64 architectures. * This should be #included by the EFI stub implementation files. * * Copyright (C) 2013,2014 Linaro Limited * Roy Franz <roy.franz@linaro.org * Copyright (C) 2013 Red Hat, Inc. * Mark Salter <msalter@redhat.com> */ #include <linux/efi.h> #include <linux/libfdt.h> #include <asm/efi.h> #include "efistub.h" /* * This is the base address at which to start allocating virtual memory ranges * for UEFI Runtime Services. This is in the low TTBR0 range so that we can use * any allocation we choose, and eliminate the risk of a conflict after kexec. * The value chosen is the largest non-zero power of 2 suitable for this purpose * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can * be mapped efficiently. * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split, * map everything below 1 GB. (512 MB is a reasonable upper bound for the * entire footprint of the UEFI runtime services memory regions) */ #define EFI_RT_VIRTUAL_BASE SZ_512M #define EFI_RT_VIRTUAL_SIZE SZ_512M #ifdef CONFIG_ARM64 # define EFI_RT_VIRTUAL_LIMIT DEFAULT_MAP_WINDOW_64 #else # define EFI_RT_VIRTUAL_LIMIT TASK_SIZE #endif static u64 virtmap_base = EFI_RT_VIRTUAL_BASE; static bool flat_va_mapping; const efi_system_table_t *efi_system_table; static struct screen_info *setup_graphics(void) { efi_guid_t gop_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID; efi_status_t status; unsigned long size; void **gop_handle = NULL; struct screen_info *si = NULL; size = 0; status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL, &gop_proto, NULL, &size, gop_handle); if (status == EFI_BUFFER_TOO_SMALL) { si = alloc_screen_info(); if (!si) return NULL; status = efi_setup_gop(si, &gop_proto, size); if (status != EFI_SUCCESS) { free_screen_info(si); return NULL; } } return si; } static void install_memreserve_table(void) { struct linux_efi_memreserve *rsv; efi_guid_t memreserve_table_guid = LINUX_EFI_MEMRESERVE_TABLE_GUID; efi_status_t status; status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, sizeof(*rsv), (void **)&rsv); if (status != EFI_SUCCESS) { efi_err("Failed to allocate memreserve entry!\n"); return; } rsv->next = 0; rsv->size = 0; atomic_set(&rsv->count, 0); status = efi_bs_call(install_configuration_table, &memreserve_table_guid, rsv); if (status != EFI_SUCCESS) efi_err("Failed to install memreserve config table!\n"); } static unsigned long get_dram_base(void) { efi_status_t status; unsigned long map_size, buff_size; unsigned long membase = EFI_ERROR; struct efi_memory_map map; efi_memory_desc_t *md; struct efi_boot_memmap boot_map; boot_map.map = (efi_memory_desc_t **)&map.map; boot_map.map_size = &map_size; boot_map.desc_size = &map.desc_size; boot_map.desc_ver = NULL; boot_map.key_ptr = NULL; boot_map.buff_size = &buff_size; status = efi_get_memory_map(&boot_map); if (status != EFI_SUCCESS) return membase; map.map_end = map.map + map_size; for_each_efi_memory_desc_in_map(&map, md) { if (md->attribute & EFI_MEMORY_WB) { if (membase > md->phys_addr) membase = md->phys_addr; } } efi_bs_call(free_pool, map.map); return membase; } /* * EFI entry point for the arm/arm64 EFI stubs. This is the entrypoint * that is described in the PE/COFF header. Most of the code is the same * for both archictectures, with the arch-specific code provided in the * handle_kernel_image() function. */ efi_status_t __efiapi efi_pe_entry(efi_handle_t handle, efi_system_table_t *sys_table_arg) { efi_loaded_image_t *image; efi_status_t status; unsigned long image_addr; unsigned long image_size = 0; unsigned long dram_base; /* addr/point and size pairs for memory management*/ unsigned long initrd_addr = 0; unsigned long initrd_size = 0; unsigned long fdt_addr = 0; /* Original DTB */ unsigned long fdt_size = 0; char *cmdline_ptr = NULL; int cmdline_size = 0; efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID; unsigned long reserve_addr = 0; unsigned long reserve_size = 0; enum efi_secureboot_mode secure_boot; struct screen_info *si; efi_properties_table_t *prop_tbl; unsigned long max_addr; efi_system_table = sys_table_arg; /* Check if we were booted by the EFI firmware */ if (efi_system_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) { status = EFI_INVALID_PARAMETER; goto fail; } status = check_platform_features(); if (status != EFI_SUCCESS) goto fail; /* * Get a handle to the loaded image protocol. This is used to get * information about the running image, such as size and the command * line. */ status = efi_system_table->boottime->handle_protocol(handle, &loaded_image_proto, (void *)&image); if (status != EFI_SUCCESS) { efi_err("Failed to get loaded image protocol\n"); goto fail; } dram_base = get_dram_base(); if (dram_base == EFI_ERROR) { efi_err("Failed to find DRAM base\n"); status = EFI_LOAD_ERROR; goto fail; } /* * Get the command line from EFI, using the LOADED_IMAGE * protocol. We are going to copy the command line into the * device tree, so this can be allocated anywhere. */ cmdline_ptr = efi_convert_cmdline(image, &cmdline_size); if (!cmdline_ptr) { efi_err("getting command line via LOADED_IMAGE_PROTOCOL\n"); status = EFI_OUT_OF_RESOURCES; goto fail; } if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) || IS_ENABLED(CONFIG_CMDLINE_FORCE) || cmdline_size == 0) { status = efi_parse_options(CONFIG_CMDLINE); if (status != EFI_SUCCESS) { efi_err("Failed to parse options\n"); goto fail_free_cmdline; } } if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && cmdline_size > 0) { status = efi_parse_options(cmdline_ptr); if (status != EFI_SUCCESS) { efi_err("Failed to parse options\n"); goto fail_free_cmdline; } } efi_info("Booting Linux Kernel...\n"); si = setup_graphics(); status = handle_kernel_image(&image_addr, &image_size, &reserve_addr, &reserve_size, dram_base, image); if (status != EFI_SUCCESS) { efi_err("Failed to relocate kernel\n"); goto fail_free_screeninfo; } efi_retrieve_tpm2_eventlog(); /* Ask the firmware to clear memory on unclean shutdown */ efi_enable_reset_attack_mitigation(); secure_boot = efi_get_secureboot(); /* * Unauthenticated device tree data is a security hazard, so ignore * 'dtb=' unless UEFI Secure Boot is disabled. We assume that secure * boot is enabled if we can't determine its state. */ if (!IS_ENABLED(CONFIG_EFI_ARMSTUB_DTB_LOADER) || secure_boot != efi_secureboot_mode_disabled) { if (strstr(cmdline_ptr, "dtb=")) efi_err("Ignoring DTB from command line.\n"); } else { status = efi_load_dtb(image, &fdt_addr, &fdt_size); if (status != EFI_SUCCESS) { efi_err("Failed to load device tree!\n"); goto fail_free_image; } } if (fdt_addr) { efi_info("Using DTB from command line\n"); } else { /* Look for a device tree configuration table entry. */ fdt_addr = (uintptr_t)get_fdt(&fdt_size); if (fdt_addr) efi_info("Using DTB from configuration table\n"); } if (!fdt_addr) efi_info("Generating empty DTB\n"); if (!efi_noinitrd) { max_addr = efi_get_max_initrd_addr(dram_base, image_addr); status = efi_load_initrd(image, &initrd_addr, &initrd_size, ULONG_MAX, max_addr); if (status != EFI_SUCCESS) efi_err("Failed to load initrd!\n"); } efi_random_get_seed(); /* * If the NX PE data feature is enabled in the properties table, we * should take care not to create a virtual mapping that changes the * relative placement of runtime services code and data regions, as * they may belong to the same PE/COFF executable image in memory. * The easiest way to achieve that is to simply use a 1:1 mapping. */ prop_tbl = get_efi_config_table(EFI_PROPERTIES_TABLE_GUID); flat_va_mapping = prop_tbl && (prop_tbl->memory_protection_attribute & EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA); /* hibernation expects the runtime regions to stay in the same place */ if (!IS_ENABLED(CONFIG_HIBERNATION) && !efi_nokaslr && !flat_va_mapping) { /* * Randomize the base of the UEFI runtime services region. * Preserve the 2 MB alignment of the region by taking a * shift of 21 bit positions into account when scaling * the headroom value using a 32-bit random value. */ static const u64 headroom = EFI_RT_VIRTUAL_LIMIT - EFI_RT_VIRTUAL_BASE - EFI_RT_VIRTUAL_SIZE; u32 rnd; status = efi_get_random_bytes(sizeof(rnd), (u8 *)&rnd); if (status == EFI_SUCCESS) { virtmap_base = EFI_RT_VIRTUAL_BASE + (((headroom >> 21) * rnd) >> (32 - 21)); } } install_memreserve_table(); status = allocate_new_fdt_and_exit_boot(handle, &fdt_addr, efi_get_max_fdt_addr(dram_base), initrd_addr, initrd_size, cmdline_ptr, fdt_addr, fdt_size); if (status != EFI_SUCCESS) goto fail_free_initrd; if (IS_ENABLED(CONFIG_ARM)) efi_handle_post_ebs_state(); efi_enter_kernel(image_addr, fdt_addr, fdt_totalsize((void *)fdt_addr)); /* not reached */ fail_free_initrd: efi_err("Failed to update FDT and exit boot services\n"); efi_free(initrd_size, initrd_addr); efi_free(fdt_size, fdt_addr); fail_free_image: efi_free(image_size, image_addr); efi_free(reserve_size, reserve_addr); fail_free_screeninfo: free_screen_info(si); fail_free_cmdline: efi_bs_call(free_pool, cmdline_ptr); fail: return status; } /* * efi_get_virtmap() - create a virtual mapping for the EFI memory map * * This function populates the virt_addr fields of all memory region descriptors * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors * are also copied to @runtime_map, and their total count is returned in @count. */ void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size, unsigned long desc_size, efi_memory_desc_t *runtime_map, int *count) { u64 efi_virt_base = virtmap_base; efi_memory_desc_t *in, *out = runtime_map; int l; for (l = 0; l < map_size; l += desc_size) { u64 paddr, size; in = (void *)memory_map + l; if (!(in->attribute & EFI_MEMORY_RUNTIME)) continue; paddr = in->phys_addr; size = in->num_pages * EFI_PAGE_SIZE; in->virt_addr = in->phys_addr; if (efi_novamap) { continue; } /* * Make the mapping compatible with 64k pages: this allows * a 4k page size kernel to kexec a 64k page size kernel and * vice versa. */ if (!flat_va_mapping) { paddr = round_down(in->phys_addr, SZ_64K); size += in->phys_addr - paddr; /* * Avoid wasting memory on PTEs by choosing a virtual * base that is compatible with section mappings if this * region has the appropriate size and physical * alignment. (Sections are 2 MB on 4k granule kernels) */ if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M) efi_virt_base = round_up(efi_virt_base, SZ_2M); else efi_virt_base = round_up(efi_virt_base, SZ_64K); in->virt_addr += efi_virt_base - paddr; efi_virt_base += size; } memcpy(out, in, desc_size); out = (void *)out + desc_size; ++*count; } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1