Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Felix Kuhling | 777 | 23.94% | 11 | 16.18% |
Oded Gabbay | 603 | 18.58% | 3 | 4.41% |
Amber Lin | 269 | 8.29% | 6 | 8.82% |
Shaoyun Liu | 242 | 7.46% | 5 | 7.35% |
Oak Zeng | 224 | 6.90% | 3 | 4.41% |
Harish Kasiviswanathan | 203 | 6.26% | 2 | 2.94% |
Flora Cui | 184 | 5.67% | 1 | 1.47% |
Alex Sierra | 140 | 4.31% | 1 | 1.47% |
Andres Rodriguez | 113 | 3.48% | 2 | 2.94% |
Alex Deucher | 105 | 3.24% | 3 | 4.41% |
Yong Zhao | 86 | 2.65% | 8 | 11.76% |
Chunming Zhou | 53 | 1.63% | 1 | 1.47% |
Kent Russell | 44 | 1.36% | 3 | 4.41% |
Junwei (Martin) Zhang | 34 | 1.05% | 2 | 2.94% |
Jack Xiao | 27 | 0.83% | 1 | 1.47% |
Joseph Greathouse | 27 | 0.83% | 1 | 1.47% |
Divya Shikre | 27 | 0.83% | 1 | 1.47% |
Christian König | 23 | 0.71% | 6 | 8.82% |
Rajneesh Bhardwaj | 16 | 0.49% | 1 | 1.47% |
Hawking Zhang | 15 | 0.46% | 1 | 1.47% |
xinhui pan | 13 | 0.40% | 1 | 1.47% |
Eric Huang | 9 | 0.28% | 1 | 1.47% |
Prike Liang | 5 | 0.15% | 1 | 1.47% |
Arnd Bergmann | 3 | 0.09% | 1 | 1.47% |
Jay Cornwall | 2 | 0.06% | 1 | 1.47% |
Jammy Zhou | 1 | 0.03% | 1 | 1.47% |
Total | 3245 | 68 |
/* * Copyright 2014 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "amdgpu_amdkfd.h" #include "amd_shared.h" #include "amdgpu.h" #include "amdgpu_gfx.h" #include "amdgpu_dma_buf.h" #include <linux/module.h> #include <linux/dma-buf.h> #include "amdgpu_xgmi.h" #include <uapi/linux/kfd_ioctl.h> /* Total memory size in system memory and all GPU VRAM. Used to * estimate worst case amount of memory to reserve for page tables */ uint64_t amdgpu_amdkfd_total_mem_size; int amdgpu_amdkfd_init(void) { struct sysinfo si; int ret; si_meminfo(&si); amdgpu_amdkfd_total_mem_size = si.totalram - si.totalhigh; amdgpu_amdkfd_total_mem_size *= si.mem_unit; #ifdef CONFIG_HSA_AMD ret = kgd2kfd_init(); amdgpu_amdkfd_gpuvm_init_mem_limits(); #else ret = -ENOENT; #endif return ret; } void amdgpu_amdkfd_fini(void) { kgd2kfd_exit(); } void amdgpu_amdkfd_device_probe(struct amdgpu_device *adev) { bool vf = amdgpu_sriov_vf(adev); adev->kfd.dev = kgd2kfd_probe((struct kgd_dev *)adev, adev->pdev, adev->asic_type, vf); if (adev->kfd.dev) amdgpu_amdkfd_total_mem_size += adev->gmc.real_vram_size; } /** * amdgpu_doorbell_get_kfd_info - Report doorbell configuration required to * setup amdkfd * * @adev: amdgpu_device pointer * @aperture_base: output returning doorbell aperture base physical address * @aperture_size: output returning doorbell aperture size in bytes * @start_offset: output returning # of doorbell bytes reserved for amdgpu. * * amdgpu and amdkfd share the doorbell aperture. amdgpu sets it up, * takes doorbells required for its own rings and reports the setup to amdkfd. * amdgpu reserved doorbells are at the start of the doorbell aperture. */ static void amdgpu_doorbell_get_kfd_info(struct amdgpu_device *adev, phys_addr_t *aperture_base, size_t *aperture_size, size_t *start_offset) { /* * The first num_doorbells are used by amdgpu. * amdkfd takes whatever's left in the aperture. */ if (adev->doorbell.size > adev->doorbell.num_doorbells * sizeof(u32)) { *aperture_base = adev->doorbell.base; *aperture_size = adev->doorbell.size; *start_offset = adev->doorbell.num_doorbells * sizeof(u32); } else { *aperture_base = 0; *aperture_size = 0; *start_offset = 0; } } void amdgpu_amdkfd_device_init(struct amdgpu_device *adev) { int i; int last_valid_bit; if (adev->kfd.dev) { struct kgd2kfd_shared_resources gpu_resources = { .compute_vmid_bitmap = ((1 << AMDGPU_NUM_VMID) - 1) - ((1 << adev->vm_manager.first_kfd_vmid) - 1), .num_pipe_per_mec = adev->gfx.mec.num_pipe_per_mec, .num_queue_per_pipe = adev->gfx.mec.num_queue_per_pipe, .gpuvm_size = min(adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT, AMDGPU_GMC_HOLE_START), .drm_render_minor = adev->ddev->render->index, .sdma_doorbell_idx = adev->doorbell_index.sdma_engine, }; /* this is going to have a few of the MSBs set that we need to * clear */ bitmap_complement(gpu_resources.cp_queue_bitmap, adev->gfx.mec.queue_bitmap, KGD_MAX_QUEUES); /* According to linux/bitmap.h we shouldn't use bitmap_clear if * nbits is not compile time constant */ last_valid_bit = 1 /* only first MEC can have compute queues */ * adev->gfx.mec.num_pipe_per_mec * adev->gfx.mec.num_queue_per_pipe; for (i = last_valid_bit; i < KGD_MAX_QUEUES; ++i) clear_bit(i, gpu_resources.cp_queue_bitmap); amdgpu_doorbell_get_kfd_info(adev, &gpu_resources.doorbell_physical_address, &gpu_resources.doorbell_aperture_size, &gpu_resources.doorbell_start_offset); /* Since SOC15, BIF starts to statically use the * lower 12 bits of doorbell addresses for routing * based on settings in registers like * SDMA0_DOORBELL_RANGE etc.. * In order to route a doorbell to CP engine, the lower * 12 bits of its address has to be outside the range * set for SDMA, VCN, and IH blocks. */ if (adev->asic_type >= CHIP_VEGA10) { gpu_resources.non_cp_doorbells_start = adev->doorbell_index.first_non_cp; gpu_resources.non_cp_doorbells_end = adev->doorbell_index.last_non_cp; } kgd2kfd_device_init(adev->kfd.dev, adev->ddev, &gpu_resources); } } void amdgpu_amdkfd_device_fini(struct amdgpu_device *adev) { if (adev->kfd.dev) { kgd2kfd_device_exit(adev->kfd.dev); adev->kfd.dev = NULL; } } void amdgpu_amdkfd_interrupt(struct amdgpu_device *adev, const void *ih_ring_entry) { if (adev->kfd.dev) kgd2kfd_interrupt(adev->kfd.dev, ih_ring_entry); } void amdgpu_amdkfd_suspend(struct amdgpu_device *adev, bool run_pm) { if (adev->kfd.dev) kgd2kfd_suspend(adev->kfd.dev, run_pm); } int amdgpu_amdkfd_resume(struct amdgpu_device *adev, bool run_pm) { int r = 0; if (adev->kfd.dev) r = kgd2kfd_resume(adev->kfd.dev, run_pm); return r; } int amdgpu_amdkfd_pre_reset(struct amdgpu_device *adev) { int r = 0; if (adev->kfd.dev) r = kgd2kfd_pre_reset(adev->kfd.dev); return r; } int amdgpu_amdkfd_post_reset(struct amdgpu_device *adev) { int r = 0; if (adev->kfd.dev) r = kgd2kfd_post_reset(adev->kfd.dev); return r; } void amdgpu_amdkfd_gpu_reset(struct kgd_dev *kgd) { struct amdgpu_device *adev = (struct amdgpu_device *)kgd; if (amdgpu_device_should_recover_gpu(adev)) amdgpu_device_gpu_recover(adev, NULL); } int amdgpu_amdkfd_alloc_gtt_mem(struct kgd_dev *kgd, size_t size, void **mem_obj, uint64_t *gpu_addr, void **cpu_ptr, bool cp_mqd_gfx9) { struct amdgpu_device *adev = (struct amdgpu_device *)kgd; struct amdgpu_bo *bo = NULL; struct amdgpu_bo_param bp; int r; void *cpu_ptr_tmp = NULL; memset(&bp, 0, sizeof(bp)); bp.size = size; bp.byte_align = PAGE_SIZE; bp.domain = AMDGPU_GEM_DOMAIN_GTT; bp.flags = AMDGPU_GEM_CREATE_CPU_GTT_USWC; bp.type = ttm_bo_type_kernel; bp.resv = NULL; if (cp_mqd_gfx9) bp.flags |= AMDGPU_GEM_CREATE_CP_MQD_GFX9; r = amdgpu_bo_create(adev, &bp, &bo); if (r) { dev_err(adev->dev, "failed to allocate BO for amdkfd (%d)\n", r); return r; } /* map the buffer */ r = amdgpu_bo_reserve(bo, true); if (r) { dev_err(adev->dev, "(%d) failed to reserve bo for amdkfd\n", r); goto allocate_mem_reserve_bo_failed; } r = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT); if (r) { dev_err(adev->dev, "(%d) failed to pin bo for amdkfd\n", r); goto allocate_mem_pin_bo_failed; } r = amdgpu_ttm_alloc_gart(&bo->tbo); if (r) { dev_err(adev->dev, "%p bind failed\n", bo); goto allocate_mem_kmap_bo_failed; } r = amdgpu_bo_kmap(bo, &cpu_ptr_tmp); if (r) { dev_err(adev->dev, "(%d) failed to map bo to kernel for amdkfd\n", r); goto allocate_mem_kmap_bo_failed; } *mem_obj = bo; *gpu_addr = amdgpu_bo_gpu_offset(bo); *cpu_ptr = cpu_ptr_tmp; amdgpu_bo_unreserve(bo); return 0; allocate_mem_kmap_bo_failed: amdgpu_bo_unpin(bo); allocate_mem_pin_bo_failed: amdgpu_bo_unreserve(bo); allocate_mem_reserve_bo_failed: amdgpu_bo_unref(&bo); return r; } void amdgpu_amdkfd_free_gtt_mem(struct kgd_dev *kgd, void *mem_obj) { struct amdgpu_bo *bo = (struct amdgpu_bo *) mem_obj; amdgpu_bo_reserve(bo, true); amdgpu_bo_kunmap(bo); amdgpu_bo_unpin(bo); amdgpu_bo_unreserve(bo); amdgpu_bo_unref(&(bo)); } int amdgpu_amdkfd_alloc_gws(struct kgd_dev *kgd, size_t size, void **mem_obj) { struct amdgpu_device *adev = (struct amdgpu_device *)kgd; struct amdgpu_bo *bo = NULL; struct amdgpu_bo_param bp; int r; memset(&bp, 0, sizeof(bp)); bp.size = size; bp.byte_align = 1; bp.domain = AMDGPU_GEM_DOMAIN_GWS; bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS; bp.type = ttm_bo_type_device; bp.resv = NULL; r = amdgpu_bo_create(adev, &bp, &bo); if (r) { dev_err(adev->dev, "failed to allocate gws BO for amdkfd (%d)\n", r); return r; } *mem_obj = bo; return 0; } void amdgpu_amdkfd_free_gws(struct kgd_dev *kgd, void *mem_obj) { struct amdgpu_bo *bo = (struct amdgpu_bo *)mem_obj; amdgpu_bo_unref(&bo); } uint32_t amdgpu_amdkfd_get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type) { struct amdgpu_device *adev = (struct amdgpu_device *)kgd; switch (type) { case KGD_ENGINE_PFP: return adev->gfx.pfp_fw_version; case KGD_ENGINE_ME: return adev->gfx.me_fw_version; case KGD_ENGINE_CE: return adev->gfx.ce_fw_version; case KGD_ENGINE_MEC1: return adev->gfx.mec_fw_version; case KGD_ENGINE_MEC2: return adev->gfx.mec2_fw_version; case KGD_ENGINE_RLC: return adev->gfx.rlc_fw_version; case KGD_ENGINE_SDMA1: return adev->sdma.instance[0].fw_version; case KGD_ENGINE_SDMA2: return adev->sdma.instance[1].fw_version; default: return 0; } return 0; } void amdgpu_amdkfd_get_local_mem_info(struct kgd_dev *kgd, struct kfd_local_mem_info *mem_info) { struct amdgpu_device *adev = (struct amdgpu_device *)kgd; uint64_t address_mask = adev->dev->dma_mask ? ~*adev->dev->dma_mask : ~((1ULL << 32) - 1); resource_size_t aper_limit = adev->gmc.aper_base + adev->gmc.aper_size; memset(mem_info, 0, sizeof(*mem_info)); if (!(adev->gmc.aper_base & address_mask || aper_limit & address_mask)) { mem_info->local_mem_size_public = adev->gmc.visible_vram_size; mem_info->local_mem_size_private = adev->gmc.real_vram_size - adev->gmc.visible_vram_size; } else { mem_info->local_mem_size_public = 0; mem_info->local_mem_size_private = adev->gmc.real_vram_size; } mem_info->vram_width = adev->gmc.vram_width; pr_debug("Address base: %pap limit %pap public 0x%llx private 0x%llx\n", &adev->gmc.aper_base, &aper_limit, mem_info->local_mem_size_public, mem_info->local_mem_size_private); if (amdgpu_sriov_vf(adev)) mem_info->mem_clk_max = adev->clock.default_mclk / 100; else if (adev->pm.dpm_enabled) { if (amdgpu_emu_mode == 1) mem_info->mem_clk_max = 0; else mem_info->mem_clk_max = amdgpu_dpm_get_mclk(adev, false) / 100; } else mem_info->mem_clk_max = 100; } uint64_t amdgpu_amdkfd_get_gpu_clock_counter(struct kgd_dev *kgd) { struct amdgpu_device *adev = (struct amdgpu_device *)kgd; if (adev->gfx.funcs->get_gpu_clock_counter) return adev->gfx.funcs->get_gpu_clock_counter(adev); return 0; } uint32_t amdgpu_amdkfd_get_max_engine_clock_in_mhz(struct kgd_dev *kgd) { struct amdgpu_device *adev = (struct amdgpu_device *)kgd; /* the sclk is in quantas of 10kHz */ if (amdgpu_sriov_vf(adev)) return adev->clock.default_sclk / 100; else if (adev->pm.dpm_enabled) return amdgpu_dpm_get_sclk(adev, false) / 100; else return 100; } void amdgpu_amdkfd_get_cu_info(struct kgd_dev *kgd, struct kfd_cu_info *cu_info) { struct amdgpu_device *adev = (struct amdgpu_device *)kgd; struct amdgpu_cu_info acu_info = adev->gfx.cu_info; memset(cu_info, 0, sizeof(*cu_info)); if (sizeof(cu_info->cu_bitmap) != sizeof(acu_info.bitmap)) return; cu_info->cu_active_number = acu_info.number; cu_info->cu_ao_mask = acu_info.ao_cu_mask; memcpy(&cu_info->cu_bitmap[0], &acu_info.bitmap[0], sizeof(acu_info.bitmap)); cu_info->num_shader_engines = adev->gfx.config.max_shader_engines; cu_info->num_shader_arrays_per_engine = adev->gfx.config.max_sh_per_se; cu_info->num_cu_per_sh = adev->gfx.config.max_cu_per_sh; cu_info->simd_per_cu = acu_info.simd_per_cu; cu_info->max_waves_per_simd = acu_info.max_waves_per_simd; cu_info->wave_front_size = acu_info.wave_front_size; cu_info->max_scratch_slots_per_cu = acu_info.max_scratch_slots_per_cu; cu_info->lds_size = acu_info.lds_size; } int amdgpu_amdkfd_get_dmabuf_info(struct kgd_dev *kgd, int dma_buf_fd, struct kgd_dev **dma_buf_kgd, uint64_t *bo_size, void *metadata_buffer, size_t buffer_size, uint32_t *metadata_size, uint32_t *flags) { struct amdgpu_device *adev = (struct amdgpu_device *)kgd; struct dma_buf *dma_buf; struct drm_gem_object *obj; struct amdgpu_bo *bo; uint64_t metadata_flags; int r = -EINVAL; dma_buf = dma_buf_get(dma_buf_fd); if (IS_ERR(dma_buf)) return PTR_ERR(dma_buf); if (dma_buf->ops != &amdgpu_dmabuf_ops) /* Can't handle non-graphics buffers */ goto out_put; obj = dma_buf->priv; if (obj->dev->driver != adev->ddev->driver) /* Can't handle buffers from different drivers */ goto out_put; adev = obj->dev->dev_private; bo = gem_to_amdgpu_bo(obj); if (!(bo->preferred_domains & (AMDGPU_GEM_DOMAIN_VRAM | AMDGPU_GEM_DOMAIN_GTT))) /* Only VRAM and GTT BOs are supported */ goto out_put; r = 0; if (dma_buf_kgd) *dma_buf_kgd = (struct kgd_dev *)adev; if (bo_size) *bo_size = amdgpu_bo_size(bo); if (metadata_size) *metadata_size = bo->metadata_size; if (metadata_buffer) r = amdgpu_bo_get_metadata(bo, metadata_buffer, buffer_size, metadata_size, &metadata_flags); if (flags) { *flags = (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) ? KFD_IOC_ALLOC_MEM_FLAGS_VRAM : KFD_IOC_ALLOC_MEM_FLAGS_GTT; if (bo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) *flags |= KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC; } out_put: dma_buf_put(dma_buf); return r; } uint64_t amdgpu_amdkfd_get_vram_usage(struct kgd_dev *kgd) { struct amdgpu_device *adev = (struct amdgpu_device *)kgd; return amdgpu_vram_mgr_usage(&adev->mman.bdev.man[TTM_PL_VRAM]); } uint64_t amdgpu_amdkfd_get_hive_id(struct kgd_dev *kgd) { struct amdgpu_device *adev = (struct amdgpu_device *)kgd; return adev->gmc.xgmi.hive_id; } uint64_t amdgpu_amdkfd_get_unique_id(struct kgd_dev *kgd) { struct amdgpu_device *adev = (struct amdgpu_device *)kgd; return adev->unique_id; } uint8_t amdgpu_amdkfd_get_xgmi_hops_count(struct kgd_dev *dst, struct kgd_dev *src) { struct amdgpu_device *peer_adev = (struct amdgpu_device *)src; struct amdgpu_device *adev = (struct amdgpu_device *)dst; int ret = amdgpu_xgmi_get_hops_count(adev, peer_adev); if (ret < 0) { DRM_ERROR("amdgpu: failed to get xgmi hops count between node %d and %d. ret = %d\n", adev->gmc.xgmi.physical_node_id, peer_adev->gmc.xgmi.physical_node_id, ret); ret = 0; } return (uint8_t)ret; } uint64_t amdgpu_amdkfd_get_mmio_remap_phys_addr(struct kgd_dev *kgd) { struct amdgpu_device *adev = (struct amdgpu_device *)kgd; return adev->rmmio_remap.bus_addr; } uint32_t amdgpu_amdkfd_get_num_gws(struct kgd_dev *kgd) { struct amdgpu_device *adev = (struct amdgpu_device *)kgd; return adev->gds.gws_size; } uint32_t amdgpu_amdkfd_get_asic_rev_id(struct kgd_dev *kgd) { struct amdgpu_device *adev = (struct amdgpu_device *)kgd; return adev->rev_id; } int amdgpu_amdkfd_submit_ib(struct kgd_dev *kgd, enum kgd_engine_type engine, uint32_t vmid, uint64_t gpu_addr, uint32_t *ib_cmd, uint32_t ib_len) { struct amdgpu_device *adev = (struct amdgpu_device *)kgd; struct amdgpu_job *job; struct amdgpu_ib *ib; struct amdgpu_ring *ring; struct dma_fence *f = NULL; int ret; switch (engine) { case KGD_ENGINE_MEC1: ring = &adev->gfx.compute_ring[0]; break; case KGD_ENGINE_SDMA1: ring = &adev->sdma.instance[0].ring; break; case KGD_ENGINE_SDMA2: ring = &adev->sdma.instance[1].ring; break; default: pr_err("Invalid engine in IB submission: %d\n", engine); ret = -EINVAL; goto err; } ret = amdgpu_job_alloc(adev, 1, &job, NULL); if (ret) goto err; ib = &job->ibs[0]; memset(ib, 0, sizeof(struct amdgpu_ib)); ib->gpu_addr = gpu_addr; ib->ptr = ib_cmd; ib->length_dw = ib_len; /* This works for NO_HWS. TODO: need to handle without knowing VMID */ job->vmid = vmid; ret = amdgpu_ib_schedule(ring, 1, ib, job, &f); if (ret) { DRM_ERROR("amdgpu: failed to schedule IB.\n"); goto err_ib_sched; } ret = dma_fence_wait(f, false); err_ib_sched: dma_fence_put(f); amdgpu_job_free(job); err: return ret; } void amdgpu_amdkfd_set_compute_idle(struct kgd_dev *kgd, bool idle) { struct amdgpu_device *adev = (struct amdgpu_device *)kgd; amdgpu_dpm_switch_power_profile(adev, PP_SMC_POWER_PROFILE_COMPUTE, !idle); } bool amdgpu_amdkfd_is_kfd_vmid(struct amdgpu_device *adev, u32 vmid) { if (adev->kfd.dev) return vmid >= adev->vm_manager.first_kfd_vmid; return false; } int amdgpu_amdkfd_flush_gpu_tlb_vmid(struct kgd_dev *kgd, uint16_t vmid) { struct amdgpu_device *adev = (struct amdgpu_device *)kgd; if (adev->family == AMDGPU_FAMILY_AI) { int i; for (i = 0; i < adev->num_vmhubs; i++) amdgpu_gmc_flush_gpu_tlb(adev, vmid, i, 0); } else { amdgpu_gmc_flush_gpu_tlb(adev, vmid, AMDGPU_GFXHUB_0, 0); } return 0; } int amdgpu_amdkfd_flush_gpu_tlb_pasid(struct kgd_dev *kgd, uint16_t pasid) { struct amdgpu_device *adev = (struct amdgpu_device *)kgd; const uint32_t flush_type = 0; bool all_hub = false; if (adev->family == AMDGPU_FAMILY_AI) all_hub = true; return amdgpu_gmc_flush_gpu_tlb_pasid(adev, pasid, flush_type, all_hub); } bool amdgpu_amdkfd_have_atomics_support(struct kgd_dev *kgd) { struct amdgpu_device *adev = (struct amdgpu_device *)kgd; return adev->have_atomics_support; } #ifndef CONFIG_HSA_AMD bool amdkfd_fence_check_mm(struct dma_fence *f, struct mm_struct *mm) { return false; } void amdgpu_amdkfd_unreserve_memory_limit(struct amdgpu_bo *bo) { } int amdgpu_amdkfd_remove_fence_on_pt_pd_bos(struct amdgpu_bo *bo) { return 0; } void amdgpu_amdkfd_gpuvm_destroy_cb(struct amdgpu_device *adev, struct amdgpu_vm *vm) { } struct amdgpu_amdkfd_fence *to_amdgpu_amdkfd_fence(struct dma_fence *f) { return NULL; } int amdgpu_amdkfd_evict_userptr(struct kgd_mem *mem, struct mm_struct *mm) { return 0; } struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd, struct pci_dev *pdev, unsigned int asic_type, bool vf) { return NULL; } bool kgd2kfd_device_init(struct kfd_dev *kfd, struct drm_device *ddev, const struct kgd2kfd_shared_resources *gpu_resources) { return false; } void kgd2kfd_device_exit(struct kfd_dev *kfd) { } void kgd2kfd_exit(void) { } void kgd2kfd_suspend(struct kfd_dev *kfd, bool run_pm) { } int kgd2kfd_resume(struct kfd_dev *kfd, bool run_pm) { return 0; } int kgd2kfd_pre_reset(struct kfd_dev *kfd) { return 0; } int kgd2kfd_post_reset(struct kfd_dev *kfd) { return 0; } void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry) { } void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd) { } #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1