Contributors: 12
Author Tokens Token Proportion Commits Commit Proportion
Alex Deucher 5757 77.40% 4 18.18%
Evan Quan 913 12.27% 3 13.64%
Rex Zhu 168 2.26% 4 18.18%
Hawking Zhang 131 1.76% 2 9.09%
Likun Gao 108 1.45% 1 4.55%
Kevin Wang 85 1.14% 2 9.09%
Kenneth Feng 84 1.13% 1 4.55%
Joe Perches 75 1.01% 1 4.55%
Wenhui Sheng 73 0.98% 1 4.55%
John Clements 41 0.55% 1 4.55%
Kees Cook 2 0.03% 1 4.55%
Wolfram Sang 1 0.01% 1 4.55%
Total 7438 22


/*
 * Copyright 2011 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors: Alex Deucher
 */

#include "amdgpu.h"
#include "amdgpu_atombios.h"
#include "amdgpu_i2c.h"
#include "amdgpu_dpm.h"
#include "atom.h"
#include "amd_pcie.h"

void amdgpu_dpm_print_class_info(u32 class, u32 class2)
{
	const char *s;

	switch (class & ATOM_PPLIB_CLASSIFICATION_UI_MASK) {
	case ATOM_PPLIB_CLASSIFICATION_UI_NONE:
	default:
		s = "none";
		break;
	case ATOM_PPLIB_CLASSIFICATION_UI_BATTERY:
		s = "battery";
		break;
	case ATOM_PPLIB_CLASSIFICATION_UI_BALANCED:
		s = "balanced";
		break;
	case ATOM_PPLIB_CLASSIFICATION_UI_PERFORMANCE:
		s = "performance";
		break;
	}
	printk("\tui class: %s\n", s);
	printk("\tinternal class:");
	if (((class & ~ATOM_PPLIB_CLASSIFICATION_UI_MASK) == 0) &&
	    (class2 == 0))
		pr_cont(" none");
	else {
		if (class & ATOM_PPLIB_CLASSIFICATION_BOOT)
			pr_cont(" boot");
		if (class & ATOM_PPLIB_CLASSIFICATION_THERMAL)
			pr_cont(" thermal");
		if (class & ATOM_PPLIB_CLASSIFICATION_LIMITEDPOWERSOURCE)
			pr_cont(" limited_pwr");
		if (class & ATOM_PPLIB_CLASSIFICATION_REST)
			pr_cont(" rest");
		if (class & ATOM_PPLIB_CLASSIFICATION_FORCED)
			pr_cont(" forced");
		if (class & ATOM_PPLIB_CLASSIFICATION_3DPERFORMANCE)
			pr_cont(" 3d_perf");
		if (class & ATOM_PPLIB_CLASSIFICATION_OVERDRIVETEMPLATE)
			pr_cont(" ovrdrv");
		if (class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE)
			pr_cont(" uvd");
		if (class & ATOM_PPLIB_CLASSIFICATION_3DLOW)
			pr_cont(" 3d_low");
		if (class & ATOM_PPLIB_CLASSIFICATION_ACPI)
			pr_cont(" acpi");
		if (class & ATOM_PPLIB_CLASSIFICATION_HD2STATE)
			pr_cont(" uvd_hd2");
		if (class & ATOM_PPLIB_CLASSIFICATION_HDSTATE)
			pr_cont(" uvd_hd");
		if (class & ATOM_PPLIB_CLASSIFICATION_SDSTATE)
			pr_cont(" uvd_sd");
		if (class2 & ATOM_PPLIB_CLASSIFICATION2_LIMITEDPOWERSOURCE_2)
			pr_cont(" limited_pwr2");
		if (class2 & ATOM_PPLIB_CLASSIFICATION2_ULV)
			pr_cont(" ulv");
		if (class2 & ATOM_PPLIB_CLASSIFICATION2_MVC)
			pr_cont(" uvd_mvc");
	}
	pr_cont("\n");
}

void amdgpu_dpm_print_cap_info(u32 caps)
{
	printk("\tcaps:");
	if (caps & ATOM_PPLIB_SINGLE_DISPLAY_ONLY)
		pr_cont(" single_disp");
	if (caps & ATOM_PPLIB_SUPPORTS_VIDEO_PLAYBACK)
		pr_cont(" video");
	if (caps & ATOM_PPLIB_DISALLOW_ON_DC)
		pr_cont(" no_dc");
	pr_cont("\n");
}

void amdgpu_dpm_print_ps_status(struct amdgpu_device *adev,
				struct amdgpu_ps *rps)
{
	printk("\tstatus:");
	if (rps == adev->pm.dpm.current_ps)
		pr_cont(" c");
	if (rps == adev->pm.dpm.requested_ps)
		pr_cont(" r");
	if (rps == adev->pm.dpm.boot_ps)
		pr_cont(" b");
	pr_cont("\n");
}

void amdgpu_dpm_get_active_displays(struct amdgpu_device *adev)
{
	struct drm_device *ddev = adev->ddev;
	struct drm_crtc *crtc;
	struct amdgpu_crtc *amdgpu_crtc;

	adev->pm.dpm.new_active_crtcs = 0;
	adev->pm.dpm.new_active_crtc_count = 0;
	if (adev->mode_info.num_crtc && adev->mode_info.mode_config_initialized) {
		list_for_each_entry(crtc,
				    &ddev->mode_config.crtc_list, head) {
			amdgpu_crtc = to_amdgpu_crtc(crtc);
			if (amdgpu_crtc->enabled) {
				adev->pm.dpm.new_active_crtcs |= (1 << amdgpu_crtc->crtc_id);
				adev->pm.dpm.new_active_crtc_count++;
			}
		}
	}
}


u32 amdgpu_dpm_get_vblank_time(struct amdgpu_device *adev)
{
	struct drm_device *dev = adev->ddev;
	struct drm_crtc *crtc;
	struct amdgpu_crtc *amdgpu_crtc;
	u32 vblank_in_pixels;
	u32 vblank_time_us = 0xffffffff; /* if the displays are off, vblank time is max */

	if (adev->mode_info.num_crtc && adev->mode_info.mode_config_initialized) {
		list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
			amdgpu_crtc = to_amdgpu_crtc(crtc);
			if (crtc->enabled && amdgpu_crtc->enabled && amdgpu_crtc->hw_mode.clock) {
				vblank_in_pixels =
					amdgpu_crtc->hw_mode.crtc_htotal *
					(amdgpu_crtc->hw_mode.crtc_vblank_end -
					amdgpu_crtc->hw_mode.crtc_vdisplay +
					(amdgpu_crtc->v_border * 2));

				vblank_time_us = vblank_in_pixels * 1000 / amdgpu_crtc->hw_mode.clock;
				break;
			}
		}
	}

	return vblank_time_us;
}

u32 amdgpu_dpm_get_vrefresh(struct amdgpu_device *adev)
{
	struct drm_device *dev = adev->ddev;
	struct drm_crtc *crtc;
	struct amdgpu_crtc *amdgpu_crtc;
	u32 vrefresh = 0;

	if (adev->mode_info.num_crtc && adev->mode_info.mode_config_initialized) {
		list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
			amdgpu_crtc = to_amdgpu_crtc(crtc);
			if (crtc->enabled && amdgpu_crtc->enabled && amdgpu_crtc->hw_mode.clock) {
				vrefresh = drm_mode_vrefresh(&amdgpu_crtc->hw_mode);
				break;
			}
		}
	}

	return vrefresh;
}

bool amdgpu_is_internal_thermal_sensor(enum amdgpu_int_thermal_type sensor)
{
	switch (sensor) {
	case THERMAL_TYPE_RV6XX:
	case THERMAL_TYPE_RV770:
	case THERMAL_TYPE_EVERGREEN:
	case THERMAL_TYPE_SUMO:
	case THERMAL_TYPE_NI:
	case THERMAL_TYPE_SI:
	case THERMAL_TYPE_CI:
	case THERMAL_TYPE_KV:
		return true;
	case THERMAL_TYPE_ADT7473_WITH_INTERNAL:
	case THERMAL_TYPE_EMC2103_WITH_INTERNAL:
		return false; /* need special handling */
	case THERMAL_TYPE_NONE:
	case THERMAL_TYPE_EXTERNAL:
	case THERMAL_TYPE_EXTERNAL_GPIO:
	default:
		return false;
	}
}

union power_info {
	struct _ATOM_POWERPLAY_INFO info;
	struct _ATOM_POWERPLAY_INFO_V2 info_2;
	struct _ATOM_POWERPLAY_INFO_V3 info_3;
	struct _ATOM_PPLIB_POWERPLAYTABLE pplib;
	struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2;
	struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3;
	struct _ATOM_PPLIB_POWERPLAYTABLE4 pplib4;
	struct _ATOM_PPLIB_POWERPLAYTABLE5 pplib5;
};

union fan_info {
	struct _ATOM_PPLIB_FANTABLE fan;
	struct _ATOM_PPLIB_FANTABLE2 fan2;
	struct _ATOM_PPLIB_FANTABLE3 fan3;
};

static int amdgpu_parse_clk_voltage_dep_table(struct amdgpu_clock_voltage_dependency_table *amdgpu_table,
					      ATOM_PPLIB_Clock_Voltage_Dependency_Table *atom_table)
{
	u32 size = atom_table->ucNumEntries *
		sizeof(struct amdgpu_clock_voltage_dependency_entry);
	int i;
	ATOM_PPLIB_Clock_Voltage_Dependency_Record *entry;

	amdgpu_table->entries = kzalloc(size, GFP_KERNEL);
	if (!amdgpu_table->entries)
		return -ENOMEM;

	entry = &atom_table->entries[0];
	for (i = 0; i < atom_table->ucNumEntries; i++) {
		amdgpu_table->entries[i].clk = le16_to_cpu(entry->usClockLow) |
			(entry->ucClockHigh << 16);
		amdgpu_table->entries[i].v = le16_to_cpu(entry->usVoltage);
		entry = (ATOM_PPLIB_Clock_Voltage_Dependency_Record *)
			((u8 *)entry + sizeof(ATOM_PPLIB_Clock_Voltage_Dependency_Record));
	}
	amdgpu_table->count = atom_table->ucNumEntries;

	return 0;
}

int amdgpu_get_platform_caps(struct amdgpu_device *adev)
{
	struct amdgpu_mode_info *mode_info = &adev->mode_info;
	union power_info *power_info;
	int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
	u16 data_offset;
	u8 frev, crev;

	if (!amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL,
				   &frev, &crev, &data_offset))
		return -EINVAL;
	power_info = (union power_info *)(mode_info->atom_context->bios + data_offset);

	adev->pm.dpm.platform_caps = le32_to_cpu(power_info->pplib.ulPlatformCaps);
	adev->pm.dpm.backbias_response_time = le16_to_cpu(power_info->pplib.usBackbiasTime);
	adev->pm.dpm.voltage_response_time = le16_to_cpu(power_info->pplib.usVoltageTime);

	return 0;
}

/* sizeof(ATOM_PPLIB_EXTENDEDHEADER) */
#define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V2 12
#define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V3 14
#define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V4 16
#define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V5 18
#define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V6 20
#define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V7 22
#define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V8 24
#define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V9 26

int amdgpu_parse_extended_power_table(struct amdgpu_device *adev)
{
	struct amdgpu_mode_info *mode_info = &adev->mode_info;
	union power_info *power_info;
	union fan_info *fan_info;
	ATOM_PPLIB_Clock_Voltage_Dependency_Table *dep_table;
	int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
	u16 data_offset;
	u8 frev, crev;
	int ret, i;

	if (!amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL,
				   &frev, &crev, &data_offset))
		return -EINVAL;
	power_info = (union power_info *)(mode_info->atom_context->bios + data_offset);

	/* fan table */
	if (le16_to_cpu(power_info->pplib.usTableSize) >=
	    sizeof(struct _ATOM_PPLIB_POWERPLAYTABLE3)) {
		if (power_info->pplib3.usFanTableOffset) {
			fan_info = (union fan_info *)(mode_info->atom_context->bios + data_offset +
						      le16_to_cpu(power_info->pplib3.usFanTableOffset));
			adev->pm.dpm.fan.t_hyst = fan_info->fan.ucTHyst;
			adev->pm.dpm.fan.t_min = le16_to_cpu(fan_info->fan.usTMin);
			adev->pm.dpm.fan.t_med = le16_to_cpu(fan_info->fan.usTMed);
			adev->pm.dpm.fan.t_high = le16_to_cpu(fan_info->fan.usTHigh);
			adev->pm.dpm.fan.pwm_min = le16_to_cpu(fan_info->fan.usPWMMin);
			adev->pm.dpm.fan.pwm_med = le16_to_cpu(fan_info->fan.usPWMMed);
			adev->pm.dpm.fan.pwm_high = le16_to_cpu(fan_info->fan.usPWMHigh);
			if (fan_info->fan.ucFanTableFormat >= 2)
				adev->pm.dpm.fan.t_max = le16_to_cpu(fan_info->fan2.usTMax);
			else
				adev->pm.dpm.fan.t_max = 10900;
			adev->pm.dpm.fan.cycle_delay = 100000;
			if (fan_info->fan.ucFanTableFormat >= 3) {
				adev->pm.dpm.fan.control_mode = fan_info->fan3.ucFanControlMode;
				adev->pm.dpm.fan.default_max_fan_pwm =
					le16_to_cpu(fan_info->fan3.usFanPWMMax);
				adev->pm.dpm.fan.default_fan_output_sensitivity = 4836;
				adev->pm.dpm.fan.fan_output_sensitivity =
					le16_to_cpu(fan_info->fan3.usFanOutputSensitivity);
			}
			adev->pm.dpm.fan.ucode_fan_control = true;
		}
	}

	/* clock dependancy tables, shedding tables */
	if (le16_to_cpu(power_info->pplib.usTableSize) >=
	    sizeof(struct _ATOM_PPLIB_POWERPLAYTABLE4)) {
		if (power_info->pplib4.usVddcDependencyOnSCLKOffset) {
			dep_table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
				(mode_info->atom_context->bios + data_offset +
				 le16_to_cpu(power_info->pplib4.usVddcDependencyOnSCLKOffset));
			ret = amdgpu_parse_clk_voltage_dep_table(&adev->pm.dpm.dyn_state.vddc_dependency_on_sclk,
								 dep_table);
			if (ret) {
				amdgpu_free_extended_power_table(adev);
				return ret;
			}
		}
		if (power_info->pplib4.usVddciDependencyOnMCLKOffset) {
			dep_table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
				(mode_info->atom_context->bios + data_offset +
				 le16_to_cpu(power_info->pplib4.usVddciDependencyOnMCLKOffset));
			ret = amdgpu_parse_clk_voltage_dep_table(&adev->pm.dpm.dyn_state.vddci_dependency_on_mclk,
								 dep_table);
			if (ret) {
				amdgpu_free_extended_power_table(adev);
				return ret;
			}
		}
		if (power_info->pplib4.usVddcDependencyOnMCLKOffset) {
			dep_table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
				(mode_info->atom_context->bios + data_offset +
				 le16_to_cpu(power_info->pplib4.usVddcDependencyOnMCLKOffset));
			ret = amdgpu_parse_clk_voltage_dep_table(&adev->pm.dpm.dyn_state.vddc_dependency_on_mclk,
								 dep_table);
			if (ret) {
				amdgpu_free_extended_power_table(adev);
				return ret;
			}
		}
		if (power_info->pplib4.usMvddDependencyOnMCLKOffset) {
			dep_table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
				(mode_info->atom_context->bios + data_offset +
				 le16_to_cpu(power_info->pplib4.usMvddDependencyOnMCLKOffset));
			ret = amdgpu_parse_clk_voltage_dep_table(&adev->pm.dpm.dyn_state.mvdd_dependency_on_mclk,
								 dep_table);
			if (ret) {
				amdgpu_free_extended_power_table(adev);
				return ret;
			}
		}
		if (power_info->pplib4.usMaxClockVoltageOnDCOffset) {
			ATOM_PPLIB_Clock_Voltage_Limit_Table *clk_v =
				(ATOM_PPLIB_Clock_Voltage_Limit_Table *)
				(mode_info->atom_context->bios + data_offset +
				 le16_to_cpu(power_info->pplib4.usMaxClockVoltageOnDCOffset));
			if (clk_v->ucNumEntries) {
				adev->pm.dpm.dyn_state.max_clock_voltage_on_dc.sclk =
					le16_to_cpu(clk_v->entries[0].usSclkLow) |
					(clk_v->entries[0].ucSclkHigh << 16);
				adev->pm.dpm.dyn_state.max_clock_voltage_on_dc.mclk =
					le16_to_cpu(clk_v->entries[0].usMclkLow) |
					(clk_v->entries[0].ucMclkHigh << 16);
				adev->pm.dpm.dyn_state.max_clock_voltage_on_dc.vddc =
					le16_to_cpu(clk_v->entries[0].usVddc);
				adev->pm.dpm.dyn_state.max_clock_voltage_on_dc.vddci =
					le16_to_cpu(clk_v->entries[0].usVddci);
			}
		}
		if (power_info->pplib4.usVddcPhaseShedLimitsTableOffset) {
			ATOM_PPLIB_PhaseSheddingLimits_Table *psl =
				(ATOM_PPLIB_PhaseSheddingLimits_Table *)
				(mode_info->atom_context->bios + data_offset +
				 le16_to_cpu(power_info->pplib4.usVddcPhaseShedLimitsTableOffset));
			ATOM_PPLIB_PhaseSheddingLimits_Record *entry;

			adev->pm.dpm.dyn_state.phase_shedding_limits_table.entries =
				kcalloc(psl->ucNumEntries,
					sizeof(struct amdgpu_phase_shedding_limits_entry),
					GFP_KERNEL);
			if (!adev->pm.dpm.dyn_state.phase_shedding_limits_table.entries) {
				amdgpu_free_extended_power_table(adev);
				return -ENOMEM;
			}

			entry = &psl->entries[0];
			for (i = 0; i < psl->ucNumEntries; i++) {
				adev->pm.dpm.dyn_state.phase_shedding_limits_table.entries[i].sclk =
					le16_to_cpu(entry->usSclkLow) | (entry->ucSclkHigh << 16);
				adev->pm.dpm.dyn_state.phase_shedding_limits_table.entries[i].mclk =
					le16_to_cpu(entry->usMclkLow) | (entry->ucMclkHigh << 16);
				adev->pm.dpm.dyn_state.phase_shedding_limits_table.entries[i].voltage =
					le16_to_cpu(entry->usVoltage);
				entry = (ATOM_PPLIB_PhaseSheddingLimits_Record *)
					((u8 *)entry + sizeof(ATOM_PPLIB_PhaseSheddingLimits_Record));
			}
			adev->pm.dpm.dyn_state.phase_shedding_limits_table.count =
				psl->ucNumEntries;
		}
	}

	/* cac data */
	if (le16_to_cpu(power_info->pplib.usTableSize) >=
	    sizeof(struct _ATOM_PPLIB_POWERPLAYTABLE5)) {
		adev->pm.dpm.tdp_limit = le32_to_cpu(power_info->pplib5.ulTDPLimit);
		adev->pm.dpm.near_tdp_limit = le32_to_cpu(power_info->pplib5.ulNearTDPLimit);
		adev->pm.dpm.near_tdp_limit_adjusted = adev->pm.dpm.near_tdp_limit;
		adev->pm.dpm.tdp_od_limit = le16_to_cpu(power_info->pplib5.usTDPODLimit);
		if (adev->pm.dpm.tdp_od_limit)
			adev->pm.dpm.power_control = true;
		else
			adev->pm.dpm.power_control = false;
		adev->pm.dpm.tdp_adjustment = 0;
		adev->pm.dpm.sq_ramping_threshold = le32_to_cpu(power_info->pplib5.ulSQRampingThreshold);
		adev->pm.dpm.cac_leakage = le32_to_cpu(power_info->pplib5.ulCACLeakage);
		adev->pm.dpm.load_line_slope = le16_to_cpu(power_info->pplib5.usLoadLineSlope);
		if (power_info->pplib5.usCACLeakageTableOffset) {
			ATOM_PPLIB_CAC_Leakage_Table *cac_table =
				(ATOM_PPLIB_CAC_Leakage_Table *)
				(mode_info->atom_context->bios + data_offset +
				 le16_to_cpu(power_info->pplib5.usCACLeakageTableOffset));
			ATOM_PPLIB_CAC_Leakage_Record *entry;
			u32 size = cac_table->ucNumEntries * sizeof(struct amdgpu_cac_leakage_table);
			adev->pm.dpm.dyn_state.cac_leakage_table.entries = kzalloc(size, GFP_KERNEL);
			if (!adev->pm.dpm.dyn_state.cac_leakage_table.entries) {
				amdgpu_free_extended_power_table(adev);
				return -ENOMEM;
			}
			entry = &cac_table->entries[0];
			for (i = 0; i < cac_table->ucNumEntries; i++) {
				if (adev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_EVV) {
					adev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc1 =
						le16_to_cpu(entry->usVddc1);
					adev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc2 =
						le16_to_cpu(entry->usVddc2);
					adev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc3 =
						le16_to_cpu(entry->usVddc3);
				} else {
					adev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc =
						le16_to_cpu(entry->usVddc);
					adev->pm.dpm.dyn_state.cac_leakage_table.entries[i].leakage =
						le32_to_cpu(entry->ulLeakageValue);
				}
				entry = (ATOM_PPLIB_CAC_Leakage_Record *)
					((u8 *)entry + sizeof(ATOM_PPLIB_CAC_Leakage_Record));
			}
			adev->pm.dpm.dyn_state.cac_leakage_table.count = cac_table->ucNumEntries;
		}
	}

	/* ext tables */
	if (le16_to_cpu(power_info->pplib.usTableSize) >=
	    sizeof(struct _ATOM_PPLIB_POWERPLAYTABLE3)) {
		ATOM_PPLIB_EXTENDEDHEADER *ext_hdr = (ATOM_PPLIB_EXTENDEDHEADER *)
			(mode_info->atom_context->bios + data_offset +
			 le16_to_cpu(power_info->pplib3.usExtendendedHeaderOffset));
		if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V2) &&
			ext_hdr->usVCETableOffset) {
			VCEClockInfoArray *array = (VCEClockInfoArray *)
				(mode_info->atom_context->bios + data_offset +
				 le16_to_cpu(ext_hdr->usVCETableOffset) + 1);
			ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *limits =
				(ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *)
				(mode_info->atom_context->bios + data_offset +
				 le16_to_cpu(ext_hdr->usVCETableOffset) + 1 +
				 1 + array->ucNumEntries * sizeof(VCEClockInfo));
			ATOM_PPLIB_VCE_State_Table *states =
				(ATOM_PPLIB_VCE_State_Table *)
				(mode_info->atom_context->bios + data_offset +
				 le16_to_cpu(ext_hdr->usVCETableOffset) + 1 +
				 1 + (array->ucNumEntries * sizeof (VCEClockInfo)) +
				 1 + (limits->numEntries * sizeof(ATOM_PPLIB_VCE_Clock_Voltage_Limit_Record)));
			ATOM_PPLIB_VCE_Clock_Voltage_Limit_Record *entry;
			ATOM_PPLIB_VCE_State_Record *state_entry;
			VCEClockInfo *vce_clk;
			u32 size = limits->numEntries *
				sizeof(struct amdgpu_vce_clock_voltage_dependency_entry);
			adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries =
				kzalloc(size, GFP_KERNEL);
			if (!adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries) {
				amdgpu_free_extended_power_table(adev);
				return -ENOMEM;
			}
			adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.count =
				limits->numEntries;
			entry = &limits->entries[0];
			state_entry = &states->entries[0];
			for (i = 0; i < limits->numEntries; i++) {
				vce_clk = (VCEClockInfo *)
					((u8 *)&array->entries[0] +
					 (entry->ucVCEClockInfoIndex * sizeof(VCEClockInfo)));
				adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries[i].evclk =
					le16_to_cpu(vce_clk->usEVClkLow) | (vce_clk->ucEVClkHigh << 16);
				adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries[i].ecclk =
					le16_to_cpu(vce_clk->usECClkLow) | (vce_clk->ucECClkHigh << 16);
				adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries[i].v =
					le16_to_cpu(entry->usVoltage);
				entry = (ATOM_PPLIB_VCE_Clock_Voltage_Limit_Record *)
					((u8 *)entry + sizeof(ATOM_PPLIB_VCE_Clock_Voltage_Limit_Record));
			}
			adev->pm.dpm.num_of_vce_states =
					states->numEntries > AMD_MAX_VCE_LEVELS ?
					AMD_MAX_VCE_LEVELS : states->numEntries;
			for (i = 0; i < adev->pm.dpm.num_of_vce_states; i++) {
				vce_clk = (VCEClockInfo *)
					((u8 *)&array->entries[0] +
					 (state_entry->ucVCEClockInfoIndex * sizeof(VCEClockInfo)));
				adev->pm.dpm.vce_states[i].evclk =
					le16_to_cpu(vce_clk->usEVClkLow) | (vce_clk->ucEVClkHigh << 16);
				adev->pm.dpm.vce_states[i].ecclk =
					le16_to_cpu(vce_clk->usECClkLow) | (vce_clk->ucECClkHigh << 16);
				adev->pm.dpm.vce_states[i].clk_idx =
					state_entry->ucClockInfoIndex & 0x3f;
				adev->pm.dpm.vce_states[i].pstate =
					(state_entry->ucClockInfoIndex & 0xc0) >> 6;
				state_entry = (ATOM_PPLIB_VCE_State_Record *)
					((u8 *)state_entry + sizeof(ATOM_PPLIB_VCE_State_Record));
			}
		}
		if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V3) &&
			ext_hdr->usUVDTableOffset) {
			UVDClockInfoArray *array = (UVDClockInfoArray *)
				(mode_info->atom_context->bios + data_offset +
				 le16_to_cpu(ext_hdr->usUVDTableOffset) + 1);
			ATOM_PPLIB_UVD_Clock_Voltage_Limit_Table *limits =
				(ATOM_PPLIB_UVD_Clock_Voltage_Limit_Table *)
				(mode_info->atom_context->bios + data_offset +
				 le16_to_cpu(ext_hdr->usUVDTableOffset) + 1 +
				 1 + (array->ucNumEntries * sizeof (UVDClockInfo)));
			ATOM_PPLIB_UVD_Clock_Voltage_Limit_Record *entry;
			u32 size = limits->numEntries *
				sizeof(struct amdgpu_uvd_clock_voltage_dependency_entry);
			adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries =
				kzalloc(size, GFP_KERNEL);
			if (!adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries) {
				amdgpu_free_extended_power_table(adev);
				return -ENOMEM;
			}
			adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.count =
				limits->numEntries;
			entry = &limits->entries[0];
			for (i = 0; i < limits->numEntries; i++) {
				UVDClockInfo *uvd_clk = (UVDClockInfo *)
					((u8 *)&array->entries[0] +
					 (entry->ucUVDClockInfoIndex * sizeof(UVDClockInfo)));
				adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries[i].vclk =
					le16_to_cpu(uvd_clk->usVClkLow) | (uvd_clk->ucVClkHigh << 16);
				adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries[i].dclk =
					le16_to_cpu(uvd_clk->usDClkLow) | (uvd_clk->ucDClkHigh << 16);
				adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries[i].v =
					le16_to_cpu(entry->usVoltage);
				entry = (ATOM_PPLIB_UVD_Clock_Voltage_Limit_Record *)
					((u8 *)entry + sizeof(ATOM_PPLIB_UVD_Clock_Voltage_Limit_Record));
			}
		}
		if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V4) &&
			ext_hdr->usSAMUTableOffset) {
			ATOM_PPLIB_SAMClk_Voltage_Limit_Table *limits =
				(ATOM_PPLIB_SAMClk_Voltage_Limit_Table *)
				(mode_info->atom_context->bios + data_offset +
				 le16_to_cpu(ext_hdr->usSAMUTableOffset) + 1);
			ATOM_PPLIB_SAMClk_Voltage_Limit_Record *entry;
			u32 size = limits->numEntries *
				sizeof(struct amdgpu_clock_voltage_dependency_entry);
			adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries =
				kzalloc(size, GFP_KERNEL);
			if (!adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries) {
				amdgpu_free_extended_power_table(adev);
				return -ENOMEM;
			}
			adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.count =
				limits->numEntries;
			entry = &limits->entries[0];
			for (i = 0; i < limits->numEntries; i++) {
				adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries[i].clk =
					le16_to_cpu(entry->usSAMClockLow) | (entry->ucSAMClockHigh << 16);
				adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries[i].v =
					le16_to_cpu(entry->usVoltage);
				entry = (ATOM_PPLIB_SAMClk_Voltage_Limit_Record *)
					((u8 *)entry + sizeof(ATOM_PPLIB_SAMClk_Voltage_Limit_Record));
			}
		}
		if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V5) &&
		    ext_hdr->usPPMTableOffset) {
			ATOM_PPLIB_PPM_Table *ppm = (ATOM_PPLIB_PPM_Table *)
				(mode_info->atom_context->bios + data_offset +
				 le16_to_cpu(ext_hdr->usPPMTableOffset));
			adev->pm.dpm.dyn_state.ppm_table =
				kzalloc(sizeof(struct amdgpu_ppm_table), GFP_KERNEL);
			if (!adev->pm.dpm.dyn_state.ppm_table) {
				amdgpu_free_extended_power_table(adev);
				return -ENOMEM;
			}
			adev->pm.dpm.dyn_state.ppm_table->ppm_design = ppm->ucPpmDesign;
			adev->pm.dpm.dyn_state.ppm_table->cpu_core_number =
				le16_to_cpu(ppm->usCpuCoreNumber);
			adev->pm.dpm.dyn_state.ppm_table->platform_tdp =
				le32_to_cpu(ppm->ulPlatformTDP);
			adev->pm.dpm.dyn_state.ppm_table->small_ac_platform_tdp =
				le32_to_cpu(ppm->ulSmallACPlatformTDP);
			adev->pm.dpm.dyn_state.ppm_table->platform_tdc =
				le32_to_cpu(ppm->ulPlatformTDC);
			adev->pm.dpm.dyn_state.ppm_table->small_ac_platform_tdc =
				le32_to_cpu(ppm->ulSmallACPlatformTDC);
			adev->pm.dpm.dyn_state.ppm_table->apu_tdp =
				le32_to_cpu(ppm->ulApuTDP);
			adev->pm.dpm.dyn_state.ppm_table->dgpu_tdp =
				le32_to_cpu(ppm->ulDGpuTDP);
			adev->pm.dpm.dyn_state.ppm_table->dgpu_ulv_power =
				le32_to_cpu(ppm->ulDGpuUlvPower);
			adev->pm.dpm.dyn_state.ppm_table->tj_max =
				le32_to_cpu(ppm->ulTjmax);
		}
		if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V6) &&
			ext_hdr->usACPTableOffset) {
			ATOM_PPLIB_ACPClk_Voltage_Limit_Table *limits =
				(ATOM_PPLIB_ACPClk_Voltage_Limit_Table *)
				(mode_info->atom_context->bios + data_offset +
				 le16_to_cpu(ext_hdr->usACPTableOffset) + 1);
			ATOM_PPLIB_ACPClk_Voltage_Limit_Record *entry;
			u32 size = limits->numEntries *
				sizeof(struct amdgpu_clock_voltage_dependency_entry);
			adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries =
				kzalloc(size, GFP_KERNEL);
			if (!adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries) {
				amdgpu_free_extended_power_table(adev);
				return -ENOMEM;
			}
			adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.count =
				limits->numEntries;
			entry = &limits->entries[0];
			for (i = 0; i < limits->numEntries; i++) {
				adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries[i].clk =
					le16_to_cpu(entry->usACPClockLow) | (entry->ucACPClockHigh << 16);
				adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries[i].v =
					le16_to_cpu(entry->usVoltage);
				entry = (ATOM_PPLIB_ACPClk_Voltage_Limit_Record *)
					((u8 *)entry + sizeof(ATOM_PPLIB_ACPClk_Voltage_Limit_Record));
			}
		}
		if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V7) &&
			ext_hdr->usPowerTuneTableOffset) {
			u8 rev = *(u8 *)(mode_info->atom_context->bios + data_offset +
					 le16_to_cpu(ext_hdr->usPowerTuneTableOffset));
			ATOM_PowerTune_Table *pt;
			adev->pm.dpm.dyn_state.cac_tdp_table =
				kzalloc(sizeof(struct amdgpu_cac_tdp_table), GFP_KERNEL);
			if (!adev->pm.dpm.dyn_state.cac_tdp_table) {
				amdgpu_free_extended_power_table(adev);
				return -ENOMEM;
			}
			if (rev > 0) {
				ATOM_PPLIB_POWERTUNE_Table_V1 *ppt = (ATOM_PPLIB_POWERTUNE_Table_V1 *)
					(mode_info->atom_context->bios + data_offset +
					 le16_to_cpu(ext_hdr->usPowerTuneTableOffset));
				adev->pm.dpm.dyn_state.cac_tdp_table->maximum_power_delivery_limit =
					ppt->usMaximumPowerDeliveryLimit;
				pt = &ppt->power_tune_table;
			} else {
				ATOM_PPLIB_POWERTUNE_Table *ppt = (ATOM_PPLIB_POWERTUNE_Table *)
					(mode_info->atom_context->bios + data_offset +
					 le16_to_cpu(ext_hdr->usPowerTuneTableOffset));
				adev->pm.dpm.dyn_state.cac_tdp_table->maximum_power_delivery_limit = 255;
				pt = &ppt->power_tune_table;
			}
			adev->pm.dpm.dyn_state.cac_tdp_table->tdp = le16_to_cpu(pt->usTDP);
			adev->pm.dpm.dyn_state.cac_tdp_table->configurable_tdp =
				le16_to_cpu(pt->usConfigurableTDP);
			adev->pm.dpm.dyn_state.cac_tdp_table->tdc = le16_to_cpu(pt->usTDC);
			adev->pm.dpm.dyn_state.cac_tdp_table->battery_power_limit =
				le16_to_cpu(pt->usBatteryPowerLimit);
			adev->pm.dpm.dyn_state.cac_tdp_table->small_power_limit =
				le16_to_cpu(pt->usSmallPowerLimit);
			adev->pm.dpm.dyn_state.cac_tdp_table->low_cac_leakage =
				le16_to_cpu(pt->usLowCACLeakage);
			adev->pm.dpm.dyn_state.cac_tdp_table->high_cac_leakage =
				le16_to_cpu(pt->usHighCACLeakage);
		}
		if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V8) &&
				ext_hdr->usSclkVddgfxTableOffset) {
			dep_table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
				(mode_info->atom_context->bios + data_offset +
				 le16_to_cpu(ext_hdr->usSclkVddgfxTableOffset));
			ret = amdgpu_parse_clk_voltage_dep_table(
					&adev->pm.dpm.dyn_state.vddgfx_dependency_on_sclk,
					dep_table);
			if (ret) {
				kfree(adev->pm.dpm.dyn_state.vddgfx_dependency_on_sclk.entries);
				return ret;
			}
		}
	}

	return 0;
}

void amdgpu_free_extended_power_table(struct amdgpu_device *adev)
{
	struct amdgpu_dpm_dynamic_state *dyn_state = &adev->pm.dpm.dyn_state;

	kfree(dyn_state->vddc_dependency_on_sclk.entries);
	kfree(dyn_state->vddci_dependency_on_mclk.entries);
	kfree(dyn_state->vddc_dependency_on_mclk.entries);
	kfree(dyn_state->mvdd_dependency_on_mclk.entries);
	kfree(dyn_state->cac_leakage_table.entries);
	kfree(dyn_state->phase_shedding_limits_table.entries);
	kfree(dyn_state->ppm_table);
	kfree(dyn_state->cac_tdp_table);
	kfree(dyn_state->vce_clock_voltage_dependency_table.entries);
	kfree(dyn_state->uvd_clock_voltage_dependency_table.entries);
	kfree(dyn_state->samu_clock_voltage_dependency_table.entries);
	kfree(dyn_state->acp_clock_voltage_dependency_table.entries);
	kfree(dyn_state->vddgfx_dependency_on_sclk.entries);
}

static const char *pp_lib_thermal_controller_names[] = {
	"NONE",
	"lm63",
	"adm1032",
	"adm1030",
	"max6649",
	"lm64",
	"f75375",
	"RV6xx",
	"RV770",
	"adt7473",
	"NONE",
	"External GPIO",
	"Evergreen",
	"emc2103",
	"Sumo",
	"Northern Islands",
	"Southern Islands",
	"lm96163",
	"Sea Islands",
	"Kaveri/Kabini",
};

void amdgpu_add_thermal_controller(struct amdgpu_device *adev)
{
	struct amdgpu_mode_info *mode_info = &adev->mode_info;
	ATOM_PPLIB_POWERPLAYTABLE *power_table;
	int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
	ATOM_PPLIB_THERMALCONTROLLER *controller;
	struct amdgpu_i2c_bus_rec i2c_bus;
	u16 data_offset;
	u8 frev, crev;

	if (!amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL,
				   &frev, &crev, &data_offset))
		return;
	power_table = (ATOM_PPLIB_POWERPLAYTABLE *)
		(mode_info->atom_context->bios + data_offset);
	controller = &power_table->sThermalController;

	/* add the i2c bus for thermal/fan chip */
	if (controller->ucType > 0) {
		if (controller->ucFanParameters & ATOM_PP_FANPARAMETERS_NOFAN)
			adev->pm.no_fan = true;
		adev->pm.fan_pulses_per_revolution =
			controller->ucFanParameters & ATOM_PP_FANPARAMETERS_TACHOMETER_PULSES_PER_REVOLUTION_MASK;
		if (adev->pm.fan_pulses_per_revolution) {
			adev->pm.fan_min_rpm = controller->ucFanMinRPM;
			adev->pm.fan_max_rpm = controller->ucFanMaxRPM;
		}
		if (controller->ucType == ATOM_PP_THERMALCONTROLLER_RV6xx) {
			DRM_INFO("Internal thermal controller %s fan control\n",
				 (controller->ucFanParameters &
				  ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
			adev->pm.int_thermal_type = THERMAL_TYPE_RV6XX;
		} else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_RV770) {
			DRM_INFO("Internal thermal controller %s fan control\n",
				 (controller->ucFanParameters &
				  ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
			adev->pm.int_thermal_type = THERMAL_TYPE_RV770;
		} else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_EVERGREEN) {
			DRM_INFO("Internal thermal controller %s fan control\n",
				 (controller->ucFanParameters &
				  ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
			adev->pm.int_thermal_type = THERMAL_TYPE_EVERGREEN;
		} else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_SUMO) {
			DRM_INFO("Internal thermal controller %s fan control\n",
				 (controller->ucFanParameters &
				  ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
			adev->pm.int_thermal_type = THERMAL_TYPE_SUMO;
		} else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_NISLANDS) {
			DRM_INFO("Internal thermal controller %s fan control\n",
				 (controller->ucFanParameters &
				  ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
			adev->pm.int_thermal_type = THERMAL_TYPE_NI;
		} else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_SISLANDS) {
			DRM_INFO("Internal thermal controller %s fan control\n",
				 (controller->ucFanParameters &
				  ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
			adev->pm.int_thermal_type = THERMAL_TYPE_SI;
		} else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_CISLANDS) {
			DRM_INFO("Internal thermal controller %s fan control\n",
				 (controller->ucFanParameters &
				  ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
			adev->pm.int_thermal_type = THERMAL_TYPE_CI;
		} else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_KAVERI) {
			DRM_INFO("Internal thermal controller %s fan control\n",
				 (controller->ucFanParameters &
				  ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
			adev->pm.int_thermal_type = THERMAL_TYPE_KV;
		} else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_EXTERNAL_GPIO) {
			DRM_INFO("External GPIO thermal controller %s fan control\n",
				 (controller->ucFanParameters &
				  ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
			adev->pm.int_thermal_type = THERMAL_TYPE_EXTERNAL_GPIO;
		} else if (controller->ucType ==
			   ATOM_PP_THERMALCONTROLLER_ADT7473_WITH_INTERNAL) {
			DRM_INFO("ADT7473 with internal thermal controller %s fan control\n",
				 (controller->ucFanParameters &
				  ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
			adev->pm.int_thermal_type = THERMAL_TYPE_ADT7473_WITH_INTERNAL;
		} else if (controller->ucType ==
			   ATOM_PP_THERMALCONTROLLER_EMC2103_WITH_INTERNAL) {
			DRM_INFO("EMC2103 with internal thermal controller %s fan control\n",
				 (controller->ucFanParameters &
				  ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
			adev->pm.int_thermal_type = THERMAL_TYPE_EMC2103_WITH_INTERNAL;
		} else if (controller->ucType < ARRAY_SIZE(pp_lib_thermal_controller_names)) {
			DRM_INFO("Possible %s thermal controller at 0x%02x %s fan control\n",
				 pp_lib_thermal_controller_names[controller->ucType],
				 controller->ucI2cAddress >> 1,
				 (controller->ucFanParameters &
				  ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
			adev->pm.int_thermal_type = THERMAL_TYPE_EXTERNAL;
			i2c_bus = amdgpu_atombios_lookup_i2c_gpio(adev, controller->ucI2cLine);
			adev->pm.i2c_bus = amdgpu_i2c_lookup(adev, &i2c_bus);
			if (adev->pm.i2c_bus) {
				struct i2c_board_info info = { };
				const char *name = pp_lib_thermal_controller_names[controller->ucType];
				info.addr = controller->ucI2cAddress >> 1;
				strlcpy(info.type, name, sizeof(info.type));
				i2c_new_client_device(&adev->pm.i2c_bus->adapter, &info);
			}
		} else {
			DRM_INFO("Unknown thermal controller type %d at 0x%02x %s fan control\n",
				 controller->ucType,
				 controller->ucI2cAddress >> 1,
				 (controller->ucFanParameters &
				  ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
		}
	}
}

enum amdgpu_pcie_gen amdgpu_get_pcie_gen_support(struct amdgpu_device *adev,
						 u32 sys_mask,
						 enum amdgpu_pcie_gen asic_gen,
						 enum amdgpu_pcie_gen default_gen)
{
	switch (asic_gen) {
	case AMDGPU_PCIE_GEN1:
		return AMDGPU_PCIE_GEN1;
	case AMDGPU_PCIE_GEN2:
		return AMDGPU_PCIE_GEN2;
	case AMDGPU_PCIE_GEN3:
		return AMDGPU_PCIE_GEN3;
	default:
		if ((sys_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3) &&
		    (default_gen == AMDGPU_PCIE_GEN3))
			return AMDGPU_PCIE_GEN3;
		else if ((sys_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2) &&
			 (default_gen == AMDGPU_PCIE_GEN2))
			return AMDGPU_PCIE_GEN2;
		else
			return AMDGPU_PCIE_GEN1;
	}
	return AMDGPU_PCIE_GEN1;
}

struct amd_vce_state*
amdgpu_get_vce_clock_state(void *handle, u32 idx)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

	if (idx < adev->pm.dpm.num_of_vce_states)
		return &adev->pm.dpm.vce_states[idx];

	return NULL;
}

int amdgpu_dpm_get_sclk(struct amdgpu_device *adev, bool low)
{
	uint32_t clk_freq;
	int ret = 0;
	if (is_support_sw_smu(adev)) {
		ret = smu_get_dpm_freq_range(&adev->smu, SMU_GFXCLK,
					     low ? &clk_freq : NULL,
					     !low ? &clk_freq : NULL);
		if (ret)
			return 0;
		return clk_freq * 100;

	} else {
		return (adev)->powerplay.pp_funcs->get_sclk((adev)->powerplay.pp_handle, (low));
	}
}

int amdgpu_dpm_get_mclk(struct amdgpu_device *adev, bool low)
{
	uint32_t clk_freq;
	int ret = 0;
	if (is_support_sw_smu(adev)) {
		ret = smu_get_dpm_freq_range(&adev->smu, SMU_UCLK,
					     low ? &clk_freq : NULL,
					     !low ? &clk_freq : NULL);
		if (ret)
			return 0;
		return clk_freq * 100;

	} else {
		return (adev)->powerplay.pp_funcs->get_mclk((adev)->powerplay.pp_handle, (low));
	}
}

int amdgpu_dpm_set_powergating_by_smu(struct amdgpu_device *adev, uint32_t block_type, bool gate)
{
	int ret = 0;
	bool swsmu = is_support_sw_smu(adev);

	switch (block_type) {
	case AMD_IP_BLOCK_TYPE_UVD:
	case AMD_IP_BLOCK_TYPE_VCE:
		if (swsmu) {
			ret = smu_dpm_set_power_gate(&adev->smu, block_type, gate);
		} else if (adev->powerplay.pp_funcs &&
			   adev->powerplay.pp_funcs->set_powergating_by_smu) {
			/*
			 * TODO: need a better lock mechanism
			 *
			 * Here adev->pm.mutex lock protection is enforced on
			 * UVD and VCE cases only. Since for other cases, there
			 * may be already lock protection in amdgpu_pm.c.
			 * This is a quick fix for the deadlock issue below.
			 *     NFO: task ocltst:2028 blocked for more than 120 seconds.
			 *     Tainted: G           OE     5.0.0-37-generic #40~18.04.1-Ubuntu
			 *     echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
			 *     cltst          D    0  2028   2026 0x00000000
			 *     all Trace:
			 *     __schedule+0x2c0/0x870
			 *     schedule+0x2c/0x70
			 *     schedule_preempt_disabled+0xe/0x10
			 *     __mutex_lock.isra.9+0x26d/0x4e0
			 *     __mutex_lock_slowpath+0x13/0x20
			 *     ? __mutex_lock_slowpath+0x13/0x20
			 *     mutex_lock+0x2f/0x40
			 *     amdgpu_dpm_set_powergating_by_smu+0x64/0xe0 [amdgpu]
			 *     gfx_v8_0_enable_gfx_static_mg_power_gating+0x3c/0x70 [amdgpu]
			 *     gfx_v8_0_set_powergating_state+0x66/0x260 [amdgpu]
			 *     amdgpu_device_ip_set_powergating_state+0x62/0xb0 [amdgpu]
			 *     pp_dpm_force_performance_level+0xe7/0x100 [amdgpu]
			 *     amdgpu_set_dpm_forced_performance_level+0x129/0x330 [amdgpu]
			 */
			mutex_lock(&adev->pm.mutex);
			ret = ((adev)->powerplay.pp_funcs->set_powergating_by_smu(
				(adev)->powerplay.pp_handle, block_type, gate));
			mutex_unlock(&adev->pm.mutex);
		}
		break;
	case AMD_IP_BLOCK_TYPE_GFX:
	case AMD_IP_BLOCK_TYPE_VCN:
	case AMD_IP_BLOCK_TYPE_SDMA:
		if (swsmu)
			ret = smu_dpm_set_power_gate(&adev->smu, block_type, gate);
		else if (adev->powerplay.pp_funcs &&
			 adev->powerplay.pp_funcs->set_powergating_by_smu)
			ret = ((adev)->powerplay.pp_funcs->set_powergating_by_smu(
				(adev)->powerplay.pp_handle, block_type, gate));
		break;
	case AMD_IP_BLOCK_TYPE_JPEG:
		if (swsmu)
			ret = smu_dpm_set_power_gate(&adev->smu, block_type, gate);
		break;
	case AMD_IP_BLOCK_TYPE_GMC:
	case AMD_IP_BLOCK_TYPE_ACP:
		if (adev->powerplay.pp_funcs &&
		    adev->powerplay.pp_funcs->set_powergating_by_smu)
			ret = ((adev)->powerplay.pp_funcs->set_powergating_by_smu(
				(adev)->powerplay.pp_handle, block_type, gate));
		break;
	default:
		break;
	}

	return ret;
}

int amdgpu_dpm_baco_enter(struct amdgpu_device *adev)
{
	const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs;
	void *pp_handle = adev->powerplay.pp_handle;
	struct smu_context *smu = &adev->smu;
	int ret = 0;

	if (is_support_sw_smu(adev)) {
		ret = smu_baco_enter(smu);
	} else {
		if (!pp_funcs || !pp_funcs->set_asic_baco_state)
			return -ENOENT;

		/* enter BACO state */
		ret = pp_funcs->set_asic_baco_state(pp_handle, 1);
	}

	return ret;
}

int amdgpu_dpm_baco_exit(struct amdgpu_device *adev)
{
	const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs;
	void *pp_handle = adev->powerplay.pp_handle;
	struct smu_context *smu = &adev->smu;
	int ret = 0;

	if (is_support_sw_smu(adev)) {
		ret = smu_baco_exit(smu);
	} else {
		if (!pp_funcs || !pp_funcs->set_asic_baco_state)
			return -ENOENT;

		/* exit BACO state */
		ret = pp_funcs->set_asic_baco_state(pp_handle, 0);
	}

	return ret;
}

int amdgpu_dpm_set_mp1_state(struct amdgpu_device *adev,
			     enum pp_mp1_state mp1_state)
{
	int ret = 0;

	if (is_support_sw_smu(adev)) {
		ret = smu_set_mp1_state(&adev->smu, mp1_state);
	} else if (adev->powerplay.pp_funcs &&
		   adev->powerplay.pp_funcs->set_mp1_state) {
		ret = adev->powerplay.pp_funcs->set_mp1_state(
				adev->powerplay.pp_handle,
				mp1_state);
	}

	return ret;
}

bool amdgpu_dpm_is_baco_supported(struct amdgpu_device *adev)
{
	const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs;
	void *pp_handle = adev->powerplay.pp_handle;
	struct smu_context *smu = &adev->smu;
	bool baco_cap;

	if (is_support_sw_smu(adev)) {
		return smu_baco_is_support(smu);
	} else {
		if (!pp_funcs || !pp_funcs->get_asic_baco_capability)
			return false;

		if (pp_funcs->get_asic_baco_capability(pp_handle, &baco_cap))
			return false;

		return baco_cap ? true : false;
	}
}

int amdgpu_dpm_mode2_reset(struct amdgpu_device *adev)
{
	const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs;
	void *pp_handle = adev->powerplay.pp_handle;
	struct smu_context *smu = &adev->smu;

	if (is_support_sw_smu(adev)) {
		return smu_mode2_reset(smu);
	} else {
		if (!pp_funcs || !pp_funcs->asic_reset_mode_2)
			return -ENOENT;

		return pp_funcs->asic_reset_mode_2(pp_handle);
	}
}

int amdgpu_dpm_baco_reset(struct amdgpu_device *adev)
{
	const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs;
	void *pp_handle = adev->powerplay.pp_handle;
	struct smu_context *smu = &adev->smu;
	int ret = 0;

	dev_info(adev->dev, "GPU BACO reset\n");

	if (is_support_sw_smu(adev)) {
		ret = smu_baco_enter(smu);
		if (ret)
			return ret;

		ret = smu_baco_exit(smu);
		if (ret)
			return ret;
	} else {
		if (!pp_funcs
		    || !pp_funcs->set_asic_baco_state)
			return -ENOENT;

		/* enter BACO state */
		ret = pp_funcs->set_asic_baco_state(pp_handle, 1);
		if (ret)
			return ret;

		/* exit BACO state */
		ret = pp_funcs->set_asic_baco_state(pp_handle, 0);
		if (ret)
			return ret;
	}

	return 0;
}

bool amdgpu_dpm_is_mode1_reset_supported(struct amdgpu_device *adev)
{
	struct smu_context *smu = &adev->smu;

	if (is_support_sw_smu(adev))
		return smu_mode1_reset_is_support(smu);

	return false;
}

int amdgpu_dpm_mode1_reset(struct amdgpu_device *adev)
{
	struct smu_context *smu = &adev->smu;

	if (is_support_sw_smu(adev))
		return smu_mode1_reset(smu);

	return -EOPNOTSUPP;
}

int amdgpu_dpm_switch_power_profile(struct amdgpu_device *adev,
				    enum PP_SMC_POWER_PROFILE type,
				    bool en)
{
	int ret = 0;

	if (is_support_sw_smu(adev))
		ret = smu_switch_power_profile(&adev->smu, type, en);
	else if (adev->powerplay.pp_funcs &&
		 adev->powerplay.pp_funcs->switch_power_profile)
		ret = adev->powerplay.pp_funcs->switch_power_profile(
			adev->powerplay.pp_handle, type, en);

	return ret;
}

int amdgpu_dpm_set_xgmi_pstate(struct amdgpu_device *adev,
			       uint32_t pstate)
{
	int ret = 0;

	if (is_support_sw_smu(adev))
		ret = smu_set_xgmi_pstate(&adev->smu, pstate);
	else if (adev->powerplay.pp_funcs &&
		 adev->powerplay.pp_funcs->set_xgmi_pstate)
		ret = adev->powerplay.pp_funcs->set_xgmi_pstate(adev->powerplay.pp_handle,
								pstate);

	return ret;
}

int amdgpu_dpm_set_df_cstate(struct amdgpu_device *adev,
			     uint32_t cstate)
{
	int ret = 0;
	const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs;
	void *pp_handle = adev->powerplay.pp_handle;
	struct smu_context *smu = &adev->smu;

	if (is_support_sw_smu(adev))
		ret = smu_set_df_cstate(smu, cstate);
	else if (pp_funcs &&
		 pp_funcs->set_df_cstate)
		ret = pp_funcs->set_df_cstate(pp_handle, cstate);

	return ret;
}

int amdgpu_dpm_allow_xgmi_power_down(struct amdgpu_device *adev, bool en)
{
	struct smu_context *smu = &adev->smu;

	if (is_support_sw_smu(adev))
		return smu_allow_xgmi_power_down(smu, en);

	return 0;
}