Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Felix Kuhling | 3101 | 32.63% | 26 | 18.31% |
Ben Goz | 2457 | 25.85% | 9 | 6.34% |
Oak Zeng | 1293 | 13.60% | 17 | 11.97% |
Yong Zhao | 759 | 7.99% | 34 | 23.94% |
Shaoyun Liu | 272 | 2.86% | 8 | 5.63% |
Oded Gabbay | 271 | 2.85% | 13 | 9.15% |
Mukul Joshi | 270 | 2.84% | 2 | 1.41% |
Andres Rodriguez | 256 | 2.69% | 1 | 0.70% |
Joseph Greathouse | 214 | 2.25% | 1 | 0.70% |
Philip Yang | 173 | 1.82% | 2 | 1.41% |
Jay Cornwall | 161 | 1.69% | 3 | 2.11% |
Kent Russell | 77 | 0.81% | 5 | 3.52% |
Andrew Lewycky | 57 | 0.60% | 1 | 0.70% |
Harish Kasiviswanathan | 25 | 0.26% | 2 | 1.41% |
Philip Cox | 20 | 0.21% | 1 | 0.70% |
Eric Huang | 19 | 0.20% | 2 | 1.41% |
Yair Shachar | 19 | 0.20% | 1 | 0.70% |
Xihan Zhang | 17 | 0.18% | 2 | 1.41% |
Amber Lin | 8 | 0.08% | 1 | 0.70% |
Dennis Li | 8 | 0.08% | 1 | 0.70% |
Gang Ba | 6 | 0.06% | 1 | 0.70% |
Dave Airlie | 5 | 0.05% | 2 | 1.41% |
Alexey Skidanov | 4 | 0.04% | 1 | 0.70% |
Huang Rui | 3 | 0.03% | 1 | 0.70% |
Chengming Gui | 3 | 0.03% | 1 | 0.70% |
Edward O'Callaghan | 2 | 0.02% | 1 | 0.70% |
Nirmoy Das | 2 | 0.02% | 1 | 0.70% |
Dan Carpenter | 1 | 0.01% | 1 | 0.70% |
Yue haibing | 1 | 0.01% | 1 | 0.70% |
Total | 9504 | 142 |
/* * Copyright 2014 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include <linux/ratelimit.h> #include <linux/printk.h> #include <linux/slab.h> #include <linux/list.h> #include <linux/types.h> #include <linux/bitops.h> #include <linux/sched.h> #include "kfd_priv.h" #include "kfd_device_queue_manager.h" #include "kfd_mqd_manager.h" #include "cik_regs.h" #include "kfd_kernel_queue.h" #include "amdgpu_amdkfd.h" /* Size of the per-pipe EOP queue */ #define CIK_HPD_EOP_BYTES_LOG2 11 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2) static int set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid, unsigned int vmid); static int execute_queues_cpsch(struct device_queue_manager *dqm, enum kfd_unmap_queues_filter filter, uint32_t filter_param); static int unmap_queues_cpsch(struct device_queue_manager *dqm, enum kfd_unmap_queues_filter filter, uint32_t filter_param); static int map_queues_cpsch(struct device_queue_manager *dqm); static void deallocate_sdma_queue(struct device_queue_manager *dqm, struct queue *q); static inline void deallocate_hqd(struct device_queue_manager *dqm, struct queue *q); static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q); static int allocate_sdma_queue(struct device_queue_manager *dqm, struct queue *q); static void kfd_process_hw_exception(struct work_struct *work); static inline enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type) { if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI) return KFD_MQD_TYPE_SDMA; return KFD_MQD_TYPE_CP; } static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe) { int i; int pipe_offset = mec * dqm->dev->shared_resources.num_pipe_per_mec + pipe * dqm->dev->shared_resources.num_queue_per_pipe; /* queue is available for KFD usage if bit is 1 */ for (i = 0; i < dqm->dev->shared_resources.num_queue_per_pipe; ++i) if (test_bit(pipe_offset + i, dqm->dev->shared_resources.cp_queue_bitmap)) return true; return false; } unsigned int get_cp_queues_num(struct device_queue_manager *dqm) { return bitmap_weight(dqm->dev->shared_resources.cp_queue_bitmap, KGD_MAX_QUEUES); } unsigned int get_queues_per_pipe(struct device_queue_manager *dqm) { return dqm->dev->shared_resources.num_queue_per_pipe; } unsigned int get_pipes_per_mec(struct device_queue_manager *dqm) { return dqm->dev->shared_resources.num_pipe_per_mec; } static unsigned int get_num_sdma_engines(struct device_queue_manager *dqm) { return dqm->dev->device_info->num_sdma_engines; } static unsigned int get_num_xgmi_sdma_engines(struct device_queue_manager *dqm) { return dqm->dev->device_info->num_xgmi_sdma_engines; } static unsigned int get_num_all_sdma_engines(struct device_queue_manager *dqm) { return get_num_sdma_engines(dqm) + get_num_xgmi_sdma_engines(dqm); } unsigned int get_num_sdma_queues(struct device_queue_manager *dqm) { return dqm->dev->device_info->num_sdma_engines * dqm->dev->device_info->num_sdma_queues_per_engine; } unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm) { return dqm->dev->device_info->num_xgmi_sdma_engines * dqm->dev->device_info->num_sdma_queues_per_engine; } void program_sh_mem_settings(struct device_queue_manager *dqm, struct qcm_process_device *qpd) { return dqm->dev->kfd2kgd->program_sh_mem_settings( dqm->dev->kgd, qpd->vmid, qpd->sh_mem_config, qpd->sh_mem_ape1_base, qpd->sh_mem_ape1_limit, qpd->sh_mem_bases); } static void increment_queue_count(struct device_queue_manager *dqm, enum kfd_queue_type type) { dqm->active_queue_count++; if (type == KFD_QUEUE_TYPE_COMPUTE || type == KFD_QUEUE_TYPE_DIQ) dqm->active_cp_queue_count++; } static void decrement_queue_count(struct device_queue_manager *dqm, enum kfd_queue_type type) { dqm->active_queue_count--; if (type == KFD_QUEUE_TYPE_COMPUTE || type == KFD_QUEUE_TYPE_DIQ) dqm->active_cp_queue_count--; } int read_sdma_queue_counter(uint64_t q_rptr, uint64_t *val) { int ret; uint64_t tmp = 0; if (!val) return -EINVAL; /* * SDMA activity counter is stored at queue's RPTR + 0x8 location. */ if (!access_ok((const void __user *)(q_rptr + sizeof(uint64_t)), sizeof(uint64_t))) { pr_err("Can't access sdma queue activity counter\n"); return -EFAULT; } ret = get_user(tmp, (uint64_t *)(q_rptr + sizeof(uint64_t))); if (!ret) { *val = tmp; } return ret; } static int allocate_doorbell(struct qcm_process_device *qpd, struct queue *q) { struct kfd_dev *dev = qpd->dqm->dev; if (!KFD_IS_SOC15(dev->device_info->asic_family)) { /* On pre-SOC15 chips we need to use the queue ID to * preserve the user mode ABI. */ q->doorbell_id = q->properties.queue_id; } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA || q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { /* For SDMA queues on SOC15 with 8-byte doorbell, use static * doorbell assignments based on the engine and queue id. * The doobell index distance between RLC (2*i) and (2*i+1) * for a SDMA engine is 512. */ uint32_t *idx_offset = dev->shared_resources.sdma_doorbell_idx; q->doorbell_id = idx_offset[q->properties.sdma_engine_id] + (q->properties.sdma_queue_id & 1) * KFD_QUEUE_DOORBELL_MIRROR_OFFSET + (q->properties.sdma_queue_id >> 1); } else { /* For CP queues on SOC15 reserve a free doorbell ID */ unsigned int found; found = find_first_zero_bit(qpd->doorbell_bitmap, KFD_MAX_NUM_OF_QUEUES_PER_PROCESS); if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) { pr_debug("No doorbells available"); return -EBUSY; } set_bit(found, qpd->doorbell_bitmap); q->doorbell_id = found; } q->properties.doorbell_off = kfd_get_doorbell_dw_offset_in_bar(dev, q->process, q->doorbell_id); return 0; } static void deallocate_doorbell(struct qcm_process_device *qpd, struct queue *q) { unsigned int old; struct kfd_dev *dev = qpd->dqm->dev; if (!KFD_IS_SOC15(dev->device_info->asic_family) || q->properties.type == KFD_QUEUE_TYPE_SDMA || q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) return; old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap); WARN_ON(!old); } static int allocate_vmid(struct device_queue_manager *dqm, struct qcm_process_device *qpd, struct queue *q) { int allocated_vmid = -1, i; for (i = dqm->dev->vm_info.first_vmid_kfd; i <= dqm->dev->vm_info.last_vmid_kfd; i++) { if (!dqm->vmid_pasid[i]) { allocated_vmid = i; break; } } if (allocated_vmid < 0) { pr_err("no more vmid to allocate\n"); return -ENOSPC; } pr_debug("vmid allocated: %d\n", allocated_vmid); dqm->vmid_pasid[allocated_vmid] = q->process->pasid; set_pasid_vmid_mapping(dqm, q->process->pasid, allocated_vmid); qpd->vmid = allocated_vmid; q->properties.vmid = allocated_vmid; program_sh_mem_settings(dqm, qpd); /* qpd->page_table_base is set earlier when register_process() * is called, i.e. when the first queue is created. */ dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->kgd, qpd->vmid, qpd->page_table_base); /* invalidate the VM context after pasid and vmid mapping is set up */ kfd_flush_tlb(qpd_to_pdd(qpd)); if (dqm->dev->kfd2kgd->set_scratch_backing_va) dqm->dev->kfd2kgd->set_scratch_backing_va(dqm->dev->kgd, qpd->sh_hidden_private_base, qpd->vmid); return 0; } static int flush_texture_cache_nocpsch(struct kfd_dev *kdev, struct qcm_process_device *qpd) { const struct packet_manager_funcs *pmf = qpd->dqm->packets.pmf; int ret; if (!qpd->ib_kaddr) return -ENOMEM; ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr); if (ret) return ret; return amdgpu_amdkfd_submit_ib(kdev->kgd, KGD_ENGINE_MEC1, qpd->vmid, qpd->ib_base, (uint32_t *)qpd->ib_kaddr, pmf->release_mem_size / sizeof(uint32_t)); } static void deallocate_vmid(struct device_queue_manager *dqm, struct qcm_process_device *qpd, struct queue *q) { /* On GFX v7, CP doesn't flush TC at dequeue */ if (q->device->device_info->asic_family == CHIP_HAWAII) if (flush_texture_cache_nocpsch(q->device, qpd)) pr_err("Failed to flush TC\n"); kfd_flush_tlb(qpd_to_pdd(qpd)); /* Release the vmid mapping */ set_pasid_vmid_mapping(dqm, 0, qpd->vmid); dqm->vmid_pasid[qpd->vmid] = 0; qpd->vmid = 0; q->properties.vmid = 0; } static int create_queue_nocpsch(struct device_queue_manager *dqm, struct queue *q, struct qcm_process_device *qpd) { struct mqd_manager *mqd_mgr; int retval; dqm_lock(dqm); if (dqm->total_queue_count >= max_num_of_queues_per_device) { pr_warn("Can't create new usermode queue because %d queues were already created\n", dqm->total_queue_count); retval = -EPERM; goto out_unlock; } if (list_empty(&qpd->queues_list)) { retval = allocate_vmid(dqm, qpd, q); if (retval) goto out_unlock; } q->properties.vmid = qpd->vmid; /* * Eviction state logic: mark all queues as evicted, even ones * not currently active. Restoring inactive queues later only * updates the is_evicted flag but is a no-op otherwise. */ q->properties.is_evicted = !!qpd->evicted; q->properties.tba_addr = qpd->tba_addr; q->properties.tma_addr = qpd->tma_addr; mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( q->properties.type)]; if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) { retval = allocate_hqd(dqm, q); if (retval) goto deallocate_vmid; pr_debug("Loading mqd to hqd on pipe %d, queue %d\n", q->pipe, q->queue); } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA || q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { retval = allocate_sdma_queue(dqm, q); if (retval) goto deallocate_vmid; dqm->asic_ops.init_sdma_vm(dqm, q, qpd); } retval = allocate_doorbell(qpd, q); if (retval) goto out_deallocate_hqd; /* Temporarily release dqm lock to avoid a circular lock dependency */ dqm_unlock(dqm); q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties); dqm_lock(dqm); if (!q->mqd_mem_obj) { retval = -ENOMEM; goto out_deallocate_doorbell; } mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr, &q->properties); if (q->properties.is_active) { if (!dqm->sched_running) { WARN_ONCE(1, "Load non-HWS mqd while stopped\n"); goto add_queue_to_list; } if (WARN(q->process->mm != current->mm, "should only run in user thread")) retval = -EFAULT; else retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe, q->queue, &q->properties, current->mm); if (retval) goto out_free_mqd; } add_queue_to_list: list_add(&q->list, &qpd->queues_list); qpd->queue_count++; if (q->properties.is_active) increment_queue_count(dqm, q->properties.type); /* * Unconditionally increment this counter, regardless of the queue's * type or whether the queue is active. */ dqm->total_queue_count++; pr_debug("Total of %d queues are accountable so far\n", dqm->total_queue_count); goto out_unlock; out_free_mqd: mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); out_deallocate_doorbell: deallocate_doorbell(qpd, q); out_deallocate_hqd: if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) deallocate_hqd(dqm, q); else if (q->properties.type == KFD_QUEUE_TYPE_SDMA || q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) deallocate_sdma_queue(dqm, q); deallocate_vmid: if (list_empty(&qpd->queues_list)) deallocate_vmid(dqm, qpd, q); out_unlock: dqm_unlock(dqm); return retval; } static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q) { bool set; int pipe, bit, i; set = false; for (pipe = dqm->next_pipe_to_allocate, i = 0; i < get_pipes_per_mec(dqm); pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) { if (!is_pipe_enabled(dqm, 0, pipe)) continue; if (dqm->allocated_queues[pipe] != 0) { bit = ffs(dqm->allocated_queues[pipe]) - 1; dqm->allocated_queues[pipe] &= ~(1 << bit); q->pipe = pipe; q->queue = bit; set = true; break; } } if (!set) return -EBUSY; pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue); /* horizontal hqd allocation */ dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm); return 0; } static inline void deallocate_hqd(struct device_queue_manager *dqm, struct queue *q) { dqm->allocated_queues[q->pipe] |= (1 << q->queue); } /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked * to avoid asynchronized access */ static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm, struct qcm_process_device *qpd, struct queue *q) { int retval; struct mqd_manager *mqd_mgr; mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( q->properties.type)]; if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) deallocate_hqd(dqm, q); else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) deallocate_sdma_queue(dqm, q); else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) deallocate_sdma_queue(dqm, q); else { pr_debug("q->properties.type %d is invalid\n", q->properties.type); return -EINVAL; } dqm->total_queue_count--; deallocate_doorbell(qpd, q); if (!dqm->sched_running) { WARN_ONCE(1, "Destroy non-HWS queue while stopped\n"); return 0; } retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd, KFD_PREEMPT_TYPE_WAVEFRONT_RESET, KFD_UNMAP_LATENCY_MS, q->pipe, q->queue); if (retval == -ETIME) qpd->reset_wavefronts = true; mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); list_del(&q->list); if (list_empty(&qpd->queues_list)) { if (qpd->reset_wavefronts) { pr_warn("Resetting wave fronts (nocpsch) on dev %p\n", dqm->dev); /* dbgdev_wave_reset_wavefronts has to be called before * deallocate_vmid(), i.e. when vmid is still in use. */ dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process); qpd->reset_wavefronts = false; } deallocate_vmid(dqm, qpd, q); } qpd->queue_count--; if (q->properties.is_active) { decrement_queue_count(dqm, q->properties.type); if (q->properties.is_gws) { dqm->gws_queue_count--; qpd->mapped_gws_queue = false; } } return retval; } static int destroy_queue_nocpsch(struct device_queue_manager *dqm, struct qcm_process_device *qpd, struct queue *q) { int retval; uint64_t sdma_val = 0; struct kfd_process_device *pdd = qpd_to_pdd(qpd); /* Get the SDMA queue stats */ if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) || (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { retval = read_sdma_queue_counter((uint64_t)q->properties.read_ptr, &sdma_val); if (retval) pr_err("Failed to read SDMA queue counter for queue: %d\n", q->properties.queue_id); } dqm_lock(dqm); retval = destroy_queue_nocpsch_locked(dqm, qpd, q); if (!retval) pdd->sdma_past_activity_counter += sdma_val; dqm_unlock(dqm); return retval; } static int update_queue(struct device_queue_manager *dqm, struct queue *q) { int retval = 0; struct mqd_manager *mqd_mgr; struct kfd_process_device *pdd; bool prev_active = false; dqm_lock(dqm); pdd = kfd_get_process_device_data(q->device, q->process); if (!pdd) { retval = -ENODEV; goto out_unlock; } mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( q->properties.type)]; /* Save previous activity state for counters */ prev_active = q->properties.is_active; /* Make sure the queue is unmapped before updating the MQD */ if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) { retval = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); if (retval) { pr_err("unmap queue failed\n"); goto out_unlock; } } else if (prev_active && (q->properties.type == KFD_QUEUE_TYPE_COMPUTE || q->properties.type == KFD_QUEUE_TYPE_SDMA || q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { if (!dqm->sched_running) { WARN_ONCE(1, "Update non-HWS queue while stopped\n"); goto out_unlock; } retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd, KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN, KFD_UNMAP_LATENCY_MS, q->pipe, q->queue); if (retval) { pr_err("destroy mqd failed\n"); goto out_unlock; } } mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties); /* * check active state vs. the previous state and modify * counter accordingly. map_queues_cpsch uses the * dqm->active_queue_count to determine whether a new runlist must be * uploaded. */ if (q->properties.is_active && !prev_active) increment_queue_count(dqm, q->properties.type); else if (!q->properties.is_active && prev_active) decrement_queue_count(dqm, q->properties.type); if (q->gws && !q->properties.is_gws) { if (q->properties.is_active) { dqm->gws_queue_count++; pdd->qpd.mapped_gws_queue = true; } q->properties.is_gws = true; } else if (!q->gws && q->properties.is_gws) { if (q->properties.is_active) { dqm->gws_queue_count--; pdd->qpd.mapped_gws_queue = false; } q->properties.is_gws = false; } if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) retval = map_queues_cpsch(dqm); else if (q->properties.is_active && (q->properties.type == KFD_QUEUE_TYPE_COMPUTE || q->properties.type == KFD_QUEUE_TYPE_SDMA || q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { if (WARN(q->process->mm != current->mm, "should only run in user thread")) retval = -EFAULT; else retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe, q->queue, &q->properties, current->mm); } out_unlock: dqm_unlock(dqm); return retval; } static int evict_process_queues_nocpsch(struct device_queue_manager *dqm, struct qcm_process_device *qpd) { struct queue *q; struct mqd_manager *mqd_mgr; struct kfd_process_device *pdd; int retval, ret = 0; dqm_lock(dqm); if (qpd->evicted++ > 0) /* already evicted, do nothing */ goto out; pdd = qpd_to_pdd(qpd); pr_info_ratelimited("Evicting PASID 0x%x queues\n", pdd->process->pasid); /* Mark all queues as evicted. Deactivate all active queues on * the qpd. */ list_for_each_entry(q, &qpd->queues_list, list) { q->properties.is_evicted = true; if (!q->properties.is_active) continue; mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( q->properties.type)]; q->properties.is_active = false; decrement_queue_count(dqm, q->properties.type); if (q->properties.is_gws) { dqm->gws_queue_count--; qpd->mapped_gws_queue = false; } if (WARN_ONCE(!dqm->sched_running, "Evict when stopped\n")) continue; retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd, KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN, KFD_UNMAP_LATENCY_MS, q->pipe, q->queue); if (retval && !ret) /* Return the first error, but keep going to * maintain a consistent eviction state */ ret = retval; } out: dqm_unlock(dqm); return ret; } static int evict_process_queues_cpsch(struct device_queue_manager *dqm, struct qcm_process_device *qpd) { struct queue *q; struct kfd_process_device *pdd; int retval = 0; dqm_lock(dqm); if (qpd->evicted++ > 0) /* already evicted, do nothing */ goto out; pdd = qpd_to_pdd(qpd); pr_info_ratelimited("Evicting PASID 0x%x queues\n", pdd->process->pasid); /* Mark all queues as evicted. Deactivate all active queues on * the qpd. */ list_for_each_entry(q, &qpd->queues_list, list) { q->properties.is_evicted = true; if (!q->properties.is_active) continue; q->properties.is_active = false; decrement_queue_count(dqm, q->properties.type); } retval = execute_queues_cpsch(dqm, qpd->is_debug ? KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES : KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); out: dqm_unlock(dqm); return retval; } static int restore_process_queues_nocpsch(struct device_queue_manager *dqm, struct qcm_process_device *qpd) { struct mm_struct *mm = NULL; struct queue *q; struct mqd_manager *mqd_mgr; struct kfd_process_device *pdd; uint64_t pd_base; int retval, ret = 0; pdd = qpd_to_pdd(qpd); /* Retrieve PD base */ pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->vm); dqm_lock(dqm); if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */ goto out; if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */ qpd->evicted--; goto out; } pr_info_ratelimited("Restoring PASID 0x%x queues\n", pdd->process->pasid); /* Update PD Base in QPD */ qpd->page_table_base = pd_base; pr_debug("Updated PD address to 0x%llx\n", pd_base); if (!list_empty(&qpd->queues_list)) { dqm->dev->kfd2kgd->set_vm_context_page_table_base( dqm->dev->kgd, qpd->vmid, qpd->page_table_base); kfd_flush_tlb(pdd); } /* Take a safe reference to the mm_struct, which may otherwise * disappear even while the kfd_process is still referenced. */ mm = get_task_mm(pdd->process->lead_thread); if (!mm) { ret = -EFAULT; goto out; } /* Remove the eviction flags. Activate queues that are not * inactive for other reasons. */ list_for_each_entry(q, &qpd->queues_list, list) { q->properties.is_evicted = false; if (!QUEUE_IS_ACTIVE(q->properties)) continue; mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( q->properties.type)]; q->properties.is_active = true; increment_queue_count(dqm, q->properties.type); if (q->properties.is_gws) { dqm->gws_queue_count++; qpd->mapped_gws_queue = true; } if (WARN_ONCE(!dqm->sched_running, "Restore when stopped\n")) continue; retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe, q->queue, &q->properties, mm); if (retval && !ret) /* Return the first error, but keep going to * maintain a consistent eviction state */ ret = retval; } qpd->evicted = 0; out: if (mm) mmput(mm); dqm_unlock(dqm); return ret; } static int restore_process_queues_cpsch(struct device_queue_manager *dqm, struct qcm_process_device *qpd) { struct queue *q; struct kfd_process_device *pdd; uint64_t pd_base; int retval = 0; pdd = qpd_to_pdd(qpd); /* Retrieve PD base */ pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->vm); dqm_lock(dqm); if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */ goto out; if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */ qpd->evicted--; goto out; } pr_info_ratelimited("Restoring PASID 0x%x queues\n", pdd->process->pasid); /* Update PD Base in QPD */ qpd->page_table_base = pd_base; pr_debug("Updated PD address to 0x%llx\n", pd_base); /* activate all active queues on the qpd */ list_for_each_entry(q, &qpd->queues_list, list) { q->properties.is_evicted = false; if (!QUEUE_IS_ACTIVE(q->properties)) continue; q->properties.is_active = true; increment_queue_count(dqm, q->properties.type); } retval = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); qpd->evicted = 0; out: dqm_unlock(dqm); return retval; } static int register_process(struct device_queue_manager *dqm, struct qcm_process_device *qpd) { struct device_process_node *n; struct kfd_process_device *pdd; uint64_t pd_base; int retval; n = kzalloc(sizeof(*n), GFP_KERNEL); if (!n) return -ENOMEM; n->qpd = qpd; pdd = qpd_to_pdd(qpd); /* Retrieve PD base */ pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->vm); dqm_lock(dqm); list_add(&n->list, &dqm->queues); /* Update PD Base in QPD */ qpd->page_table_base = pd_base; pr_debug("Updated PD address to 0x%llx\n", pd_base); retval = dqm->asic_ops.update_qpd(dqm, qpd); dqm->processes_count++; dqm_unlock(dqm); /* Outside the DQM lock because under the DQM lock we can't do * reclaim or take other locks that others hold while reclaiming. */ kfd_inc_compute_active(dqm->dev); return retval; } static int unregister_process(struct device_queue_manager *dqm, struct qcm_process_device *qpd) { int retval; struct device_process_node *cur, *next; pr_debug("qpd->queues_list is %s\n", list_empty(&qpd->queues_list) ? "empty" : "not empty"); retval = 0; dqm_lock(dqm); list_for_each_entry_safe(cur, next, &dqm->queues, list) { if (qpd == cur->qpd) { list_del(&cur->list); kfree(cur); dqm->processes_count--; goto out; } } /* qpd not found in dqm list */ retval = 1; out: dqm_unlock(dqm); /* Outside the DQM lock because under the DQM lock we can't do * reclaim or take other locks that others hold while reclaiming. */ if (!retval) kfd_dec_compute_active(dqm->dev); return retval; } static int set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid, unsigned int vmid) { return dqm->dev->kfd2kgd->set_pasid_vmid_mapping( dqm->dev->kgd, pasid, vmid); } static void init_interrupts(struct device_queue_manager *dqm) { unsigned int i; for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++) if (is_pipe_enabled(dqm, 0, i)) dqm->dev->kfd2kgd->init_interrupts(dqm->dev->kgd, i); } static int initialize_nocpsch(struct device_queue_manager *dqm) { int pipe, queue; pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm)); dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm), sizeof(unsigned int), GFP_KERNEL); if (!dqm->allocated_queues) return -ENOMEM; mutex_init(&dqm->lock_hidden); INIT_LIST_HEAD(&dqm->queues); dqm->active_queue_count = dqm->next_pipe_to_allocate = 0; dqm->active_cp_queue_count = 0; dqm->gws_queue_count = 0; for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) { int pipe_offset = pipe * get_queues_per_pipe(dqm); for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) if (test_bit(pipe_offset + queue, dqm->dev->shared_resources.cp_queue_bitmap)) dqm->allocated_queues[pipe] |= 1 << queue; } memset(dqm->vmid_pasid, 0, sizeof(dqm->vmid_pasid)); dqm->sdma_bitmap = ~0ULL >> (64 - get_num_sdma_queues(dqm)); dqm->xgmi_sdma_bitmap = ~0ULL >> (64 - get_num_xgmi_sdma_queues(dqm)); return 0; } static void uninitialize(struct device_queue_manager *dqm) { int i; WARN_ON(dqm->active_queue_count > 0 || dqm->processes_count > 0); kfree(dqm->allocated_queues); for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++) kfree(dqm->mqd_mgrs[i]); mutex_destroy(&dqm->lock_hidden); } static int start_nocpsch(struct device_queue_manager *dqm) { pr_info("SW scheduler is used"); init_interrupts(dqm); if (dqm->dev->device_info->asic_family == CHIP_HAWAII) return pm_init(&dqm->packets, dqm); dqm->sched_running = true; return 0; } static int stop_nocpsch(struct device_queue_manager *dqm) { if (dqm->dev->device_info->asic_family == CHIP_HAWAII) pm_uninit(&dqm->packets, false); dqm->sched_running = false; return 0; } static void pre_reset(struct device_queue_manager *dqm) { dqm_lock(dqm); dqm->is_resetting = true; dqm_unlock(dqm); } static int allocate_sdma_queue(struct device_queue_manager *dqm, struct queue *q) { int bit; if (q->properties.type == KFD_QUEUE_TYPE_SDMA) { if (dqm->sdma_bitmap == 0) { pr_err("No more SDMA queue to allocate\n"); return -ENOMEM; } bit = __ffs64(dqm->sdma_bitmap); dqm->sdma_bitmap &= ~(1ULL << bit); q->sdma_id = bit; q->properties.sdma_engine_id = q->sdma_id % get_num_sdma_engines(dqm); q->properties.sdma_queue_id = q->sdma_id / get_num_sdma_engines(dqm); } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { if (dqm->xgmi_sdma_bitmap == 0) { pr_err("No more XGMI SDMA queue to allocate\n"); return -ENOMEM; } bit = __ffs64(dqm->xgmi_sdma_bitmap); dqm->xgmi_sdma_bitmap &= ~(1ULL << bit); q->sdma_id = bit; /* sdma_engine_id is sdma id including * both PCIe-optimized SDMAs and XGMI- * optimized SDMAs. The calculation below * assumes the first N engines are always * PCIe-optimized ones */ q->properties.sdma_engine_id = get_num_sdma_engines(dqm) + q->sdma_id % get_num_xgmi_sdma_engines(dqm); q->properties.sdma_queue_id = q->sdma_id / get_num_xgmi_sdma_engines(dqm); } pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id); pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id); return 0; } static void deallocate_sdma_queue(struct device_queue_manager *dqm, struct queue *q) { if (q->properties.type == KFD_QUEUE_TYPE_SDMA) { if (q->sdma_id >= get_num_sdma_queues(dqm)) return; dqm->sdma_bitmap |= (1ULL << q->sdma_id); } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm)) return; dqm->xgmi_sdma_bitmap |= (1ULL << q->sdma_id); } } /* * Device Queue Manager implementation for cp scheduler */ static int set_sched_resources(struct device_queue_manager *dqm) { int i, mec; struct scheduling_resources res; res.vmid_mask = dqm->dev->shared_resources.compute_vmid_bitmap; res.queue_mask = 0; for (i = 0; i < KGD_MAX_QUEUES; ++i) { mec = (i / dqm->dev->shared_resources.num_queue_per_pipe) / dqm->dev->shared_resources.num_pipe_per_mec; if (!test_bit(i, dqm->dev->shared_resources.cp_queue_bitmap)) continue; /* only acquire queues from the first MEC */ if (mec > 0) continue; /* This situation may be hit in the future if a new HW * generation exposes more than 64 queues. If so, the * definition of res.queue_mask needs updating */ if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) { pr_err("Invalid queue enabled by amdgpu: %d\n", i); break; } res.queue_mask |= 1ull << amdgpu_queue_mask_bit_to_set_resource_bit( (struct amdgpu_device *)dqm->dev->kgd, i); } res.gws_mask = ~0ull; res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0; pr_debug("Scheduling resources:\n" "vmid mask: 0x%8X\n" "queue mask: 0x%8llX\n", res.vmid_mask, res.queue_mask); return pm_send_set_resources(&dqm->packets, &res); } static int initialize_cpsch(struct device_queue_manager *dqm) { pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm)); mutex_init(&dqm->lock_hidden); INIT_LIST_HEAD(&dqm->queues); dqm->active_queue_count = dqm->processes_count = 0; dqm->active_cp_queue_count = 0; dqm->gws_queue_count = 0; dqm->active_runlist = false; dqm->sdma_bitmap = ~0ULL >> (64 - get_num_sdma_queues(dqm)); dqm->xgmi_sdma_bitmap = ~0ULL >> (64 - get_num_xgmi_sdma_queues(dqm)); INIT_WORK(&dqm->hw_exception_work, kfd_process_hw_exception); return 0; } static int start_cpsch(struct device_queue_manager *dqm) { int retval; retval = 0; retval = pm_init(&dqm->packets, dqm); if (retval) goto fail_packet_manager_init; retval = set_sched_resources(dqm); if (retval) goto fail_set_sched_resources; pr_debug("Allocating fence memory\n"); /* allocate fence memory on the gart */ retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr), &dqm->fence_mem); if (retval) goto fail_allocate_vidmem; dqm->fence_addr = dqm->fence_mem->cpu_ptr; dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr; init_interrupts(dqm); dqm_lock(dqm); /* clear hang status when driver try to start the hw scheduler */ dqm->is_hws_hang = false; dqm->is_resetting = false; dqm->sched_running = true; execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); dqm_unlock(dqm); return 0; fail_allocate_vidmem: fail_set_sched_resources: pm_uninit(&dqm->packets, false); fail_packet_manager_init: return retval; } static int stop_cpsch(struct device_queue_manager *dqm) { bool hanging; dqm_lock(dqm); if (!dqm->is_hws_hang) unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0); hanging = dqm->is_hws_hang || dqm->is_resetting; dqm->sched_running = false; dqm_unlock(dqm); pm_release_ib(&dqm->packets); kfd_gtt_sa_free(dqm->dev, dqm->fence_mem); pm_uninit(&dqm->packets, hanging); return 0; } static int create_kernel_queue_cpsch(struct device_queue_manager *dqm, struct kernel_queue *kq, struct qcm_process_device *qpd) { dqm_lock(dqm); if (dqm->total_queue_count >= max_num_of_queues_per_device) { pr_warn("Can't create new kernel queue because %d queues were already created\n", dqm->total_queue_count); dqm_unlock(dqm); return -EPERM; } /* * Unconditionally increment this counter, regardless of the queue's * type or whether the queue is active. */ dqm->total_queue_count++; pr_debug("Total of %d queues are accountable so far\n", dqm->total_queue_count); list_add(&kq->list, &qpd->priv_queue_list); increment_queue_count(dqm, kq->queue->properties.type); qpd->is_debug = true; execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); dqm_unlock(dqm); return 0; } static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm, struct kernel_queue *kq, struct qcm_process_device *qpd) { dqm_lock(dqm); list_del(&kq->list); decrement_queue_count(dqm, kq->queue->properties.type); qpd->is_debug = false; execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0); /* * Unconditionally decrement this counter, regardless of the queue's * type. */ dqm->total_queue_count--; pr_debug("Total of %d queues are accountable so far\n", dqm->total_queue_count); dqm_unlock(dqm); } static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q, struct qcm_process_device *qpd) { int retval; struct mqd_manager *mqd_mgr; if (dqm->total_queue_count >= max_num_of_queues_per_device) { pr_warn("Can't create new usermode queue because %d queues were already created\n", dqm->total_queue_count); retval = -EPERM; goto out; } if (q->properties.type == KFD_QUEUE_TYPE_SDMA || q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { dqm_lock(dqm); retval = allocate_sdma_queue(dqm, q); dqm_unlock(dqm); if (retval) goto out; } retval = allocate_doorbell(qpd, q); if (retval) goto out_deallocate_sdma_queue; mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( q->properties.type)]; if (q->properties.type == KFD_QUEUE_TYPE_SDMA || q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) dqm->asic_ops.init_sdma_vm(dqm, q, qpd); q->properties.tba_addr = qpd->tba_addr; q->properties.tma_addr = qpd->tma_addr; q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties); if (!q->mqd_mem_obj) { retval = -ENOMEM; goto out_deallocate_doorbell; } dqm_lock(dqm); /* * Eviction state logic: mark all queues as evicted, even ones * not currently active. Restoring inactive queues later only * updates the is_evicted flag but is a no-op otherwise. */ q->properties.is_evicted = !!qpd->evicted; mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr, &q->properties); list_add(&q->list, &qpd->queues_list); qpd->queue_count++; if (q->properties.is_active) { increment_queue_count(dqm, q->properties.type); execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); } /* * Unconditionally increment this counter, regardless of the queue's * type or whether the queue is active. */ dqm->total_queue_count++; pr_debug("Total of %d queues are accountable so far\n", dqm->total_queue_count); dqm_unlock(dqm); return retval; out_deallocate_doorbell: deallocate_doorbell(qpd, q); out_deallocate_sdma_queue: if (q->properties.type == KFD_QUEUE_TYPE_SDMA || q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { dqm_lock(dqm); deallocate_sdma_queue(dqm, q); dqm_unlock(dqm); } out: return retval; } int amdkfd_fence_wait_timeout(unsigned int *fence_addr, unsigned int fence_value, unsigned int timeout_ms) { unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies; while (*fence_addr != fence_value) { if (time_after(jiffies, end_jiffies)) { pr_err("qcm fence wait loop timeout expired\n"); /* In HWS case, this is used to halt the driver thread * in order not to mess up CP states before doing * scandumps for FW debugging. */ while (halt_if_hws_hang) schedule(); return -ETIME; } schedule(); } return 0; } /* dqm->lock mutex has to be locked before calling this function */ static int map_queues_cpsch(struct device_queue_manager *dqm) { int retval; if (!dqm->sched_running) return 0; if (dqm->active_queue_count <= 0 || dqm->processes_count <= 0) return 0; if (dqm->active_runlist) return 0; retval = pm_send_runlist(&dqm->packets, &dqm->queues); pr_debug("%s sent runlist\n", __func__); if (retval) { pr_err("failed to execute runlist\n"); return retval; } dqm->active_runlist = true; return retval; } /* dqm->lock mutex has to be locked before calling this function */ static int unmap_queues_cpsch(struct device_queue_manager *dqm, enum kfd_unmap_queues_filter filter, uint32_t filter_param) { int retval = 0; if (!dqm->sched_running) return 0; if (dqm->is_hws_hang) return -EIO; if (!dqm->active_runlist) return retval; retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE, filter, filter_param, false, 0); if (retval) return retval; *dqm->fence_addr = KFD_FENCE_INIT; pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr, KFD_FENCE_COMPLETED); /* should be timed out */ retval = amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED, queue_preemption_timeout_ms); if (retval) { pr_err("The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n"); dqm->is_hws_hang = true; /* It's possible we're detecting a HWS hang in the * middle of a GPU reset. No need to schedule another * reset in this case. */ if (!dqm->is_resetting) schedule_work(&dqm->hw_exception_work); return retval; } pm_release_ib(&dqm->packets); dqm->active_runlist = false; return retval; } /* dqm->lock mutex has to be locked before calling this function */ static int execute_queues_cpsch(struct device_queue_manager *dqm, enum kfd_unmap_queues_filter filter, uint32_t filter_param) { int retval; if (dqm->is_hws_hang) return -EIO; retval = unmap_queues_cpsch(dqm, filter, filter_param); if (retval) return retval; return map_queues_cpsch(dqm); } static int destroy_queue_cpsch(struct device_queue_manager *dqm, struct qcm_process_device *qpd, struct queue *q) { int retval; struct mqd_manager *mqd_mgr; uint64_t sdma_val = 0; struct kfd_process_device *pdd = qpd_to_pdd(qpd); /* Get the SDMA queue stats */ if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) || (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { retval = read_sdma_queue_counter((uint64_t)q->properties.read_ptr, &sdma_val); if (retval) pr_err("Failed to read SDMA queue counter for queue: %d\n", q->properties.queue_id); } retval = 0; /* remove queue from list to prevent rescheduling after preemption */ dqm_lock(dqm); if (qpd->is_debug) { /* * error, currently we do not allow to destroy a queue * of a currently debugged process */ retval = -EBUSY; goto failed_try_destroy_debugged_queue; } mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( q->properties.type)]; deallocate_doorbell(qpd, q); if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) || (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { deallocate_sdma_queue(dqm, q); pdd->sdma_past_activity_counter += sdma_val; } list_del(&q->list); qpd->queue_count--; if (q->properties.is_active) { decrement_queue_count(dqm, q->properties.type); retval = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); if (retval == -ETIME) qpd->reset_wavefronts = true; if (q->properties.is_gws) { dqm->gws_queue_count--; qpd->mapped_gws_queue = false; } } /* * Unconditionally decrement this counter, regardless of the queue's * type */ dqm->total_queue_count--; pr_debug("Total of %d queues are accountable so far\n", dqm->total_queue_count); dqm_unlock(dqm); /* Do free_mqd after dqm_unlock(dqm) to avoid circular locking */ mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); return retval; failed_try_destroy_debugged_queue: dqm_unlock(dqm); return retval; } /* * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to * stay in user mode. */ #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL /* APE1 limit is inclusive and 64K aligned. */ #define APE1_LIMIT_ALIGNMENT 0xFFFF static bool set_cache_memory_policy(struct device_queue_manager *dqm, struct qcm_process_device *qpd, enum cache_policy default_policy, enum cache_policy alternate_policy, void __user *alternate_aperture_base, uint64_t alternate_aperture_size) { bool retval = true; if (!dqm->asic_ops.set_cache_memory_policy) return retval; dqm_lock(dqm); if (alternate_aperture_size == 0) { /* base > limit disables APE1 */ qpd->sh_mem_ape1_base = 1; qpd->sh_mem_ape1_limit = 0; } else { /* * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]}, * SH_MEM_APE1_BASE[31:0], 0x0000 } * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]}, * SH_MEM_APE1_LIMIT[31:0], 0xFFFF } * Verify that the base and size parameters can be * represented in this format and convert them. * Additionally restrict APE1 to user-mode addresses. */ uint64_t base = (uintptr_t)alternate_aperture_base; uint64_t limit = base + alternate_aperture_size - 1; if (limit <= base || (base & APE1_FIXED_BITS_MASK) != 0 || (limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT) { retval = false; goto out; } qpd->sh_mem_ape1_base = base >> 16; qpd->sh_mem_ape1_limit = limit >> 16; } retval = dqm->asic_ops.set_cache_memory_policy( dqm, qpd, default_policy, alternate_policy, alternate_aperture_base, alternate_aperture_size); if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0)) program_sh_mem_settings(dqm, qpd); pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n", qpd->sh_mem_config, qpd->sh_mem_ape1_base, qpd->sh_mem_ape1_limit); out: dqm_unlock(dqm); return retval; } static int set_trap_handler(struct device_queue_manager *dqm, struct qcm_process_device *qpd, uint64_t tba_addr, uint64_t tma_addr) { uint64_t *tma; if (dqm->dev->cwsr_enabled) { /* Jump from CWSR trap handler to user trap */ tma = (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET); tma[0] = tba_addr; tma[1] = tma_addr; } else { qpd->tba_addr = tba_addr; qpd->tma_addr = tma_addr; } return 0; } static int process_termination_nocpsch(struct device_queue_manager *dqm, struct qcm_process_device *qpd) { struct queue *q, *next; struct device_process_node *cur, *next_dpn; int retval = 0; bool found = false; dqm_lock(dqm); /* Clear all user mode queues */ list_for_each_entry_safe(q, next, &qpd->queues_list, list) { int ret; ret = destroy_queue_nocpsch_locked(dqm, qpd, q); if (ret) retval = ret; } /* Unregister process */ list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) { if (qpd == cur->qpd) { list_del(&cur->list); kfree(cur); dqm->processes_count--; found = true; break; } } dqm_unlock(dqm); /* Outside the DQM lock because under the DQM lock we can't do * reclaim or take other locks that others hold while reclaiming. */ if (found) kfd_dec_compute_active(dqm->dev); return retval; } static int get_wave_state(struct device_queue_manager *dqm, struct queue *q, void __user *ctl_stack, u32 *ctl_stack_used_size, u32 *save_area_used_size) { struct mqd_manager *mqd_mgr; int r; dqm_lock(dqm); if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE || q->properties.is_active || !q->device->cwsr_enabled) { r = -EINVAL; goto dqm_unlock; } mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP]; if (!mqd_mgr->get_wave_state) { r = -EINVAL; goto dqm_unlock; } r = mqd_mgr->get_wave_state(mqd_mgr, q->mqd, ctl_stack, ctl_stack_used_size, save_area_used_size); dqm_unlock: dqm_unlock(dqm); return r; } static int process_termination_cpsch(struct device_queue_manager *dqm, struct qcm_process_device *qpd) { int retval; struct queue *q, *next; struct kernel_queue *kq, *kq_next; struct mqd_manager *mqd_mgr; struct device_process_node *cur, *next_dpn; enum kfd_unmap_queues_filter filter = KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES; bool found = false; retval = 0; dqm_lock(dqm); /* Clean all kernel queues */ list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) { list_del(&kq->list); decrement_queue_count(dqm, kq->queue->properties.type); qpd->is_debug = false; dqm->total_queue_count--; filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES; } /* Clear all user mode queues */ list_for_each_entry(q, &qpd->queues_list, list) { if (q->properties.type == KFD_QUEUE_TYPE_SDMA) deallocate_sdma_queue(dqm, q); else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) deallocate_sdma_queue(dqm, q); if (q->properties.is_active) { decrement_queue_count(dqm, q->properties.type); if (q->properties.is_gws) { dqm->gws_queue_count--; qpd->mapped_gws_queue = false; } } dqm->total_queue_count--; } /* Unregister process */ list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) { if (qpd == cur->qpd) { list_del(&cur->list); kfree(cur); dqm->processes_count--; found = true; break; } } retval = execute_queues_cpsch(dqm, filter, 0); if ((!dqm->is_hws_hang) && (retval || qpd->reset_wavefronts)) { pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev); dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process); qpd->reset_wavefronts = false; } dqm_unlock(dqm); /* Outside the DQM lock because under the DQM lock we can't do * reclaim or take other locks that others hold while reclaiming. */ if (found) kfd_dec_compute_active(dqm->dev); /* Lastly, free mqd resources. * Do free_mqd() after dqm_unlock to avoid circular locking. */ list_for_each_entry_safe(q, next, &qpd->queues_list, list) { mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( q->properties.type)]; list_del(&q->list); qpd->queue_count--; mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); } return retval; } static int init_mqd_managers(struct device_queue_manager *dqm) { int i, j; struct mqd_manager *mqd_mgr; for (i = 0; i < KFD_MQD_TYPE_MAX; i++) { mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev); if (!mqd_mgr) { pr_err("mqd manager [%d] initialization failed\n", i); goto out_free; } dqm->mqd_mgrs[i] = mqd_mgr; } return 0; out_free: for (j = 0; j < i; j++) { kfree(dqm->mqd_mgrs[j]); dqm->mqd_mgrs[j] = NULL; } return -ENOMEM; } /* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/ static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm) { int retval; struct kfd_dev *dev = dqm->dev; struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd; uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size * get_num_all_sdma_engines(dqm) * dev->device_info->num_sdma_queues_per_engine + dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size; retval = amdgpu_amdkfd_alloc_gtt_mem(dev->kgd, size, &(mem_obj->gtt_mem), &(mem_obj->gpu_addr), (void *)&(mem_obj->cpu_ptr), false); return retval; } struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev) { struct device_queue_manager *dqm; pr_debug("Loading device queue manager\n"); dqm = kzalloc(sizeof(*dqm), GFP_KERNEL); if (!dqm) return NULL; switch (dev->device_info->asic_family) { /* HWS is not available on Hawaii. */ case CHIP_HAWAII: /* HWS depends on CWSR for timely dequeue. CWSR is not * available on Tonga. * * FIXME: This argument also applies to Kaveri. */ case CHIP_TONGA: dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS; break; default: dqm->sched_policy = sched_policy; break; } dqm->dev = dev; switch (dqm->sched_policy) { case KFD_SCHED_POLICY_HWS: case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION: /* initialize dqm for cp scheduling */ dqm->ops.create_queue = create_queue_cpsch; dqm->ops.initialize = initialize_cpsch; dqm->ops.start = start_cpsch; dqm->ops.stop = stop_cpsch; dqm->ops.pre_reset = pre_reset; dqm->ops.destroy_queue = destroy_queue_cpsch; dqm->ops.update_queue = update_queue; dqm->ops.register_process = register_process; dqm->ops.unregister_process = unregister_process; dqm->ops.uninitialize = uninitialize; dqm->ops.create_kernel_queue = create_kernel_queue_cpsch; dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch; dqm->ops.set_cache_memory_policy = set_cache_memory_policy; dqm->ops.set_trap_handler = set_trap_handler; dqm->ops.process_termination = process_termination_cpsch; dqm->ops.evict_process_queues = evict_process_queues_cpsch; dqm->ops.restore_process_queues = restore_process_queues_cpsch; dqm->ops.get_wave_state = get_wave_state; break; case KFD_SCHED_POLICY_NO_HWS: /* initialize dqm for no cp scheduling */ dqm->ops.start = start_nocpsch; dqm->ops.stop = stop_nocpsch; dqm->ops.pre_reset = pre_reset; dqm->ops.create_queue = create_queue_nocpsch; dqm->ops.destroy_queue = destroy_queue_nocpsch; dqm->ops.update_queue = update_queue; dqm->ops.register_process = register_process; dqm->ops.unregister_process = unregister_process; dqm->ops.initialize = initialize_nocpsch; dqm->ops.uninitialize = uninitialize; dqm->ops.set_cache_memory_policy = set_cache_memory_policy; dqm->ops.set_trap_handler = set_trap_handler; dqm->ops.process_termination = process_termination_nocpsch; dqm->ops.evict_process_queues = evict_process_queues_nocpsch; dqm->ops.restore_process_queues = restore_process_queues_nocpsch; dqm->ops.get_wave_state = get_wave_state; break; default: pr_err("Invalid scheduling policy %d\n", dqm->sched_policy); goto out_free; } switch (dev->device_info->asic_family) { case CHIP_CARRIZO: device_queue_manager_init_vi(&dqm->asic_ops); break; case CHIP_KAVERI: device_queue_manager_init_cik(&dqm->asic_ops); break; case CHIP_HAWAII: device_queue_manager_init_cik_hawaii(&dqm->asic_ops); break; case CHIP_TONGA: case CHIP_FIJI: case CHIP_POLARIS10: case CHIP_POLARIS11: case CHIP_POLARIS12: case CHIP_VEGAM: device_queue_manager_init_vi_tonga(&dqm->asic_ops); break; case CHIP_VEGA10: case CHIP_VEGA12: case CHIP_VEGA20: case CHIP_RAVEN: case CHIP_RENOIR: case CHIP_ARCTURUS: device_queue_manager_init_v9(&dqm->asic_ops); break; case CHIP_NAVI10: case CHIP_NAVI12: case CHIP_NAVI14: case CHIP_SIENNA_CICHLID: case CHIP_NAVY_FLOUNDER: device_queue_manager_init_v10_navi10(&dqm->asic_ops); break; default: WARN(1, "Unexpected ASIC family %u", dev->device_info->asic_family); goto out_free; } if (init_mqd_managers(dqm)) goto out_free; if (allocate_hiq_sdma_mqd(dqm)) { pr_err("Failed to allocate hiq sdma mqd trunk buffer\n"); goto out_free; } if (!dqm->ops.initialize(dqm)) return dqm; out_free: kfree(dqm); return NULL; } static void deallocate_hiq_sdma_mqd(struct kfd_dev *dev, struct kfd_mem_obj *mqd) { WARN(!mqd, "No hiq sdma mqd trunk to free"); amdgpu_amdkfd_free_gtt_mem(dev->kgd, mqd->gtt_mem); } void device_queue_manager_uninit(struct device_queue_manager *dqm) { dqm->ops.uninitialize(dqm); deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd); kfree(dqm); } int kfd_process_vm_fault(struct device_queue_manager *dqm, unsigned int pasid) { struct kfd_process_device *pdd; struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); int ret = 0; if (!p) return -EINVAL; pdd = kfd_get_process_device_data(dqm->dev, p); if (pdd) ret = dqm->ops.evict_process_queues(dqm, &pdd->qpd); kfd_unref_process(p); return ret; } static void kfd_process_hw_exception(struct work_struct *work) { struct device_queue_manager *dqm = container_of(work, struct device_queue_manager, hw_exception_work); amdgpu_amdkfd_gpu_reset(dqm->dev->kgd); } #if defined(CONFIG_DEBUG_FS) static void seq_reg_dump(struct seq_file *m, uint32_t (*dump)[2], uint32_t n_regs) { uint32_t i, count; for (i = 0, count = 0; i < n_regs; i++) { if (count == 0 || dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) { seq_printf(m, "%s %08x: %08x", i ? "\n" : "", dump[i][0], dump[i][1]); count = 7; } else { seq_printf(m, " %08x", dump[i][1]); count--; } } seq_puts(m, "\n"); } int dqm_debugfs_hqds(struct seq_file *m, void *data) { struct device_queue_manager *dqm = data; uint32_t (*dump)[2], n_regs; int pipe, queue; int r = 0; if (!dqm->sched_running) { seq_printf(m, " Device is stopped\n"); return 0; } r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->kgd, KFD_CIK_HIQ_PIPE, KFD_CIK_HIQ_QUEUE, &dump, &n_regs); if (!r) { seq_printf(m, " HIQ on MEC %d Pipe %d Queue %d\n", KFD_CIK_HIQ_PIPE/get_pipes_per_mec(dqm)+1, KFD_CIK_HIQ_PIPE%get_pipes_per_mec(dqm), KFD_CIK_HIQ_QUEUE); seq_reg_dump(m, dump, n_regs); kfree(dump); } for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) { int pipe_offset = pipe * get_queues_per_pipe(dqm); for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) { if (!test_bit(pipe_offset + queue, dqm->dev->shared_resources.cp_queue_bitmap)) continue; r = dqm->dev->kfd2kgd->hqd_dump( dqm->dev->kgd, pipe, queue, &dump, &n_regs); if (r) break; seq_printf(m, " CP Pipe %d, Queue %d\n", pipe, queue); seq_reg_dump(m, dump, n_regs); kfree(dump); } } for (pipe = 0; pipe < get_num_all_sdma_engines(dqm); pipe++) { for (queue = 0; queue < dqm->dev->device_info->num_sdma_queues_per_engine; queue++) { r = dqm->dev->kfd2kgd->hqd_sdma_dump( dqm->dev->kgd, pipe, queue, &dump, &n_regs); if (r) break; seq_printf(m, " SDMA Engine %d, RLC %d\n", pipe, queue); seq_reg_dump(m, dump, n_regs); kfree(dump); } } return r; } int dqm_debugfs_execute_queues(struct device_queue_manager *dqm) { int r = 0; dqm_lock(dqm); dqm->active_runlist = true; r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0); dqm_unlock(dqm); return r; } #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1