Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Harry Wentland | 3247 | 58.92% | 4 | 6.78% |
Jerry (Fangzhi) Zuo | 924 | 16.77% | 1 | 1.69% |
David Francis | 268 | 4.86% | 2 | 3.39% |
Leo (Sunpeng) Li | 249 | 4.52% | 2 | 3.39% |
Bhawanpreet Lakha | 195 | 3.54% | 3 | 5.08% |
Anthony Koo | 118 | 2.14% | 3 | 5.08% |
Dmytro Laktyushkin | 116 | 2.10% | 5 | 8.47% |
Yogesh Mohan Marimuthu | 87 | 1.58% | 1 | 1.69% |
Jun Lei | 78 | 1.42% | 3 | 5.08% |
Hersen Wu | 48 | 0.87% | 3 | 5.08% |
abdoulaye berthe | 47 | 0.85% | 2 | 3.39% |
Nicholas Kazlauskas | 44 | 0.80% | 1 | 1.69% |
Charlene Liu | 23 | 0.42% | 1 | 1.69% |
Andrey Grodzovsky | 11 | 0.20% | 2 | 3.39% |
Navid Emamdoost | 10 | 0.18% | 2 | 3.39% |
Eric Bernstein | 6 | 0.11% | 1 | 1.69% |
Dave Airlie | 6 | 0.11% | 6 | 10.17% |
Wesley Chalmers | 5 | 0.09% | 1 | 1.69% |
Rex Zhu | 4 | 0.07% | 1 | 1.69% |
Hawking Zhang | 4 | 0.07% | 1 | 1.69% |
Wang Hai | 3 | 0.05% | 1 | 1.69% |
Feifei Xu | 3 | 0.05% | 2 | 3.39% |
Sam Ravnborg | 3 | 0.05% | 1 | 1.69% |
Dennis Li | 2 | 0.04% | 1 | 1.69% |
Eric Yang | 2 | 0.04% | 2 | 3.39% |
Tom St Denis | 2 | 0.04% | 1 | 1.69% |
Alex Deucher | 1 | 0.02% | 1 | 1.69% |
Christophe Jaillet | 1 | 0.02% | 1 | 1.69% |
Zeyu Fan | 1 | 0.02% | 1 | 1.69% |
Mikita Lipski | 1 | 0.02% | 1 | 1.69% |
Mario Kleiner | 1 | 0.02% | 1 | 1.69% |
Roman Li | 1 | 0.02% | 1 | 1.69% |
Total | 5511 | 59 |
/* * Copyright 2012-15 Advanced Micro Devices, Inc.cls * * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include <linux/slab.h> #include "dm_services.h" #include "stream_encoder.h" #include "resource.h" #include "include/irq_service_interface.h" #include "dce120_resource.h" #include "dce112/dce112_resource.h" #include "dce110/dce110_resource.h" #include "../virtual/virtual_stream_encoder.h" #include "dce120_timing_generator.h" #include "irq/dce120/irq_service_dce120.h" #include "dce/dce_opp.h" #include "dce/dce_clock_source.h" #include "dce/dce_ipp.h" #include "dce/dce_mem_input.h" #include "dce/dce_panel_cntl.h" #include "dce110/dce110_hw_sequencer.h" #include "dce120/dce120_hw_sequencer.h" #include "dce/dce_transform.h" #include "clk_mgr.h" #include "dce/dce_audio.h" #include "dce/dce_link_encoder.h" #include "dce/dce_stream_encoder.h" #include "dce/dce_hwseq.h" #include "dce/dce_abm.h" #include "dce/dce_dmcu.h" #include "dce/dce_aux.h" #include "dce/dce_i2c.h" #include "dce/dce_12_0_offset.h" #include "dce/dce_12_0_sh_mask.h" #include "soc15_hw_ip.h" #include "vega10_ip_offset.h" #include "nbio/nbio_6_1_offset.h" #include "mmhub/mmhub_1_0_offset.h" #include "mmhub/mmhub_1_0_sh_mask.h" #include "reg_helper.h" #include "dce100/dce100_resource.h" #ifndef mmDP0_DP_DPHY_INTERNAL_CTRL #define mmDP0_DP_DPHY_INTERNAL_CTRL 0x210f #define mmDP0_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 #define mmDP1_DP_DPHY_INTERNAL_CTRL 0x220f #define mmDP1_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 #define mmDP2_DP_DPHY_INTERNAL_CTRL 0x230f #define mmDP2_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 #define mmDP3_DP_DPHY_INTERNAL_CTRL 0x240f #define mmDP3_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 #define mmDP4_DP_DPHY_INTERNAL_CTRL 0x250f #define mmDP4_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 #define mmDP5_DP_DPHY_INTERNAL_CTRL 0x260f #define mmDP5_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 #define mmDP6_DP_DPHY_INTERNAL_CTRL 0x270f #define mmDP6_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2 #endif enum dce120_clk_src_array_id { DCE120_CLK_SRC_PLL0, DCE120_CLK_SRC_PLL1, DCE120_CLK_SRC_PLL2, DCE120_CLK_SRC_PLL3, DCE120_CLK_SRC_PLL4, DCE120_CLK_SRC_PLL5, DCE120_CLK_SRC_TOTAL }; static const struct dce110_timing_generator_offsets dce120_tg_offsets[] = { { .crtc = (mmCRTC0_CRTC_CONTROL - mmCRTC0_CRTC_CONTROL), }, { .crtc = (mmCRTC1_CRTC_CONTROL - mmCRTC0_CRTC_CONTROL), }, { .crtc = (mmCRTC2_CRTC_CONTROL - mmCRTC0_CRTC_CONTROL), }, { .crtc = (mmCRTC3_CRTC_CONTROL - mmCRTC0_CRTC_CONTROL), }, { .crtc = (mmCRTC4_CRTC_CONTROL - mmCRTC0_CRTC_CONTROL), }, { .crtc = (mmCRTC5_CRTC_CONTROL - mmCRTC0_CRTC_CONTROL), } }; /* begin ********************* * macros to expend register list macro defined in HW object header file */ #define BASE_INNER(seg) \ DCE_BASE__INST0_SEG ## seg #define NBIO_BASE_INNER(seg) \ NBIF_BASE__INST0_SEG ## seg #define NBIO_BASE(seg) \ NBIO_BASE_INNER(seg) /* compile time expand base address. */ #define BASE(seg) \ BASE_INNER(seg) #define SR(reg_name)\ .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \ mm ## reg_name #define SRI(reg_name, block, id)\ .reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ mm ## block ## id ## _ ## reg_name /* MMHUB */ #define MMHUB_BASE_INNER(seg) \ MMHUB_BASE__INST0_SEG ## seg #define MMHUB_BASE(seg) \ MMHUB_BASE_INNER(seg) #define MMHUB_SR(reg_name)\ .reg_name = MMHUB_BASE(mm ## reg_name ## _BASE_IDX) + \ mm ## reg_name /* macros to expend register list macro defined in HW object header file * end *********************/ static const struct dce_dmcu_registers dmcu_regs = { DMCU_DCE110_COMMON_REG_LIST() }; static const struct dce_dmcu_shift dmcu_shift = { DMCU_MASK_SH_LIST_DCE110(__SHIFT) }; static const struct dce_dmcu_mask dmcu_mask = { DMCU_MASK_SH_LIST_DCE110(_MASK) }; static const struct dce_abm_registers abm_regs = { ABM_DCE110_COMMON_REG_LIST() }; static const struct dce_abm_shift abm_shift = { ABM_MASK_SH_LIST_DCE110(__SHIFT) }; static const struct dce_abm_mask abm_mask = { ABM_MASK_SH_LIST_DCE110(_MASK) }; #define ipp_regs(id)\ [id] = {\ IPP_DCE110_REG_LIST_DCE_BASE(id)\ } static const struct dce_ipp_registers ipp_regs[] = { ipp_regs(0), ipp_regs(1), ipp_regs(2), ipp_regs(3), ipp_regs(4), ipp_regs(5) }; static const struct dce_ipp_shift ipp_shift = { IPP_DCE120_MASK_SH_LIST_SOC_BASE(__SHIFT) }; static const struct dce_ipp_mask ipp_mask = { IPP_DCE120_MASK_SH_LIST_SOC_BASE(_MASK) }; #define transform_regs(id)\ [id] = {\ XFM_COMMON_REG_LIST_DCE110(id)\ } static const struct dce_transform_registers xfm_regs[] = { transform_regs(0), transform_regs(1), transform_regs(2), transform_regs(3), transform_regs(4), transform_regs(5) }; static const struct dce_transform_shift xfm_shift = { XFM_COMMON_MASK_SH_LIST_SOC_BASE(__SHIFT) }; static const struct dce_transform_mask xfm_mask = { XFM_COMMON_MASK_SH_LIST_SOC_BASE(_MASK) }; #define aux_regs(id)\ [id] = {\ AUX_REG_LIST(id)\ } static const struct dce110_link_enc_aux_registers link_enc_aux_regs[] = { aux_regs(0), aux_regs(1), aux_regs(2), aux_regs(3), aux_regs(4), aux_regs(5) }; #define hpd_regs(id)\ [id] = {\ HPD_REG_LIST(id)\ } static const struct dce110_link_enc_hpd_registers link_enc_hpd_regs[] = { hpd_regs(0), hpd_regs(1), hpd_regs(2), hpd_regs(3), hpd_regs(4), hpd_regs(5) }; #define link_regs(id)\ [id] = {\ LE_DCE120_REG_LIST(id), \ SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \ } static const struct dce110_link_enc_registers link_enc_regs[] = { link_regs(0), link_regs(1), link_regs(2), link_regs(3), link_regs(4), link_regs(5), link_regs(6), }; #define stream_enc_regs(id)\ [id] = {\ SE_COMMON_REG_LIST(id),\ .TMDS_CNTL = 0,\ } static const struct dce110_stream_enc_registers stream_enc_regs[] = { stream_enc_regs(0), stream_enc_regs(1), stream_enc_regs(2), stream_enc_regs(3), stream_enc_regs(4), stream_enc_regs(5) }; static const struct dce_stream_encoder_shift se_shift = { SE_COMMON_MASK_SH_LIST_DCE120(__SHIFT) }; static const struct dce_stream_encoder_mask se_mask = { SE_COMMON_MASK_SH_LIST_DCE120(_MASK) }; static const struct dce_panel_cntl_registers panel_cntl_regs[] = { { DCE_PANEL_CNTL_REG_LIST() } }; static const struct dce_panel_cntl_shift panel_cntl_shift = { DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT) }; static const struct dce_panel_cntl_mask panel_cntl_mask = { DCE_PANEL_CNTL_MASK_SH_LIST(_MASK) }; static const struct dce110_aux_registers_shift aux_shift = { DCE12_AUX_MASK_SH_LIST(__SHIFT) }; static const struct dce110_aux_registers_mask aux_mask = { DCE12_AUX_MASK_SH_LIST(_MASK) }; #define opp_regs(id)\ [id] = {\ OPP_DCE_120_REG_LIST(id),\ } static const struct dce_opp_registers opp_regs[] = { opp_regs(0), opp_regs(1), opp_regs(2), opp_regs(3), opp_regs(4), opp_regs(5) }; static const struct dce_opp_shift opp_shift = { OPP_COMMON_MASK_SH_LIST_DCE_120(__SHIFT) }; static const struct dce_opp_mask opp_mask = { OPP_COMMON_MASK_SH_LIST_DCE_120(_MASK) }; #define aux_engine_regs(id)\ [id] = {\ AUX_COMMON_REG_LIST(id), \ .AUX_RESET_MASK = 0 \ } static const struct dce110_aux_registers aux_engine_regs[] = { aux_engine_regs(0), aux_engine_regs(1), aux_engine_regs(2), aux_engine_regs(3), aux_engine_regs(4), aux_engine_regs(5) }; #define audio_regs(id)\ [id] = {\ AUD_COMMON_REG_LIST(id)\ } static const struct dce_audio_registers audio_regs[] = { audio_regs(0), audio_regs(1), audio_regs(2), audio_regs(3), audio_regs(4), audio_regs(5) }; #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\ SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\ SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\ AUD_COMMON_MASK_SH_LIST_BASE(mask_sh) static const struct dce_audio_shift audio_shift = { DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT) }; static const struct dce_audio_mask audio_mask = { DCE120_AUD_COMMON_MASK_SH_LIST(_MASK) }; static int map_transmitter_id_to_phy_instance( enum transmitter transmitter) { switch (transmitter) { case TRANSMITTER_UNIPHY_A: return 0; break; case TRANSMITTER_UNIPHY_B: return 1; break; case TRANSMITTER_UNIPHY_C: return 2; break; case TRANSMITTER_UNIPHY_D: return 3; break; case TRANSMITTER_UNIPHY_E: return 4; break; case TRANSMITTER_UNIPHY_F: return 5; break; case TRANSMITTER_UNIPHY_G: return 6; break; default: ASSERT(0); return 0; } } #define clk_src_regs(index, id)\ [index] = {\ CS_COMMON_REG_LIST_DCE_112(id),\ } static const struct dce110_clk_src_regs clk_src_regs[] = { clk_src_regs(0, A), clk_src_regs(1, B), clk_src_regs(2, C), clk_src_regs(3, D), clk_src_regs(4, E), clk_src_regs(5, F) }; static const struct dce110_clk_src_shift cs_shift = { CS_COMMON_MASK_SH_LIST_DCE_112(__SHIFT) }; static const struct dce110_clk_src_mask cs_mask = { CS_COMMON_MASK_SH_LIST_DCE_112(_MASK) }; struct output_pixel_processor *dce120_opp_create( struct dc_context *ctx, uint32_t inst) { struct dce110_opp *opp = kzalloc(sizeof(struct dce110_opp), GFP_KERNEL); if (!opp) return NULL; dce110_opp_construct(opp, ctx, inst, &opp_regs[inst], &opp_shift, &opp_mask); return &opp->base; } struct dce_aux *dce120_aux_engine_create( struct dc_context *ctx, uint32_t inst) { struct aux_engine_dce110 *aux_engine = kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL); if (!aux_engine) return NULL; dce110_aux_engine_construct(aux_engine, ctx, inst, SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD, &aux_engine_regs[inst], &aux_mask, &aux_shift, ctx->dc->caps.extended_aux_timeout_support); return &aux_engine->base; } #define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST(id) } static const struct dce_i2c_registers i2c_hw_regs[] = { i2c_inst_regs(1), i2c_inst_regs(2), i2c_inst_regs(3), i2c_inst_regs(4), i2c_inst_regs(5), i2c_inst_regs(6), }; static const struct dce_i2c_shift i2c_shifts = { I2C_COMMON_MASK_SH_LIST_DCE110(__SHIFT) }; static const struct dce_i2c_mask i2c_masks = { I2C_COMMON_MASK_SH_LIST_DCE110(_MASK) }; struct dce_i2c_hw *dce120_i2c_hw_create( struct dc_context *ctx, uint32_t inst) { struct dce_i2c_hw *dce_i2c_hw = kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL); if (!dce_i2c_hw) return NULL; dce112_i2c_hw_construct(dce_i2c_hw, ctx, inst, &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks); return dce_i2c_hw; } static const struct bios_registers bios_regs = { .BIOS_SCRATCH_3 = mmBIOS_SCRATCH_3 + NBIO_BASE(mmBIOS_SCRATCH_3_BASE_IDX), .BIOS_SCRATCH_6 = mmBIOS_SCRATCH_6 + NBIO_BASE(mmBIOS_SCRATCH_6_BASE_IDX) }; static const struct resource_caps res_cap = { .num_timing_generator = 6, .num_audio = 7, .num_stream_encoder = 6, .num_pll = 6, .num_ddc = 6, }; static const struct dc_plane_cap plane_cap = { .type = DC_PLANE_TYPE_DCE_RGB, .pixel_format_support = { .argb8888 = true, .nv12 = false, .fp16 = true }, .max_upscale_factor = { .argb8888 = 16000, .nv12 = 1, .fp16 = 1 }, .max_downscale_factor = { .argb8888 = 250, .nv12 = 1, .fp16 = 1 } }; static const struct dc_debug_options debug_defaults = { .disable_clock_gate = true, }; static struct clock_source *dce120_clock_source_create( struct dc_context *ctx, struct dc_bios *bios, enum clock_source_id id, const struct dce110_clk_src_regs *regs, bool dp_clk_src) { struct dce110_clk_src *clk_src = kzalloc(sizeof(*clk_src), GFP_KERNEL); if (!clk_src) return NULL; if (dce112_clk_src_construct(clk_src, ctx, bios, id, regs, &cs_shift, &cs_mask)) { clk_src->base.dp_clk_src = dp_clk_src; return &clk_src->base; } kfree(clk_src); BREAK_TO_DEBUGGER(); return NULL; } static void dce120_clock_source_destroy(struct clock_source **clk_src) { kfree(TO_DCE110_CLK_SRC(*clk_src)); *clk_src = NULL; } static bool dce120_hw_sequencer_create(struct dc *dc) { /* All registers used by dce11.2 match those in dce11 in offset and * structure */ dce120_hw_sequencer_construct(dc); /*TODO Move to separate file and Override what is needed */ return true; } static struct timing_generator *dce120_timing_generator_create( struct dc_context *ctx, uint32_t instance, const struct dce110_timing_generator_offsets *offsets) { struct dce110_timing_generator *tg110 = kzalloc(sizeof(struct dce110_timing_generator), GFP_KERNEL); if (!tg110) return NULL; dce120_timing_generator_construct(tg110, ctx, instance, offsets); return &tg110->base; } static void dce120_transform_destroy(struct transform **xfm) { kfree(TO_DCE_TRANSFORM(*xfm)); *xfm = NULL; } static void dce120_resource_destruct(struct dce110_resource_pool *pool) { unsigned int i; for (i = 0; i < pool->base.pipe_count; i++) { if (pool->base.opps[i] != NULL) dce110_opp_destroy(&pool->base.opps[i]); if (pool->base.transforms[i] != NULL) dce120_transform_destroy(&pool->base.transforms[i]); if (pool->base.ipps[i] != NULL) dce_ipp_destroy(&pool->base.ipps[i]); if (pool->base.mis[i] != NULL) { kfree(TO_DCE_MEM_INPUT(pool->base.mis[i])); pool->base.mis[i] = NULL; } if (pool->base.irqs != NULL) { dal_irq_service_destroy(&pool->base.irqs); } if (pool->base.timing_generators[i] != NULL) { kfree(DCE110TG_FROM_TG(pool->base.timing_generators[i])); pool->base.timing_generators[i] = NULL; } } for (i = 0; i < pool->base.res_cap->num_ddc; i++) { if (pool->base.engines[i] != NULL) dce110_engine_destroy(&pool->base.engines[i]); if (pool->base.hw_i2cs[i] != NULL) { kfree(pool->base.hw_i2cs[i]); pool->base.hw_i2cs[i] = NULL; } if (pool->base.sw_i2cs[i] != NULL) { kfree(pool->base.sw_i2cs[i]); pool->base.sw_i2cs[i] = NULL; } } for (i = 0; i < pool->base.audio_count; i++) { if (pool->base.audios[i]) dce_aud_destroy(&pool->base.audios[i]); } for (i = 0; i < pool->base.stream_enc_count; i++) { if (pool->base.stream_enc[i] != NULL) kfree(DCE110STRENC_FROM_STRENC(pool->base.stream_enc[i])); } for (i = 0; i < pool->base.clk_src_count; i++) { if (pool->base.clock_sources[i] != NULL) dce120_clock_source_destroy( &pool->base.clock_sources[i]); } if (pool->base.dp_clock_source != NULL) dce120_clock_source_destroy(&pool->base.dp_clock_source); if (pool->base.abm != NULL) dce_abm_destroy(&pool->base.abm); if (pool->base.dmcu != NULL) dce_dmcu_destroy(&pool->base.dmcu); } static void read_dce_straps( struct dc_context *ctx, struct resource_straps *straps) { uint32_t reg_val = dm_read_reg_soc15(ctx, mmCC_DC_MISC_STRAPS, 0); straps->audio_stream_number = get_reg_field_value(reg_val, CC_DC_MISC_STRAPS, AUDIO_STREAM_NUMBER); straps->hdmi_disable = get_reg_field_value(reg_val, CC_DC_MISC_STRAPS, HDMI_DISABLE); reg_val = dm_read_reg_soc15(ctx, mmDC_PINSTRAPS, 0); straps->dc_pinstraps_audio = get_reg_field_value(reg_val, DC_PINSTRAPS, DC_PINSTRAPS_AUDIO); } static struct audio *create_audio( struct dc_context *ctx, unsigned int inst) { return dce_audio_create(ctx, inst, &audio_regs[inst], &audio_shift, &audio_mask); } static const struct encoder_feature_support link_enc_feature = { .max_hdmi_deep_color = COLOR_DEPTH_121212, .max_hdmi_pixel_clock = 600000, .hdmi_ycbcr420_supported = true, .dp_ycbcr420_supported = false, .flags.bits.IS_HBR2_CAPABLE = true, .flags.bits.IS_HBR3_CAPABLE = true, .flags.bits.IS_TPS3_CAPABLE = true, .flags.bits.IS_TPS4_CAPABLE = true, }; static struct link_encoder *dce120_link_encoder_create( const struct encoder_init_data *enc_init_data) { struct dce110_link_encoder *enc110 = kzalloc(sizeof(struct dce110_link_encoder), GFP_KERNEL); int link_regs_id; if (!enc110) return NULL; link_regs_id = map_transmitter_id_to_phy_instance(enc_init_data->transmitter); dce110_link_encoder_construct(enc110, enc_init_data, &link_enc_feature, &link_enc_regs[link_regs_id], &link_enc_aux_regs[enc_init_data->channel - 1], &link_enc_hpd_regs[enc_init_data->hpd_source]); return &enc110->base; } static struct panel_cntl *dce120_panel_cntl_create(const struct panel_cntl_init_data *init_data) { struct dce_panel_cntl *panel_cntl = kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL); if (!panel_cntl) return NULL; dce_panel_cntl_construct(panel_cntl, init_data, &panel_cntl_regs[init_data->inst], &panel_cntl_shift, &panel_cntl_mask); return &panel_cntl->base; } static struct input_pixel_processor *dce120_ipp_create( struct dc_context *ctx, uint32_t inst) { struct dce_ipp *ipp = kzalloc(sizeof(struct dce_ipp), GFP_KERNEL); if (!ipp) { BREAK_TO_DEBUGGER(); return NULL; } dce_ipp_construct(ipp, ctx, inst, &ipp_regs[inst], &ipp_shift, &ipp_mask); return &ipp->base; } static struct stream_encoder *dce120_stream_encoder_create( enum engine_id eng_id, struct dc_context *ctx) { struct dce110_stream_encoder *enc110 = kzalloc(sizeof(struct dce110_stream_encoder), GFP_KERNEL); if (!enc110) return NULL; dce110_stream_encoder_construct(enc110, ctx, ctx->dc_bios, eng_id, &stream_enc_regs[eng_id], &se_shift, &se_mask); return &enc110->base; } #define SRII(reg_name, block, id)\ .reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ mm ## block ## id ## _ ## reg_name static const struct dce_hwseq_registers hwseq_reg = { HWSEQ_DCE120_REG_LIST() }; static const struct dce_hwseq_shift hwseq_shift = { HWSEQ_DCE12_MASK_SH_LIST(__SHIFT) }; static const struct dce_hwseq_mask hwseq_mask = { HWSEQ_DCE12_MASK_SH_LIST(_MASK) }; /* HWSEQ regs for VG20 */ static const struct dce_hwseq_registers dce121_hwseq_reg = { HWSEQ_VG20_REG_LIST() }; static const struct dce_hwseq_shift dce121_hwseq_shift = { HWSEQ_VG20_MASK_SH_LIST(__SHIFT) }; static const struct dce_hwseq_mask dce121_hwseq_mask = { HWSEQ_VG20_MASK_SH_LIST(_MASK) }; static struct dce_hwseq *dce120_hwseq_create( struct dc_context *ctx) { struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL); if (hws) { hws->ctx = ctx; hws->regs = &hwseq_reg; hws->shifts = &hwseq_shift; hws->masks = &hwseq_mask; } return hws; } static struct dce_hwseq *dce121_hwseq_create( struct dc_context *ctx) { struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL); if (hws) { hws->ctx = ctx; hws->regs = &dce121_hwseq_reg; hws->shifts = &dce121_hwseq_shift; hws->masks = &dce121_hwseq_mask; } return hws; } static const struct resource_create_funcs res_create_funcs = { .read_dce_straps = read_dce_straps, .create_audio = create_audio, .create_stream_encoder = dce120_stream_encoder_create, .create_hwseq = dce120_hwseq_create, }; static const struct resource_create_funcs dce121_res_create_funcs = { .read_dce_straps = read_dce_straps, .create_audio = create_audio, .create_stream_encoder = dce120_stream_encoder_create, .create_hwseq = dce121_hwseq_create, }; #define mi_inst_regs(id) { MI_DCE12_REG_LIST(id) } static const struct dce_mem_input_registers mi_regs[] = { mi_inst_regs(0), mi_inst_regs(1), mi_inst_regs(2), mi_inst_regs(3), mi_inst_regs(4), mi_inst_regs(5), }; static const struct dce_mem_input_shift mi_shifts = { MI_DCE12_MASK_SH_LIST(__SHIFT) }; static const struct dce_mem_input_mask mi_masks = { MI_DCE12_MASK_SH_LIST(_MASK) }; static struct mem_input *dce120_mem_input_create( struct dc_context *ctx, uint32_t inst) { struct dce_mem_input *dce_mi = kzalloc(sizeof(struct dce_mem_input), GFP_KERNEL); if (!dce_mi) { BREAK_TO_DEBUGGER(); return NULL; } dce120_mem_input_construct(dce_mi, ctx, inst, &mi_regs[inst], &mi_shifts, &mi_masks); return &dce_mi->base; } static struct transform *dce120_transform_create( struct dc_context *ctx, uint32_t inst) { struct dce_transform *transform = kzalloc(sizeof(struct dce_transform), GFP_KERNEL); if (!transform) return NULL; dce_transform_construct(transform, ctx, inst, &xfm_regs[inst], &xfm_shift, &xfm_mask); transform->lb_memory_size = 0x1404; /*5124*/ return &transform->base; } static void dce120_destroy_resource_pool(struct resource_pool **pool) { struct dce110_resource_pool *dce110_pool = TO_DCE110_RES_POOL(*pool); dce120_resource_destruct(dce110_pool); kfree(dce110_pool); *pool = NULL; } static const struct resource_funcs dce120_res_pool_funcs = { .destroy = dce120_destroy_resource_pool, .link_enc_create = dce120_link_encoder_create, .panel_cntl_create = dce120_panel_cntl_create, .validate_bandwidth = dce112_validate_bandwidth, .validate_plane = dce100_validate_plane, .add_stream_to_ctx = dce112_add_stream_to_ctx, .find_first_free_match_stream_enc_for_link = dce110_find_first_free_match_stream_enc_for_link }; static void bw_calcs_data_update_from_pplib(struct dc *dc) { struct dm_pp_clock_levels_with_latency eng_clks = {0}; struct dm_pp_clock_levels_with_latency mem_clks = {0}; struct dm_pp_wm_sets_with_clock_ranges clk_ranges = {0}; int i; unsigned int clk; unsigned int latency; /*original logic in dal3*/ int memory_type_multiplier = MEMORY_TYPE_MULTIPLIER_CZ; /*do system clock*/ if (!dm_pp_get_clock_levels_by_type_with_latency( dc->ctx, DM_PP_CLOCK_TYPE_ENGINE_CLK, &eng_clks) || eng_clks.num_levels == 0) { eng_clks.num_levels = 8; clk = 300000; for (i = 0; i < eng_clks.num_levels; i++) { eng_clks.data[i].clocks_in_khz = clk; clk += 100000; } } /* convert all the clock fro kHz to fix point mHz TODO: wloop data */ dc->bw_vbios->high_sclk = bw_frc_to_fixed( eng_clks.data[eng_clks.num_levels-1].clocks_in_khz, 1000); dc->bw_vbios->mid1_sclk = bw_frc_to_fixed( eng_clks.data[eng_clks.num_levels/8].clocks_in_khz, 1000); dc->bw_vbios->mid2_sclk = bw_frc_to_fixed( eng_clks.data[eng_clks.num_levels*2/8].clocks_in_khz, 1000); dc->bw_vbios->mid3_sclk = bw_frc_to_fixed( eng_clks.data[eng_clks.num_levels*3/8].clocks_in_khz, 1000); dc->bw_vbios->mid4_sclk = bw_frc_to_fixed( eng_clks.data[eng_clks.num_levels*4/8].clocks_in_khz, 1000); dc->bw_vbios->mid5_sclk = bw_frc_to_fixed( eng_clks.data[eng_clks.num_levels*5/8].clocks_in_khz, 1000); dc->bw_vbios->mid6_sclk = bw_frc_to_fixed( eng_clks.data[eng_clks.num_levels*6/8].clocks_in_khz, 1000); dc->bw_vbios->low_sclk = bw_frc_to_fixed( eng_clks.data[0].clocks_in_khz, 1000); /*do memory clock*/ if (!dm_pp_get_clock_levels_by_type_with_latency( dc->ctx, DM_PP_CLOCK_TYPE_MEMORY_CLK, &mem_clks) || mem_clks.num_levels == 0) { mem_clks.num_levels = 3; clk = 250000; latency = 45; for (i = 0; i < eng_clks.num_levels; i++) { mem_clks.data[i].clocks_in_khz = clk; mem_clks.data[i].latency_in_us = latency; clk += 500000; latency -= 5; } } /* we don't need to call PPLIB for validation clock since they * also give us the highest sclk and highest mclk (UMA clock). * ALSO always convert UMA clock (from PPLIB) to YCLK (HW formula): * YCLK = UMACLK*m_memoryTypeMultiplier */ if (dc->bw_vbios->memory_type == bw_def_hbm) memory_type_multiplier = MEMORY_TYPE_HBM; dc->bw_vbios->low_yclk = bw_frc_to_fixed( mem_clks.data[0].clocks_in_khz * memory_type_multiplier, 1000); dc->bw_vbios->mid_yclk = bw_frc_to_fixed( mem_clks.data[mem_clks.num_levels>>1].clocks_in_khz * memory_type_multiplier, 1000); dc->bw_vbios->high_yclk = bw_frc_to_fixed( mem_clks.data[mem_clks.num_levels-1].clocks_in_khz * memory_type_multiplier, 1000); /* Now notify PPLib/SMU about which Watermarks sets they should select * depending on DPM state they are in. And update BW MGR GFX Engine and * Memory clock member variables for Watermarks calculations for each * Watermark Set */ clk_ranges.num_wm_sets = 4; clk_ranges.wm_clk_ranges[0].wm_set_id = WM_SET_A; clk_ranges.wm_clk_ranges[0].wm_min_eng_clk_in_khz = eng_clks.data[0].clocks_in_khz; clk_ranges.wm_clk_ranges[0].wm_max_eng_clk_in_khz = eng_clks.data[eng_clks.num_levels*3/8].clocks_in_khz - 1; clk_ranges.wm_clk_ranges[0].wm_min_mem_clk_in_khz = mem_clks.data[0].clocks_in_khz; clk_ranges.wm_clk_ranges[0].wm_max_mem_clk_in_khz = mem_clks.data[mem_clks.num_levels>>1].clocks_in_khz - 1; clk_ranges.wm_clk_ranges[1].wm_set_id = WM_SET_B; clk_ranges.wm_clk_ranges[1].wm_min_eng_clk_in_khz = eng_clks.data[eng_clks.num_levels*3/8].clocks_in_khz; /* 5 GHz instead of data[7].clockInKHz to cover Overdrive */ clk_ranges.wm_clk_ranges[1].wm_max_eng_clk_in_khz = 5000000; clk_ranges.wm_clk_ranges[1].wm_min_mem_clk_in_khz = mem_clks.data[0].clocks_in_khz; clk_ranges.wm_clk_ranges[1].wm_max_mem_clk_in_khz = mem_clks.data[mem_clks.num_levels>>1].clocks_in_khz - 1; clk_ranges.wm_clk_ranges[2].wm_set_id = WM_SET_C; clk_ranges.wm_clk_ranges[2].wm_min_eng_clk_in_khz = eng_clks.data[0].clocks_in_khz; clk_ranges.wm_clk_ranges[2].wm_max_eng_clk_in_khz = eng_clks.data[eng_clks.num_levels*3/8].clocks_in_khz - 1; clk_ranges.wm_clk_ranges[2].wm_min_mem_clk_in_khz = mem_clks.data[mem_clks.num_levels>>1].clocks_in_khz; /* 5 GHz instead of data[2].clockInKHz to cover Overdrive */ clk_ranges.wm_clk_ranges[2].wm_max_mem_clk_in_khz = 5000000; clk_ranges.wm_clk_ranges[3].wm_set_id = WM_SET_D; clk_ranges.wm_clk_ranges[3].wm_min_eng_clk_in_khz = eng_clks.data[eng_clks.num_levels*3/8].clocks_in_khz; /* 5 GHz instead of data[7].clockInKHz to cover Overdrive */ clk_ranges.wm_clk_ranges[3].wm_max_eng_clk_in_khz = 5000000; clk_ranges.wm_clk_ranges[3].wm_min_mem_clk_in_khz = mem_clks.data[mem_clks.num_levels>>1].clocks_in_khz; /* 5 GHz instead of data[2].clockInKHz to cover Overdrive */ clk_ranges.wm_clk_ranges[3].wm_max_mem_clk_in_khz = 5000000; /* Notify PP Lib/SMU which Watermarks to use for which clock ranges */ dm_pp_notify_wm_clock_changes(dc->ctx, &clk_ranges); } static uint32_t read_pipe_fuses(struct dc_context *ctx) { uint32_t value = dm_read_reg_soc15(ctx, mmCC_DC_PIPE_DIS, 0); /* VG20 support max 6 pipes */ value = value & 0x3f; return value; } static bool dce120_resource_construct( uint8_t num_virtual_links, struct dc *dc, struct dce110_resource_pool *pool) { unsigned int i; int j; struct dc_context *ctx = dc->ctx; struct irq_service_init_data irq_init_data; static const struct resource_create_funcs *res_funcs; bool is_vg20 = ASICREV_IS_VEGA20_P(ctx->asic_id.hw_internal_rev); uint32_t pipe_fuses; ctx->dc_bios->regs = &bios_regs; pool->base.res_cap = &res_cap; pool->base.funcs = &dce120_res_pool_funcs; /* TODO: Fill more data from GreenlandAsicCapability.cpp */ pool->base.pipe_count = res_cap.num_timing_generator; pool->base.timing_generator_count = pool->base.res_cap->num_timing_generator; pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE; dc->caps.max_downscale_ratio = 200; dc->caps.i2c_speed_in_khz = 100; dc->caps.max_cursor_size = 128; dc->caps.dual_link_dvi = true; dc->caps.psp_setup_panel_mode = true; dc->caps.extended_aux_timeout_support = false; dc->debug = debug_defaults; /************************************************* * Create resources * *************************************************/ pool->base.clock_sources[DCE120_CLK_SRC_PLL0] = dce120_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL0, &clk_src_regs[0], false); pool->base.clock_sources[DCE120_CLK_SRC_PLL1] = dce120_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL1, &clk_src_regs[1], false); pool->base.clock_sources[DCE120_CLK_SRC_PLL2] = dce120_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL2, &clk_src_regs[2], false); pool->base.clock_sources[DCE120_CLK_SRC_PLL3] = dce120_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL3, &clk_src_regs[3], false); pool->base.clock_sources[DCE120_CLK_SRC_PLL4] = dce120_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL4, &clk_src_regs[4], false); pool->base.clock_sources[DCE120_CLK_SRC_PLL5] = dce120_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL5, &clk_src_regs[5], false); pool->base.clk_src_count = DCE120_CLK_SRC_TOTAL; pool->base.dp_clock_source = dce120_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_ID_DP_DTO, &clk_src_regs[0], true); for (i = 0; i < pool->base.clk_src_count; i++) { if (pool->base.clock_sources[i] == NULL) { dm_error("DC: failed to create clock sources!\n"); BREAK_TO_DEBUGGER(); goto clk_src_create_fail; } } pool->base.dmcu = dce_dmcu_create(ctx, &dmcu_regs, &dmcu_shift, &dmcu_mask); if (pool->base.dmcu == NULL) { dm_error("DC: failed to create dmcu!\n"); BREAK_TO_DEBUGGER(); goto res_create_fail; } pool->base.abm = dce_abm_create(ctx, &abm_regs, &abm_shift, &abm_mask); if (pool->base.abm == NULL) { dm_error("DC: failed to create abm!\n"); BREAK_TO_DEBUGGER(); goto res_create_fail; } irq_init_data.ctx = dc->ctx; pool->base.irqs = dal_irq_service_dce120_create(&irq_init_data); if (!pool->base.irqs) goto irqs_create_fail; /* VG20: Pipe harvesting enabled, retrieve valid pipe fuses */ if (is_vg20) pipe_fuses = read_pipe_fuses(ctx); /* index to valid pipe resource */ j = 0; for (i = 0; i < pool->base.pipe_count; i++) { if (is_vg20) { if ((pipe_fuses & (1 << i)) != 0) { dm_error("DC: skip invalid pipe %d!\n", i); continue; } } pool->base.timing_generators[j] = dce120_timing_generator_create( ctx, i, &dce120_tg_offsets[i]); if (pool->base.timing_generators[j] == NULL) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create tg!\n"); goto controller_create_fail; } pool->base.mis[j] = dce120_mem_input_create(ctx, i); if (pool->base.mis[j] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC: failed to create memory input!\n"); goto controller_create_fail; } pool->base.ipps[j] = dce120_ipp_create(ctx, i); if (pool->base.ipps[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC: failed to create input pixel processor!\n"); goto controller_create_fail; } pool->base.transforms[j] = dce120_transform_create(ctx, i); if (pool->base.transforms[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC: failed to create transform!\n"); goto res_create_fail; } pool->base.opps[j] = dce120_opp_create( ctx, i); if (pool->base.opps[j] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC: failed to create output pixel processor!\n"); } /* check next valid pipe */ j++; } for (i = 0; i < pool->base.res_cap->num_ddc; i++) { pool->base.engines[i] = dce120_aux_engine_create(ctx, i); if (pool->base.engines[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC:failed to create aux engine!!\n"); goto res_create_fail; } pool->base.hw_i2cs[i] = dce120_i2c_hw_create(ctx, i); if (pool->base.hw_i2cs[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC:failed to create i2c engine!!\n"); goto res_create_fail; } pool->base.sw_i2cs[i] = NULL; } /* valid pipe num */ pool->base.pipe_count = j; pool->base.timing_generator_count = j; if (is_vg20) res_funcs = &dce121_res_create_funcs; else res_funcs = &res_create_funcs; if (!resource_construct(num_virtual_links, dc, &pool->base, res_funcs)) goto res_create_fail; /* Create hardware sequencer */ if (!dce120_hw_sequencer_create(dc)) goto controller_create_fail; dc->caps.max_planes = pool->base.pipe_count; for (i = 0; i < dc->caps.max_planes; ++i) dc->caps.planes[i] = plane_cap; bw_calcs_init(dc->bw_dceip, dc->bw_vbios, dc->ctx->asic_id); bw_calcs_data_update_from_pplib(dc); return true; irqs_create_fail: controller_create_fail: clk_src_create_fail: res_create_fail: dce120_resource_destruct(pool); return false; } struct resource_pool *dce120_create_resource_pool( uint8_t num_virtual_links, struct dc *dc) { struct dce110_resource_pool *pool = kzalloc(sizeof(struct dce110_resource_pool), GFP_KERNEL); if (!pool) return NULL; if (dce120_resource_construct(num_virtual_links, dc, pool)) return &pool->base; kfree(pool); BREAK_TO_DEBUGGER(); return NULL; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1