Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Vitaly Prosyak | 2020 | 49.59% | 2 | 14.29% |
Krunoslav Kovac | 1242 | 30.49% | 2 | 14.29% |
Yue Hin Lau | 532 | 13.06% | 2 | 14.29% |
Vladimir Stempen | 107 | 2.63% | 1 | 7.14% |
Aidan Yang | 96 | 2.36% | 1 | 7.14% |
Dmytro Laktyushkin | 37 | 0.91% | 1 | 7.14% |
David Francis | 12 | 0.29% | 1 | 7.14% |
Harry Wentland | 12 | 0.29% | 1 | 7.14% |
Anthony Koo | 8 | 0.20% | 1 | 7.14% |
SivapiriyanKumarasamy | 6 | 0.15% | 1 | 7.14% |
Wyatt Wood | 1 | 0.02% | 1 | 7.14% |
Total | 4073 | 14 |
/* * Copyright 2016 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dc.h" #include "reg_helper.h" #include "dcn10_dpp.h" #include "dcn10_cm_common.h" #include "custom_float.h" #define REG(reg) reg #define CTX \ ctx #undef FN #define FN(reg_name, field_name) \ reg->shifts.field_name, reg->masks.field_name void cm_helper_program_color_matrices( struct dc_context *ctx, const uint16_t *regval, const struct color_matrices_reg *reg) { uint32_t cur_csc_reg; unsigned int i = 0; for (cur_csc_reg = reg->csc_c11_c12; cur_csc_reg <= reg->csc_c33_c34; cur_csc_reg++) { const uint16_t *regval0 = &(regval[2 * i]); const uint16_t *regval1 = &(regval[(2 * i) + 1]); REG_SET_2(cur_csc_reg, 0, csc_c11, *regval0, csc_c12, *regval1); i++; } } void cm_helper_program_xfer_func( struct dc_context *ctx, const struct pwl_params *params, const struct xfer_func_reg *reg) { uint32_t reg_region_cur; unsigned int i = 0; REG_SET_2(reg->start_cntl_b, 0, exp_region_start, params->corner_points[0].blue.custom_float_x, exp_resion_start_segment, 0); REG_SET_2(reg->start_cntl_g, 0, exp_region_start, params->corner_points[0].green.custom_float_x, exp_resion_start_segment, 0); REG_SET_2(reg->start_cntl_r, 0, exp_region_start, params->corner_points[0].red.custom_float_x, exp_resion_start_segment, 0); REG_SET(reg->start_slope_cntl_b, 0, field_region_linear_slope, params->corner_points[0].blue.custom_float_slope); REG_SET(reg->start_slope_cntl_g, 0, field_region_linear_slope, params->corner_points[0].green.custom_float_slope); REG_SET(reg->start_slope_cntl_r, 0, field_region_linear_slope, params->corner_points[0].red.custom_float_slope); REG_SET(reg->start_end_cntl1_b, 0, field_region_end, params->corner_points[1].blue.custom_float_x); REG_SET_2(reg->start_end_cntl2_b, 0, field_region_end_slope, params->corner_points[1].blue.custom_float_slope, field_region_end_base, params->corner_points[1].blue.custom_float_y); REG_SET(reg->start_end_cntl1_g, 0, field_region_end, params->corner_points[1].green.custom_float_x); REG_SET_2(reg->start_end_cntl2_g, 0, field_region_end_slope, params->corner_points[1].green.custom_float_slope, field_region_end_base, params->corner_points[1].green.custom_float_y); REG_SET(reg->start_end_cntl1_r, 0, field_region_end, params->corner_points[1].red.custom_float_x); REG_SET_2(reg->start_end_cntl2_r, 0, field_region_end_slope, params->corner_points[1].red.custom_float_slope, field_region_end_base, params->corner_points[1].red.custom_float_y); for (reg_region_cur = reg->region_start; reg_region_cur <= reg->region_end; reg_region_cur++) { const struct gamma_curve *curve0 = &(params->arr_curve_points[2 * i]); const struct gamma_curve *curve1 = &(params->arr_curve_points[(2 * i) + 1]); REG_SET_4(reg_region_cur, 0, exp_region0_lut_offset, curve0->offset, exp_region0_num_segments, curve0->segments_num, exp_region1_lut_offset, curve1->offset, exp_region1_num_segments, curve1->segments_num); i++; } } bool cm_helper_convert_to_custom_float( struct pwl_result_data *rgb_resulted, struct curve_points3 *corner_points, uint32_t hw_points_num, bool fixpoint) { struct custom_float_format fmt; struct pwl_result_data *rgb = rgb_resulted; uint32_t i = 0; fmt.exponenta_bits = 6; fmt.mantissa_bits = 12; fmt.sign = false; /* corner_points[0] - beginning base, slope offset for R,G,B * corner_points[1] - end base, slope offset for R,G,B */ if (!convert_to_custom_float_format(corner_points[0].red.x, &fmt, &corner_points[0].red.custom_float_x)) { BREAK_TO_DEBUGGER(); return false; } if (!convert_to_custom_float_format(corner_points[0].green.x, &fmt, &corner_points[0].green.custom_float_x)) { BREAK_TO_DEBUGGER(); return false; } if (!convert_to_custom_float_format(corner_points[0].blue.x, &fmt, &corner_points[0].blue.custom_float_x)) { BREAK_TO_DEBUGGER(); return false; } if (!convert_to_custom_float_format(corner_points[0].red.offset, &fmt, &corner_points[0].red.custom_float_offset)) { BREAK_TO_DEBUGGER(); return false; } if (!convert_to_custom_float_format(corner_points[0].green.offset, &fmt, &corner_points[0].green.custom_float_offset)) { BREAK_TO_DEBUGGER(); return false; } if (!convert_to_custom_float_format(corner_points[0].blue.offset, &fmt, &corner_points[0].blue.custom_float_offset)) { BREAK_TO_DEBUGGER(); return false; } if (!convert_to_custom_float_format(corner_points[0].red.slope, &fmt, &corner_points[0].red.custom_float_slope)) { BREAK_TO_DEBUGGER(); return false; } if (!convert_to_custom_float_format(corner_points[0].green.slope, &fmt, &corner_points[0].green.custom_float_slope)) { BREAK_TO_DEBUGGER(); return false; } if (!convert_to_custom_float_format(corner_points[0].blue.slope, &fmt, &corner_points[0].blue.custom_float_slope)) { BREAK_TO_DEBUGGER(); return false; } fmt.mantissa_bits = 10; fmt.sign = false; if (!convert_to_custom_float_format(corner_points[1].red.x, &fmt, &corner_points[1].red.custom_float_x)) { BREAK_TO_DEBUGGER(); return false; } if (!convert_to_custom_float_format(corner_points[1].green.x, &fmt, &corner_points[1].green.custom_float_x)) { BREAK_TO_DEBUGGER(); return false; } if (!convert_to_custom_float_format(corner_points[1].blue.x, &fmt, &corner_points[1].blue.custom_float_x)) { BREAK_TO_DEBUGGER(); return false; } if (fixpoint == true) { corner_points[1].red.custom_float_y = dc_fixpt_clamp_u0d14(corner_points[1].red.y); corner_points[1].green.custom_float_y = dc_fixpt_clamp_u0d14(corner_points[1].green.y); corner_points[1].blue.custom_float_y = dc_fixpt_clamp_u0d14(corner_points[1].blue.y); } else { if (!convert_to_custom_float_format(corner_points[1].red.y, &fmt, &corner_points[1].red.custom_float_y)) { BREAK_TO_DEBUGGER(); return false; } if (!convert_to_custom_float_format(corner_points[1].green.y, &fmt, &corner_points[1].green.custom_float_y)) { BREAK_TO_DEBUGGER(); return false; } if (!convert_to_custom_float_format(corner_points[1].blue.y, &fmt, &corner_points[1].blue.custom_float_y)) { BREAK_TO_DEBUGGER(); return false; } } if (!convert_to_custom_float_format(corner_points[1].red.slope, &fmt, &corner_points[1].red.custom_float_slope)) { BREAK_TO_DEBUGGER(); return false; } if (!convert_to_custom_float_format(corner_points[1].green.slope, &fmt, &corner_points[1].green.custom_float_slope)) { BREAK_TO_DEBUGGER(); return false; } if (!convert_to_custom_float_format(corner_points[1].blue.slope, &fmt, &corner_points[1].blue.custom_float_slope)) { BREAK_TO_DEBUGGER(); return false; } if (hw_points_num == 0 || rgb_resulted == NULL || fixpoint == true) return true; fmt.mantissa_bits = 12; fmt.sign = true; while (i != hw_points_num) { if (!convert_to_custom_float_format(rgb->red, &fmt, &rgb->red_reg)) { BREAK_TO_DEBUGGER(); return false; } if (!convert_to_custom_float_format(rgb->green, &fmt, &rgb->green_reg)) { BREAK_TO_DEBUGGER(); return false; } if (!convert_to_custom_float_format(rgb->blue, &fmt, &rgb->blue_reg)) { BREAK_TO_DEBUGGER(); return false; } if (!convert_to_custom_float_format(rgb->delta_red, &fmt, &rgb->delta_red_reg)) { BREAK_TO_DEBUGGER(); return false; } if (!convert_to_custom_float_format(rgb->delta_green, &fmt, &rgb->delta_green_reg)) { BREAK_TO_DEBUGGER(); return false; } if (!convert_to_custom_float_format(rgb->delta_blue, &fmt, &rgb->delta_blue_reg)) { BREAK_TO_DEBUGGER(); return false; } ++rgb; ++i; } return true; } /* driver uses 32 regions or less, but DCN HW has 34, extra 2 are set to 0 */ #define MAX_REGIONS_NUMBER 34 #define MAX_LOW_POINT 25 #define NUMBER_REGIONS 32 #define NUMBER_SW_SEGMENTS 16 bool cm_helper_translate_curve_to_hw_format( const struct dc_transfer_func *output_tf, struct pwl_params *lut_params, bool fixpoint) { struct curve_points3 *corner_points; struct pwl_result_data *rgb_resulted; struct pwl_result_data *rgb; struct pwl_result_data *rgb_plus_1; struct pwl_result_data *rgb_minus_1; int32_t region_start, region_end; int32_t i; uint32_t j, k, seg_distr[MAX_REGIONS_NUMBER], increment, start_index, hw_points; if (output_tf == NULL || lut_params == NULL || output_tf->type == TF_TYPE_BYPASS) return false; PERF_TRACE_CTX(output_tf->ctx); corner_points = lut_params->corner_points; rgb_resulted = lut_params->rgb_resulted; hw_points = 0; memset(lut_params, 0, sizeof(struct pwl_params)); memset(seg_distr, 0, sizeof(seg_distr)); if (output_tf->tf == TRANSFER_FUNCTION_PQ || output_tf->tf == TRANSFER_FUNCTION_GAMMA22) { /* 32 segments * segments are from 2^-25 to 2^7 */ for (i = 0; i < NUMBER_REGIONS ; i++) seg_distr[i] = 3; region_start = -MAX_LOW_POINT; region_end = NUMBER_REGIONS - MAX_LOW_POINT; } else { /* 11 segments * segment is from 2^-10 to 2^1 * There are less than 256 points, for optimization */ seg_distr[0] = 3; seg_distr[1] = 4; seg_distr[2] = 4; seg_distr[3] = 4; seg_distr[4] = 4; seg_distr[5] = 4; seg_distr[6] = 4; seg_distr[7] = 4; seg_distr[8] = 4; seg_distr[9] = 4; seg_distr[10] = 1; region_start = -10; region_end = 1; } for (i = region_end - region_start; i < MAX_REGIONS_NUMBER ; i++) seg_distr[i] = -1; for (k = 0; k < MAX_REGIONS_NUMBER; k++) { if (seg_distr[k] != -1) hw_points += (1 << seg_distr[k]); } j = 0; for (k = 0; k < (region_end - region_start); k++) { increment = NUMBER_SW_SEGMENTS / (1 << seg_distr[k]); start_index = (region_start + k + MAX_LOW_POINT) * NUMBER_SW_SEGMENTS; for (i = start_index; i < start_index + NUMBER_SW_SEGMENTS; i += increment) { if (j == hw_points - 1) break; rgb_resulted[j].red = output_tf->tf_pts.red[i]; rgb_resulted[j].green = output_tf->tf_pts.green[i]; rgb_resulted[j].blue = output_tf->tf_pts.blue[i]; j++; } } /* last point */ start_index = (region_end + MAX_LOW_POINT) * NUMBER_SW_SEGMENTS; rgb_resulted[hw_points - 1].red = output_tf->tf_pts.red[start_index]; rgb_resulted[hw_points - 1].green = output_tf->tf_pts.green[start_index]; rgb_resulted[hw_points - 1].blue = output_tf->tf_pts.blue[start_index]; rgb_resulted[hw_points].red = rgb_resulted[hw_points - 1].red; rgb_resulted[hw_points].green = rgb_resulted[hw_points - 1].green; rgb_resulted[hw_points].blue = rgb_resulted[hw_points - 1].blue; // All 3 color channels have same x corner_points[0].red.x = dc_fixpt_pow(dc_fixpt_from_int(2), dc_fixpt_from_int(region_start)); corner_points[0].green.x = corner_points[0].red.x; corner_points[0].blue.x = corner_points[0].red.x; corner_points[1].red.x = dc_fixpt_pow(dc_fixpt_from_int(2), dc_fixpt_from_int(region_end)); corner_points[1].green.x = corner_points[1].red.x; corner_points[1].blue.x = corner_points[1].red.x; corner_points[0].red.y = rgb_resulted[0].red; corner_points[0].green.y = rgb_resulted[0].green; corner_points[0].blue.y = rgb_resulted[0].blue; corner_points[0].red.slope = dc_fixpt_div(corner_points[0].red.y, corner_points[0].red.x); corner_points[0].green.slope = dc_fixpt_div(corner_points[0].green.y, corner_points[0].green.x); corner_points[0].blue.slope = dc_fixpt_div(corner_points[0].blue.y, corner_points[0].blue.x); /* see comment above, m_arrPoints[1].y should be the Y value for the * region end (m_numOfHwPoints), not last HW point(m_numOfHwPoints - 1) */ corner_points[1].red.y = rgb_resulted[hw_points - 1].red; corner_points[1].green.y = rgb_resulted[hw_points - 1].green; corner_points[1].blue.y = rgb_resulted[hw_points - 1].blue; corner_points[1].red.slope = dc_fixpt_zero; corner_points[1].green.slope = dc_fixpt_zero; corner_points[1].blue.slope = dc_fixpt_zero; if (output_tf->tf == TRANSFER_FUNCTION_PQ) { /* for PQ, we want to have a straight line from last HW X point, * and the slope to be such that we hit 1.0 at 10000 nits. */ const struct fixed31_32 end_value = dc_fixpt_from_int(125); corner_points[1].red.slope = dc_fixpt_div( dc_fixpt_sub(dc_fixpt_one, corner_points[1].red.y), dc_fixpt_sub(end_value, corner_points[1].red.x)); corner_points[1].green.slope = dc_fixpt_div( dc_fixpt_sub(dc_fixpt_one, corner_points[1].green.y), dc_fixpt_sub(end_value, corner_points[1].green.x)); corner_points[1].blue.slope = dc_fixpt_div( dc_fixpt_sub(dc_fixpt_one, corner_points[1].blue.y), dc_fixpt_sub(end_value, corner_points[1].blue.x)); } lut_params->hw_points_num = hw_points; k = 0; for (i = 1; i < MAX_REGIONS_NUMBER; i++) { if (seg_distr[k] != -1) { lut_params->arr_curve_points[k].segments_num = seg_distr[k]; lut_params->arr_curve_points[i].offset = lut_params->arr_curve_points[k].offset + (1 << seg_distr[k]); } k++; } if (seg_distr[k] != -1) lut_params->arr_curve_points[k].segments_num = seg_distr[k]; rgb = rgb_resulted; rgb_plus_1 = rgb_resulted + 1; rgb_minus_1 = rgb; i = 1; while (i != hw_points + 1) { if (i >= hw_points - 1) { if (dc_fixpt_lt(rgb_plus_1->red, rgb->red)) rgb_plus_1->red = dc_fixpt_add(rgb->red, rgb_minus_1->delta_red); if (dc_fixpt_lt(rgb_plus_1->green, rgb->green)) rgb_plus_1->green = dc_fixpt_add(rgb->green, rgb_minus_1->delta_green); if (dc_fixpt_lt(rgb_plus_1->blue, rgb->blue)) rgb_plus_1->blue = dc_fixpt_add(rgb->blue, rgb_minus_1->delta_blue); } rgb->delta_red = dc_fixpt_sub(rgb_plus_1->red, rgb->red); rgb->delta_green = dc_fixpt_sub(rgb_plus_1->green, rgb->green); rgb->delta_blue = dc_fixpt_sub(rgb_plus_1->blue, rgb->blue); if (fixpoint == true) { rgb->delta_red_reg = dc_fixpt_clamp_u0d10(rgb->delta_red); rgb->delta_green_reg = dc_fixpt_clamp_u0d10(rgb->delta_green); rgb->delta_blue_reg = dc_fixpt_clamp_u0d10(rgb->delta_blue); rgb->red_reg = dc_fixpt_clamp_u0d14(rgb->red); rgb->green_reg = dc_fixpt_clamp_u0d14(rgb->green); rgb->blue_reg = dc_fixpt_clamp_u0d14(rgb->blue); } ++rgb_plus_1; rgb_minus_1 = rgb; ++rgb; ++i; } cm_helper_convert_to_custom_float(rgb_resulted, lut_params->corner_points, hw_points, fixpoint); return true; } #define NUM_DEGAMMA_REGIONS 12 bool cm_helper_translate_curve_to_degamma_hw_format( const struct dc_transfer_func *output_tf, struct pwl_params *lut_params) { struct curve_points3 *corner_points; struct pwl_result_data *rgb_resulted; struct pwl_result_data *rgb; struct pwl_result_data *rgb_plus_1; int32_t region_start, region_end; int32_t i; uint32_t j, k, seg_distr[MAX_REGIONS_NUMBER], increment, start_index, hw_points; if (output_tf == NULL || lut_params == NULL || output_tf->type == TF_TYPE_BYPASS) return false; PERF_TRACE_CTX(output_tf->ctx); corner_points = lut_params->corner_points; rgb_resulted = lut_params->rgb_resulted; hw_points = 0; memset(lut_params, 0, sizeof(struct pwl_params)); memset(seg_distr, 0, sizeof(seg_distr)); region_start = -NUM_DEGAMMA_REGIONS; region_end = 0; for (i = region_end - region_start; i < MAX_REGIONS_NUMBER ; i++) seg_distr[i] = -1; /* 12 segments * segments are from 2^-12 to 0 */ for (i = 0; i < NUM_DEGAMMA_REGIONS ; i++) seg_distr[i] = 4; for (k = 0; k < MAX_REGIONS_NUMBER; k++) { if (seg_distr[k] != -1) hw_points += (1 << seg_distr[k]); } j = 0; for (k = 0; k < (region_end - region_start); k++) { increment = NUMBER_SW_SEGMENTS / (1 << seg_distr[k]); start_index = (region_start + k + MAX_LOW_POINT) * NUMBER_SW_SEGMENTS; for (i = start_index; i < start_index + NUMBER_SW_SEGMENTS; i += increment) { if (j == hw_points - 1) break; rgb_resulted[j].red = output_tf->tf_pts.red[i]; rgb_resulted[j].green = output_tf->tf_pts.green[i]; rgb_resulted[j].blue = output_tf->tf_pts.blue[i]; j++; } } /* last point */ start_index = (region_end + MAX_LOW_POINT) * NUMBER_SW_SEGMENTS; rgb_resulted[hw_points - 1].red = output_tf->tf_pts.red[start_index]; rgb_resulted[hw_points - 1].green = output_tf->tf_pts.green[start_index]; rgb_resulted[hw_points - 1].blue = output_tf->tf_pts.blue[start_index]; rgb_resulted[hw_points].red = rgb_resulted[hw_points - 1].red; rgb_resulted[hw_points].green = rgb_resulted[hw_points - 1].green; rgb_resulted[hw_points].blue = rgb_resulted[hw_points - 1].blue; corner_points[0].red.x = dc_fixpt_pow(dc_fixpt_from_int(2), dc_fixpt_from_int(region_start)); corner_points[0].green.x = corner_points[0].red.x; corner_points[0].blue.x = corner_points[0].red.x; corner_points[1].red.x = dc_fixpt_pow(dc_fixpt_from_int(2), dc_fixpt_from_int(region_end)); corner_points[1].green.x = corner_points[1].red.x; corner_points[1].blue.x = corner_points[1].red.x; corner_points[0].red.y = rgb_resulted[0].red; corner_points[0].green.y = rgb_resulted[0].green; corner_points[0].blue.y = rgb_resulted[0].blue; /* see comment above, m_arrPoints[1].y should be the Y value for the * region end (m_numOfHwPoints), not last HW point(m_numOfHwPoints - 1) */ corner_points[1].red.y = rgb_resulted[hw_points - 1].red; corner_points[1].green.y = rgb_resulted[hw_points - 1].green; corner_points[1].blue.y = rgb_resulted[hw_points - 1].blue; corner_points[1].red.slope = dc_fixpt_zero; corner_points[1].green.slope = dc_fixpt_zero; corner_points[1].blue.slope = dc_fixpt_zero; if (output_tf->tf == TRANSFER_FUNCTION_PQ) { /* for PQ, we want to have a straight line from last HW X point, * and the slope to be such that we hit 1.0 at 10000 nits. */ const struct fixed31_32 end_value = dc_fixpt_from_int(125); corner_points[1].red.slope = dc_fixpt_div( dc_fixpt_sub(dc_fixpt_one, corner_points[1].red.y), dc_fixpt_sub(end_value, corner_points[1].red.x)); corner_points[1].green.slope = dc_fixpt_div( dc_fixpt_sub(dc_fixpt_one, corner_points[1].green.y), dc_fixpt_sub(end_value, corner_points[1].green.x)); corner_points[1].blue.slope = dc_fixpt_div( dc_fixpt_sub(dc_fixpt_one, corner_points[1].blue.y), dc_fixpt_sub(end_value, corner_points[1].blue.x)); } lut_params->hw_points_num = hw_points; k = 0; for (i = 1; i < MAX_REGIONS_NUMBER; i++) { if (seg_distr[k] != -1) { lut_params->arr_curve_points[k].segments_num = seg_distr[k]; lut_params->arr_curve_points[i].offset = lut_params->arr_curve_points[k].offset + (1 << seg_distr[k]); } k++; } if (seg_distr[k] != -1) lut_params->arr_curve_points[k].segments_num = seg_distr[k]; rgb = rgb_resulted; rgb_plus_1 = rgb_resulted + 1; i = 1; while (i != hw_points + 1) { rgb->delta_red = dc_fixpt_sub(rgb_plus_1->red, rgb->red); rgb->delta_green = dc_fixpt_sub(rgb_plus_1->green, rgb->green); rgb->delta_blue = dc_fixpt_sub(rgb_plus_1->blue, rgb->blue); ++rgb_plus_1; ++rgb; ++i; } cm_helper_convert_to_custom_float(rgb_resulted, lut_params->corner_points, hw_points, false); return true; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1