Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Harry Wentland | 1953 | 75.41% | 1 | 6.25% |
Jun Lei | 216 | 8.34% | 3 | 18.75% |
Dmytro Laktyushkin | 156 | 6.02% | 3 | 18.75% |
Yongqiang Sun | 125 | 4.83% | 2 | 12.50% |
Julian Parkin | 47 | 1.81% | 1 | 6.25% |
Jaehyun Chung | 38 | 1.47% | 1 | 6.25% |
Bhawanpreet Lakha | 30 | 1.16% | 1 | 6.25% |
Martin Leung | 16 | 0.62% | 2 | 12.50% |
Chris Park | 7 | 0.27% | 1 | 6.25% |
Bob Yang | 2 | 0.08% | 1 | 6.25% |
Total | 2590 | 16 |
/* * Copyright 2016 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dcn20_hubbub.h" #include "reg_helper.h" #include "clk_mgr.h" #define REG(reg)\ hubbub1->regs->reg #define CTX \ hubbub1->base.ctx #undef FN #define FN(reg_name, field_name) \ hubbub1->shifts->field_name, hubbub1->masks->field_name #define REG(reg)\ hubbub1->regs->reg #define CTX \ hubbub1->base.ctx #undef FN #define FN(reg_name, field_name) \ hubbub1->shifts->field_name, hubbub1->masks->field_name #ifdef NUM_VMID #undef NUM_VMID #endif #define NUM_VMID 16 bool hubbub2_dcc_support_swizzle( enum swizzle_mode_values swizzle, unsigned int bytes_per_element, enum segment_order *segment_order_horz, enum segment_order *segment_order_vert) { bool standard_swizzle = false; bool display_swizzle = false; bool render_swizzle = false; switch (swizzle) { case DC_SW_4KB_S: case DC_SW_64KB_S: case DC_SW_VAR_S: case DC_SW_4KB_S_X: case DC_SW_64KB_S_X: case DC_SW_VAR_S_X: standard_swizzle = true; break; case DC_SW_64KB_R_X: render_swizzle = true; break; case DC_SW_4KB_D: case DC_SW_64KB_D: case DC_SW_VAR_D: case DC_SW_4KB_D_X: case DC_SW_64KB_D_X: case DC_SW_VAR_D_X: display_swizzle = true; break; default: break; } if (standard_swizzle) { if (bytes_per_element == 1) { *segment_order_horz = segment_order__contiguous; *segment_order_vert = segment_order__na; return true; } if (bytes_per_element == 2) { *segment_order_horz = segment_order__non_contiguous; *segment_order_vert = segment_order__contiguous; return true; } if (bytes_per_element == 4) { *segment_order_horz = segment_order__non_contiguous; *segment_order_vert = segment_order__contiguous; return true; } if (bytes_per_element == 8) { *segment_order_horz = segment_order__na; *segment_order_vert = segment_order__contiguous; return true; } } if (render_swizzle) { if (bytes_per_element == 2) { *segment_order_horz = segment_order__contiguous; *segment_order_vert = segment_order__contiguous; return true; } if (bytes_per_element == 4) { *segment_order_horz = segment_order__non_contiguous; *segment_order_vert = segment_order__contiguous; return true; } if (bytes_per_element == 8) { *segment_order_horz = segment_order__contiguous; *segment_order_vert = segment_order__non_contiguous; return true; } } if (display_swizzle && bytes_per_element == 8) { *segment_order_horz = segment_order__contiguous; *segment_order_vert = segment_order__non_contiguous; return true; } return false; } bool hubbub2_dcc_support_pixel_format( enum surface_pixel_format format, unsigned int *bytes_per_element) { /* DML: get_bytes_per_element */ switch (format) { case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555: case SURFACE_PIXEL_FORMAT_GRPH_RGB565: *bytes_per_element = 2; return true; case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888: case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888: case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010: case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010: case SURFACE_PIXEL_FORMAT_GRPH_RGB111110_FIX: case SURFACE_PIXEL_FORMAT_GRPH_BGR101111_FIX: case SURFACE_PIXEL_FORMAT_GRPH_RGB111110_FLOAT: case SURFACE_PIXEL_FORMAT_GRPH_BGR101111_FLOAT: #if defined(CONFIG_DRM_AMD_DC_DCN3_0) case SURFACE_PIXEL_FORMAT_GRPH_RGBE: case SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA: #endif *bytes_per_element = 4; return true; case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616: case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F: case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F: *bytes_per_element = 8; return true; default: return false; } } static void hubbub2_get_blk256_size(unsigned int *blk256_width, unsigned int *blk256_height, unsigned int bytes_per_element) { /* copied from DML. might want to refactor DML to leverage from DML */ /* DML : get_blk256_size */ if (bytes_per_element == 1) { *blk256_width = 16; *blk256_height = 16; } else if (bytes_per_element == 2) { *blk256_width = 16; *blk256_height = 8; } else if (bytes_per_element == 4) { *blk256_width = 8; *blk256_height = 8; } else if (bytes_per_element == 8) { *blk256_width = 8; *blk256_height = 4; } } static void hubbub2_det_request_size( unsigned int detile_buf_size, unsigned int height, unsigned int width, unsigned int bpe, bool *req128_horz_wc, bool *req128_vert_wc) { unsigned int blk256_height = 0; unsigned int blk256_width = 0; unsigned int swath_bytes_horz_wc, swath_bytes_vert_wc; hubbub2_get_blk256_size(&blk256_width, &blk256_height, bpe); swath_bytes_horz_wc = width * blk256_height * bpe; swath_bytes_vert_wc = height * blk256_width * bpe; *req128_horz_wc = (2 * swath_bytes_horz_wc <= detile_buf_size) ? false : /* full 256B request */ true; /* half 128b request */ *req128_vert_wc = (2 * swath_bytes_vert_wc <= detile_buf_size) ? false : /* full 256B request */ true; /* half 128b request */ } bool hubbub2_get_dcc_compression_cap(struct hubbub *hubbub, const struct dc_dcc_surface_param *input, struct dc_surface_dcc_cap *output) { struct dc *dc = hubbub->ctx->dc; /* implement section 1.6.2.1 of DCN1_Programming_Guide.docx */ enum dcc_control dcc_control; unsigned int bpe; enum segment_order segment_order_horz, segment_order_vert; bool req128_horz_wc, req128_vert_wc; memset(output, 0, sizeof(*output)); if (dc->debug.disable_dcc == DCC_DISABLE) return false; if (!hubbub->funcs->dcc_support_pixel_format(input->format, &bpe)) return false; if (!hubbub->funcs->dcc_support_swizzle(input->swizzle_mode, bpe, &segment_order_horz, &segment_order_vert)) return false; hubbub2_det_request_size(TO_DCN20_HUBBUB(hubbub)->detile_buf_size, input->surface_size.height, input->surface_size.width, bpe, &req128_horz_wc, &req128_vert_wc); if (!req128_horz_wc && !req128_vert_wc) { dcc_control = dcc_control__256_256_xxx; } else if (input->scan == SCAN_DIRECTION_HORIZONTAL) { if (!req128_horz_wc) dcc_control = dcc_control__256_256_xxx; else if (segment_order_horz == segment_order__contiguous) dcc_control = dcc_control__128_128_xxx; else dcc_control = dcc_control__256_64_64; } else if (input->scan == SCAN_DIRECTION_VERTICAL) { if (!req128_vert_wc) dcc_control = dcc_control__256_256_xxx; else if (segment_order_vert == segment_order__contiguous) dcc_control = dcc_control__128_128_xxx; else dcc_control = dcc_control__256_64_64; } else { if ((req128_horz_wc && segment_order_horz == segment_order__non_contiguous) || (req128_vert_wc && segment_order_vert == segment_order__non_contiguous)) /* access_dir not known, must use most constraining */ dcc_control = dcc_control__256_64_64; else /* reg128 is true for either horz and vert * but segment_order is contiguous */ dcc_control = dcc_control__128_128_xxx; } /* Exception for 64KB_R_X */ if ((bpe == 2) && (input->swizzle_mode == DC_SW_64KB_R_X)) dcc_control = dcc_control__128_128_xxx; if (dc->debug.disable_dcc == DCC_HALF_REQ_DISALBE && dcc_control != dcc_control__256_256_xxx) return false; switch (dcc_control) { case dcc_control__256_256_xxx: output->grph.rgb.max_uncompressed_blk_size = 256; output->grph.rgb.max_compressed_blk_size = 256; output->grph.rgb.independent_64b_blks = false; break; case dcc_control__128_128_xxx: output->grph.rgb.max_uncompressed_blk_size = 128; output->grph.rgb.max_compressed_blk_size = 128; output->grph.rgb.independent_64b_blks = false; break; case dcc_control__256_64_64: output->grph.rgb.max_uncompressed_blk_size = 256; output->grph.rgb.max_compressed_blk_size = 64; output->grph.rgb.independent_64b_blks = true; break; default: ASSERT(false); break; } output->capable = true; output->const_color_support = true; return true; } static enum dcn_hubbub_page_table_depth page_table_depth_to_hw(unsigned int page_table_depth) { enum dcn_hubbub_page_table_depth depth = 0; switch (page_table_depth) { case 1: depth = DCN_PAGE_TABLE_DEPTH_1_LEVEL; break; case 2: depth = DCN_PAGE_TABLE_DEPTH_2_LEVEL; break; case 3: depth = DCN_PAGE_TABLE_DEPTH_3_LEVEL; break; case 4: depth = DCN_PAGE_TABLE_DEPTH_4_LEVEL; break; default: ASSERT(false); break; } return depth; } static enum dcn_hubbub_page_table_block_size page_table_block_size_to_hw(unsigned int page_table_block_size) { enum dcn_hubbub_page_table_block_size block_size = 0; switch (page_table_block_size) { case 4096: block_size = DCN_PAGE_TABLE_BLOCK_SIZE_4KB; break; case 65536: block_size = DCN_PAGE_TABLE_BLOCK_SIZE_64KB; break; #if defined(CONFIG_DRM_AMD_DC_DCN3_0) case 32768: block_size = DCN_PAGE_TABLE_BLOCK_SIZE_32KB; break; #endif default: ASSERT(false); block_size = page_table_block_size; break; } return block_size; } void hubbub2_init_vm_ctx(struct hubbub *hubbub, struct dcn_hubbub_virt_addr_config *va_config, int vmid) { struct dcn20_hubbub *hubbub1 = TO_DCN20_HUBBUB(hubbub); struct dcn_vmid_page_table_config virt_config; virt_config.page_table_start_addr = va_config->page_table_start_addr >> 12; virt_config.page_table_end_addr = va_config->page_table_end_addr >> 12; virt_config.depth = page_table_depth_to_hw(va_config->page_table_depth); virt_config.block_size = page_table_block_size_to_hw(va_config->page_table_block_size); virt_config.page_table_base_addr = va_config->page_table_base_addr; dcn20_vmid_setup(&hubbub1->vmid[vmid], &virt_config); } int hubbub2_init_dchub_sys_ctx(struct hubbub *hubbub, struct dcn_hubbub_phys_addr_config *pa_config) { struct dcn20_hubbub *hubbub1 = TO_DCN20_HUBBUB(hubbub); struct dcn_vmid_page_table_config phys_config; REG_SET(DCN_VM_FB_LOCATION_BASE, 0, FB_BASE, pa_config->system_aperture.fb_base >> 24); REG_SET(DCN_VM_FB_LOCATION_TOP, 0, FB_TOP, pa_config->system_aperture.fb_top >> 24); REG_SET(DCN_VM_FB_OFFSET, 0, FB_OFFSET, pa_config->system_aperture.fb_offset >> 24); REG_SET(DCN_VM_AGP_BOT, 0, AGP_BOT, pa_config->system_aperture.agp_bot >> 24); REG_SET(DCN_VM_AGP_TOP, 0, AGP_TOP, pa_config->system_aperture.agp_top >> 24); REG_SET(DCN_VM_AGP_BASE, 0, AGP_BASE, pa_config->system_aperture.agp_base >> 24); REG_SET(DCN_VM_PROTECTION_FAULT_DEFAULT_ADDR_MSB, 0, DCN_VM_PROTECTION_FAULT_DEFAULT_ADDR_MSB, (pa_config->page_table_default_page_addr >> 44) & 0xF); REG_SET(DCN_VM_PROTECTION_FAULT_DEFAULT_ADDR_LSB, 0, DCN_VM_PROTECTION_FAULT_DEFAULT_ADDR_LSB, (pa_config->page_table_default_page_addr >> 12) & 0xFFFFFFFF); if (pa_config->gart_config.page_table_start_addr != pa_config->gart_config.page_table_end_addr) { phys_config.page_table_start_addr = pa_config->gart_config.page_table_start_addr >> 12; phys_config.page_table_end_addr = pa_config->gart_config.page_table_end_addr >> 12; phys_config.page_table_base_addr = pa_config->gart_config.page_table_base_addr; phys_config.depth = 0; phys_config.block_size = 0; // Init VMID 0 based on PA config dcn20_vmid_setup(&hubbub1->vmid[0], &phys_config); } return NUM_VMID; } void hubbub2_update_dchub(struct hubbub *hubbub, struct dchub_init_data *dh_data) { struct dcn20_hubbub *hubbub1 = TO_DCN20_HUBBUB(hubbub); if (REG(DCN_VM_FB_LOCATION_TOP) == 0) return; switch (dh_data->fb_mode) { case FRAME_BUFFER_MODE_ZFB_ONLY: /*For ZFB case need to put DCHUB FB BASE and TOP upside down to indicate ZFB mode*/ REG_UPDATE(DCN_VM_FB_LOCATION_TOP, FB_TOP, 0); REG_UPDATE(DCN_VM_FB_LOCATION_BASE, FB_BASE, 0xFFFFFF); /*This field defines the 24 MSBs, bits [47:24] of the 48 bit AGP Base*/ REG_UPDATE(DCN_VM_AGP_BASE, AGP_BASE, dh_data->zfb_phys_addr_base >> 24); /*This field defines the bottom range of the AGP aperture and represents the 24*/ /*MSBs, bits [47:24] of the 48 address bits*/ REG_UPDATE(DCN_VM_AGP_BOT, AGP_BOT, dh_data->zfb_mc_base_addr >> 24); /*This field defines the top range of the AGP aperture and represents the 24*/ /*MSBs, bits [47:24] of the 48 address bits*/ REG_UPDATE(DCN_VM_AGP_TOP, AGP_TOP, (dh_data->zfb_mc_base_addr + dh_data->zfb_size_in_byte - 1) >> 24); break; case FRAME_BUFFER_MODE_MIXED_ZFB_AND_LOCAL: /*Should not touch FB LOCATION (done by VBIOS on AsicInit table)*/ /*This field defines the 24 MSBs, bits [47:24] of the 48 bit AGP Base*/ REG_UPDATE(DCN_VM_AGP_BASE, AGP_BASE, dh_data->zfb_phys_addr_base >> 24); /*This field defines the bottom range of the AGP aperture and represents the 24*/ /*MSBs, bits [47:24] of the 48 address bits*/ REG_UPDATE(DCN_VM_AGP_BOT, AGP_BOT, dh_data->zfb_mc_base_addr >> 24); /*This field defines the top range of the AGP aperture and represents the 24*/ /*MSBs, bits [47:24] of the 48 address bits*/ REG_UPDATE(DCN_VM_AGP_TOP, AGP_TOP, (dh_data->zfb_mc_base_addr + dh_data->zfb_size_in_byte - 1) >> 24); break; case FRAME_BUFFER_MODE_LOCAL_ONLY: /*Should not touch FB LOCATION (should be done by VBIOS)*/ /*This field defines the 24 MSBs, bits [47:24] of the 48 bit AGP Base*/ REG_UPDATE(DCN_VM_AGP_BASE, AGP_BASE, 0); /*This field defines the bottom range of the AGP aperture and represents the 24*/ /*MSBs, bits [47:24] of the 48 address bits*/ REG_UPDATE(DCN_VM_AGP_BOT, AGP_BOT, 0xFFFFFF); /*This field defines the top range of the AGP aperture and represents the 24*/ /*MSBs, bits [47:24] of the 48 address bits*/ REG_UPDATE(DCN_VM_AGP_TOP, AGP_TOP, 0); break; default: break; } dh_data->dchub_initialzied = true; dh_data->dchub_info_valid = false; } void hubbub2_wm_read_state(struct hubbub *hubbub, struct dcn_hubbub_wm *wm) { struct dcn20_hubbub *hubbub1 = TO_DCN20_HUBBUB(hubbub); struct dcn_hubbub_wm_set *s; memset(wm, 0, sizeof(struct dcn_hubbub_wm)); s = &wm->sets[0]; s->wm_set = 0; s->data_urgent = REG_READ(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_A); if (REG(DCHUBBUB_ARB_PTE_META_URGENCY_WATERMARK_A)) s->pte_meta_urgent = REG_READ(DCHUBBUB_ARB_PTE_META_URGENCY_WATERMARK_A); if (REG(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_A)) { s->sr_enter = REG_READ(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_A); s->sr_exit = REG_READ(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_A); } s->dram_clk_chanage = REG_READ(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_A); s = &wm->sets[1]; s->wm_set = 1; s->data_urgent = REG_READ(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_B); if (REG(DCHUBBUB_ARB_PTE_META_URGENCY_WATERMARK_B)) s->pte_meta_urgent = REG_READ(DCHUBBUB_ARB_PTE_META_URGENCY_WATERMARK_B); if (REG(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_B)) { s->sr_enter = REG_READ(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_B); s->sr_exit = REG_READ(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_B); } s->dram_clk_chanage = REG_READ(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_B); s = &wm->sets[2]; s->wm_set = 2; s->data_urgent = REG_READ(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_C); if (REG(DCHUBBUB_ARB_PTE_META_URGENCY_WATERMARK_C)) s->pte_meta_urgent = REG_READ(DCHUBBUB_ARB_PTE_META_URGENCY_WATERMARK_C); if (REG(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_C)) { s->sr_enter = REG_READ(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_C); s->sr_exit = REG_READ(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_C); } s->dram_clk_chanage = REG_READ(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_C); s = &wm->sets[3]; s->wm_set = 3; s->data_urgent = REG_READ(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_D); if (REG(DCHUBBUB_ARB_PTE_META_URGENCY_WATERMARK_D)) s->pte_meta_urgent = REG_READ(DCHUBBUB_ARB_PTE_META_URGENCY_WATERMARK_D); if (REG(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_D)) { s->sr_enter = REG_READ(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_D); s->sr_exit = REG_READ(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_D); } s->dram_clk_chanage = REG_READ(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_D); } void hubbub2_get_dchub_ref_freq(struct hubbub *hubbub, unsigned int dccg_ref_freq_inKhz, unsigned int *dchub_ref_freq_inKhz) { struct dcn20_hubbub *hubbub1 = TO_DCN20_HUBBUB(hubbub); uint32_t ref_div = 0; uint32_t ref_en = 0; REG_GET_2(DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, &ref_div, DCHUBBUB_GLOBAL_TIMER_ENABLE, &ref_en); if (ref_en) { if (ref_div == 2) *dchub_ref_freq_inKhz = dccg_ref_freq_inKhz / 2; else *dchub_ref_freq_inKhz = dccg_ref_freq_inKhz; // DC hub reference frequency must be around 50Mhz, otherwise there may be // overflow/underflow issues when doing HUBBUB programming if (*dchub_ref_freq_inKhz < 40000 || *dchub_ref_freq_inKhz > 60000) ASSERT_CRITICAL(false); return; } else { *dchub_ref_freq_inKhz = dccg_ref_freq_inKhz; // HUBBUB global timer must be enabled. ASSERT_CRITICAL(false); return; } } static bool hubbub2_program_watermarks( struct hubbub *hubbub, struct dcn_watermark_set *watermarks, unsigned int refclk_mhz, bool safe_to_lower) { struct dcn20_hubbub *hubbub1 = TO_DCN20_HUBBUB(hubbub); bool wm_pending = false; /* * Need to clamp to max of the register values (i.e. no wrap) * for dcn1, all wm registers are 21-bit wide */ if (hubbub1_program_urgent_watermarks(hubbub, watermarks, refclk_mhz, safe_to_lower)) wm_pending = true; if (hubbub1_program_stutter_watermarks(hubbub, watermarks, refclk_mhz, safe_to_lower)) wm_pending = true; /* * There's a special case when going from p-state support to p-state unsupported * here we are going to LOWER watermarks to go to dummy p-state only, but this has * to be done prepare_bandwidth, not optimize */ if (hubbub1->base.ctx->dc->clk_mgr->clks.prev_p_state_change_support == true && hubbub1->base.ctx->dc->clk_mgr->clks.p_state_change_support == false) safe_to_lower = true; hubbub1_program_pstate_watermarks(hubbub, watermarks, refclk_mhz, safe_to_lower); REG_SET(DCHUBBUB_ARB_SAT_LEVEL, 0, DCHUBBUB_ARB_SAT_LEVEL, 60 * refclk_mhz); REG_UPDATE(DCHUBBUB_ARB_DF_REQ_OUTSTAND, DCHUBBUB_ARB_MIN_REQ_OUTSTAND, 180); hubbub->funcs->allow_self_refresh_control(hubbub, !hubbub->ctx->dc->debug.disable_stutter); return wm_pending; } static const struct hubbub_funcs hubbub2_funcs = { .update_dchub = hubbub2_update_dchub, .init_dchub_sys_ctx = hubbub2_init_dchub_sys_ctx, .init_vm_ctx = hubbub2_init_vm_ctx, .dcc_support_swizzle = hubbub2_dcc_support_swizzle, .dcc_support_pixel_format = hubbub2_dcc_support_pixel_format, .get_dcc_compression_cap = hubbub2_get_dcc_compression_cap, .wm_read_state = hubbub2_wm_read_state, .get_dchub_ref_freq = hubbub2_get_dchub_ref_freq, .program_watermarks = hubbub2_program_watermarks, .is_allow_self_refresh_enabled = hubbub1_is_allow_self_refresh_enabled, .allow_self_refresh_control = hubbub1_allow_self_refresh_control, }; void hubbub2_construct(struct dcn20_hubbub *hubbub, struct dc_context *ctx, const struct dcn_hubbub_registers *hubbub_regs, const struct dcn_hubbub_shift *hubbub_shift, const struct dcn_hubbub_mask *hubbub_mask) { hubbub->base.ctx = ctx; hubbub->base.funcs = &hubbub2_funcs; hubbub->regs = hubbub_regs; hubbub->shifts = hubbub_shift; hubbub->masks = hubbub_mask; hubbub->debug_test_index_pstate = 0xB; hubbub->detile_buf_size = 164 * 1024; /* 164KB for DCN2.0 */ }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1