Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Dmytro Laktyushkin | 648 | 45.19% | 5 | 29.41% |
Harry Wentland | 410 | 28.59% | 1 | 5.88% |
Dave Airlie | 272 | 18.97% | 3 | 17.65% |
Anthony Koo | 27 | 1.88% | 1 | 5.88% |
Krunoslav Kovac | 19 | 1.32% | 1 | 5.88% |
Reza Amini | 18 | 1.26% | 1 | 5.88% |
Vitaly Prosyak | 12 | 0.84% | 1 | 5.88% |
Amy Zhang | 10 | 0.70% | 1 | 5.88% |
Tyler DiBattista | 9 | 0.63% | 1 | 5.88% |
Ken Chalmers | 6 | 0.42% | 1 | 5.88% |
David Francis | 3 | 0.21% | 1 | 5.88% |
Total | 1434 | 17 |
/* * Copyright 2012-15 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #ifndef __DAL_FIXED31_32_H__ #define __DAL_FIXED31_32_H__ #ifndef LLONG_MAX #define LLONG_MAX 9223372036854775807ll #endif #ifndef LLONG_MIN #define LLONG_MIN (-LLONG_MAX - 1ll) #endif #define FIXED31_32_BITS_PER_FRACTIONAL_PART 32 #ifndef LLONG_MIN #define LLONG_MIN (1LL<<63) #endif #ifndef LLONG_MAX #define LLONG_MAX (-1LL>>1) #endif /* * @brief * Arithmetic operations on real numbers * represented as fixed-point numbers. * There are: 1 bit for sign, * 31 bit for integer part, * 32 bits for fractional part. * * @note * Currently, overflows and underflows are asserted; * no special result returned. */ struct fixed31_32 { long long value; }; /* * @brief * Useful constants */ static const struct fixed31_32 dc_fixpt_zero = { 0 }; static const struct fixed31_32 dc_fixpt_epsilon = { 1LL }; static const struct fixed31_32 dc_fixpt_half = { 0x80000000LL }; static const struct fixed31_32 dc_fixpt_one = { 0x100000000LL }; static const struct fixed31_32 dc_fixpt_pi = { 13493037705LL }; static const struct fixed31_32 dc_fixpt_two_pi = { 26986075409LL }; static const struct fixed31_32 dc_fixpt_e = { 11674931555LL }; static const struct fixed31_32 dc_fixpt_ln2 = { 2977044471LL }; static const struct fixed31_32 dc_fixpt_ln2_div_2 = { 1488522236LL }; /* * @brief * Initialization routines */ /* * @brief * result = numerator / denominator */ struct fixed31_32 dc_fixpt_from_fraction(long long numerator, long long denominator); /* * @brief * result = arg */ static inline struct fixed31_32 dc_fixpt_from_int(int arg) { struct fixed31_32 res; res.value = (long long) arg << FIXED31_32_BITS_PER_FRACTIONAL_PART; return res; } /* * @brief * Unary operators */ /* * @brief * result = -arg */ static inline struct fixed31_32 dc_fixpt_neg(struct fixed31_32 arg) { struct fixed31_32 res; res.value = -arg.value; return res; } /* * @brief * result = abs(arg) := (arg >= 0) ? arg : -arg */ static inline struct fixed31_32 dc_fixpt_abs(struct fixed31_32 arg) { if (arg.value < 0) return dc_fixpt_neg(arg); else return arg; } /* * @brief * Binary relational operators */ /* * @brief * result = arg1 < arg2 */ static inline bool dc_fixpt_lt(struct fixed31_32 arg1, struct fixed31_32 arg2) { return arg1.value < arg2.value; } /* * @brief * result = arg1 <= arg2 */ static inline bool dc_fixpt_le(struct fixed31_32 arg1, struct fixed31_32 arg2) { return arg1.value <= arg2.value; } /* * @brief * result = arg1 == arg2 */ static inline bool dc_fixpt_eq(struct fixed31_32 arg1, struct fixed31_32 arg2) { return arg1.value == arg2.value; } /* * @brief * result = min(arg1, arg2) := (arg1 <= arg2) ? arg1 : arg2 */ static inline struct fixed31_32 dc_fixpt_min(struct fixed31_32 arg1, struct fixed31_32 arg2) { if (arg1.value <= arg2.value) return arg1; else return arg2; } /* * @brief * result = max(arg1, arg2) := (arg1 <= arg2) ? arg2 : arg1 */ static inline struct fixed31_32 dc_fixpt_max(struct fixed31_32 arg1, struct fixed31_32 arg2) { if (arg1.value <= arg2.value) return arg2; else return arg1; } /* * @brief * | min_value, when arg <= min_value * result = | arg, when min_value < arg < max_value * | max_value, when arg >= max_value */ static inline struct fixed31_32 dc_fixpt_clamp( struct fixed31_32 arg, struct fixed31_32 min_value, struct fixed31_32 max_value) { if (dc_fixpt_le(arg, min_value)) return min_value; else if (dc_fixpt_le(max_value, arg)) return max_value; else return arg; } /* * @brief * Binary shift operators */ /* * @brief * result = arg << shift */ static inline struct fixed31_32 dc_fixpt_shl(struct fixed31_32 arg, unsigned char shift) { ASSERT(((arg.value >= 0) && (arg.value <= LLONG_MAX >> shift)) || ((arg.value < 0) && (arg.value >= ~(LLONG_MAX >> shift)))); arg.value = arg.value << shift; return arg; } /* * @brief * result = arg >> shift */ static inline struct fixed31_32 dc_fixpt_shr(struct fixed31_32 arg, unsigned char shift) { bool negative = arg.value < 0; if (negative) arg.value = -arg.value; arg.value = arg.value >> shift; if (negative) arg.value = -arg.value; return arg; } /* * @brief * Binary additive operators */ /* * @brief * result = arg1 + arg2 */ static inline struct fixed31_32 dc_fixpt_add(struct fixed31_32 arg1, struct fixed31_32 arg2) { struct fixed31_32 res; ASSERT(((arg1.value >= 0) && (LLONG_MAX - arg1.value >= arg2.value)) || ((arg1.value < 0) && (LLONG_MIN - arg1.value <= arg2.value))); res.value = arg1.value + arg2.value; return res; } /* * @brief * result = arg1 + arg2 */ static inline struct fixed31_32 dc_fixpt_add_int(struct fixed31_32 arg1, int arg2) { return dc_fixpt_add(arg1, dc_fixpt_from_int(arg2)); } /* * @brief * result = arg1 - arg2 */ static inline struct fixed31_32 dc_fixpt_sub(struct fixed31_32 arg1, struct fixed31_32 arg2) { struct fixed31_32 res; ASSERT(((arg2.value >= 0) && (LLONG_MIN + arg2.value <= arg1.value)) || ((arg2.value < 0) && (LLONG_MAX + arg2.value >= arg1.value))); res.value = arg1.value - arg2.value; return res; } /* * @brief * result = arg1 - arg2 */ static inline struct fixed31_32 dc_fixpt_sub_int(struct fixed31_32 arg1, int arg2) { return dc_fixpt_sub(arg1, dc_fixpt_from_int(arg2)); } /* * @brief * Binary multiplicative operators */ /* * @brief * result = arg1 * arg2 */ struct fixed31_32 dc_fixpt_mul(struct fixed31_32 arg1, struct fixed31_32 arg2); /* * @brief * result = arg1 * arg2 */ static inline struct fixed31_32 dc_fixpt_mul_int(struct fixed31_32 arg1, int arg2) { return dc_fixpt_mul(arg1, dc_fixpt_from_int(arg2)); } /* * @brief * result = square(arg) := arg * arg */ struct fixed31_32 dc_fixpt_sqr(struct fixed31_32 arg); /* * @brief * result = arg1 / arg2 */ static inline struct fixed31_32 dc_fixpt_div_int(struct fixed31_32 arg1, long long arg2) { return dc_fixpt_from_fraction(arg1.value, dc_fixpt_from_int(arg2).value); } /* * @brief * result = arg1 / arg2 */ static inline struct fixed31_32 dc_fixpt_div(struct fixed31_32 arg1, struct fixed31_32 arg2) { return dc_fixpt_from_fraction(arg1.value, arg2.value); } /* * @brief * Reciprocal function */ /* * @brief * result = reciprocal(arg) := 1 / arg * * @note * No special actions taken in case argument is zero. */ struct fixed31_32 dc_fixpt_recip(struct fixed31_32 arg); /* * @brief * Trigonometric functions */ /* * @brief * result = sinc(arg) := sin(arg) / arg * * @note * Argument specified in radians, * internally it's normalized to [-2pi...2pi] range. */ struct fixed31_32 dc_fixpt_sinc(struct fixed31_32 arg); /* * @brief * result = sin(arg) * * @note * Argument specified in radians, * internally it's normalized to [-2pi...2pi] range. */ struct fixed31_32 dc_fixpt_sin(struct fixed31_32 arg); /* * @brief * result = cos(arg) * * @note * Argument specified in radians * and should be in [-2pi...2pi] range - * passing arguments outside that range * will cause incorrect result! */ struct fixed31_32 dc_fixpt_cos(struct fixed31_32 arg); /* * @brief * Transcendent functions */ /* * @brief * result = exp(arg) * * @note * Currently, function is verified for abs(arg) <= 1. */ struct fixed31_32 dc_fixpt_exp(struct fixed31_32 arg); /* * @brief * result = log(arg) * * @note * Currently, abs(arg) should be less than 1. * No normalization is done. * Currently, no special actions taken * in case of invalid argument(s). Take care! */ struct fixed31_32 dc_fixpt_log(struct fixed31_32 arg); /* * @brief * Power function */ /* * @brief * result = pow(arg1, arg2) * * @note * Currently, abs(arg1) should be less than 1. Take care! */ static inline struct fixed31_32 dc_fixpt_pow(struct fixed31_32 arg1, struct fixed31_32 arg2) { if (arg1.value == 0) return arg2.value == 0 ? dc_fixpt_one : dc_fixpt_zero; return dc_fixpt_exp( dc_fixpt_mul( dc_fixpt_log(arg1), arg2)); } /* * @brief * Rounding functions */ /* * @brief * result = floor(arg) := greatest integer lower than or equal to arg */ static inline int dc_fixpt_floor(struct fixed31_32 arg) { unsigned long long arg_value = arg.value > 0 ? arg.value : -arg.value; if (arg.value >= 0) return (int)(arg_value >> FIXED31_32_BITS_PER_FRACTIONAL_PART); else return -(int)(arg_value >> FIXED31_32_BITS_PER_FRACTIONAL_PART); } /* * @brief * result = round(arg) := integer nearest to arg */ static inline int dc_fixpt_round(struct fixed31_32 arg) { unsigned long long arg_value = arg.value > 0 ? arg.value : -arg.value; const long long summand = dc_fixpt_half.value; ASSERT(LLONG_MAX - (long long)arg_value >= summand); arg_value += summand; if (arg.value >= 0) return (int)(arg_value >> FIXED31_32_BITS_PER_FRACTIONAL_PART); else return -(int)(arg_value >> FIXED31_32_BITS_PER_FRACTIONAL_PART); } /* * @brief * result = ceil(arg) := lowest integer greater than or equal to arg */ static inline int dc_fixpt_ceil(struct fixed31_32 arg) { unsigned long long arg_value = arg.value > 0 ? arg.value : -arg.value; const long long summand = dc_fixpt_one.value - dc_fixpt_epsilon.value; ASSERT(LLONG_MAX - (long long)arg_value >= summand); arg_value += summand; if (arg.value >= 0) return (int)(arg_value >> FIXED31_32_BITS_PER_FRACTIONAL_PART); else return -(int)(arg_value >> FIXED31_32_BITS_PER_FRACTIONAL_PART); } /* the following two function are used in scaler hw programming to convert fixed * point value to format 2 bits from integer part and 19 bits from fractional * part. The same applies for u0d19, 0 bits from integer part and 19 bits from * fractional */ unsigned int dc_fixpt_u4d19(struct fixed31_32 arg); unsigned int dc_fixpt_u3d19(struct fixed31_32 arg); unsigned int dc_fixpt_u2d19(struct fixed31_32 arg); unsigned int dc_fixpt_u0d19(struct fixed31_32 arg); unsigned int dc_fixpt_clamp_u0d14(struct fixed31_32 arg); unsigned int dc_fixpt_clamp_u0d10(struct fixed31_32 arg); int dc_fixpt_s4d19(struct fixed31_32 arg); static inline struct fixed31_32 dc_fixpt_truncate(struct fixed31_32 arg, unsigned int frac_bits) { bool negative = arg.value < 0; if (frac_bits >= FIXED31_32_BITS_PER_FRACTIONAL_PART) { ASSERT(frac_bits == FIXED31_32_BITS_PER_FRACTIONAL_PART); return arg; } if (negative) arg.value = -arg.value; arg.value &= (~0LL) << (FIXED31_32_BITS_PER_FRACTIONAL_PART - frac_bits); if (negative) arg.value = -arg.value; return arg; } #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1