Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Likun Gao | 10938 | 62.03% | 38 | 40.86% |
Evan Quan | 5161 | 29.27% | 36 | 38.71% |
Alex Deucher | 1217 | 6.90% | 2 | 2.15% |
Jiansong Chen | 108 | 0.61% | 6 | 6.45% |
Wenhui Sheng | 92 | 0.52% | 2 | 2.15% |
Kenneth Feng | 90 | 0.51% | 6 | 6.45% |
Nirmoy Das | 15 | 0.09% | 2 | 2.15% |
Kevin Wang | 12 | 0.07% | 1 | 1.08% |
Total | 17633 | 93 |
/* * Copyright 2019 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #define SWSMU_CODE_LAYER_L2 #include <linux/firmware.h> #include <linux/pci.h> #include <linux/i2c.h> #include "amdgpu.h" #include "amdgpu_smu.h" #include "atomfirmware.h" #include "amdgpu_atomfirmware.h" #include "amdgpu_atombios.h" #include "smu_v11_0.h" #include "smu11_driver_if_sienna_cichlid.h" #include "soc15_common.h" #include "atom.h" #include "sienna_cichlid_ppt.h" #include "smu_v11_0_7_pptable.h" #include "smu_v11_0_7_ppsmc.h" #include "nbio/nbio_2_3_offset.h" #include "nbio/nbio_2_3_sh_mask.h" #include "thm/thm_11_0_2_offset.h" #include "thm/thm_11_0_2_sh_mask.h" #include "mp/mp_11_0_offset.h" #include "mp/mp_11_0_sh_mask.h" #include "asic_reg/mp/mp_11_0_sh_mask.h" #include "smu_cmn.h" /* * DO NOT use these for err/warn/info/debug messages. * Use dev_err, dev_warn, dev_info and dev_dbg instead. * They are more MGPU friendly. */ #undef pr_err #undef pr_warn #undef pr_info #undef pr_debug #define to_amdgpu_device(x) (container_of(x, struct amdgpu_device, pm.smu_i2c)) #define FEATURE_MASK(feature) (1ULL << feature) #define SMC_DPM_FEATURE ( \ FEATURE_MASK(FEATURE_DPM_PREFETCHER_BIT) | \ FEATURE_MASK(FEATURE_DPM_GFXCLK_BIT) | \ FEATURE_MASK(FEATURE_DPM_UCLK_BIT) | \ FEATURE_MASK(FEATURE_DPM_LINK_BIT) | \ FEATURE_MASK(FEATURE_DPM_SOCCLK_BIT) | \ FEATURE_MASK(FEATURE_DPM_FCLK_BIT) | \ FEATURE_MASK(FEATURE_DPM_DCEFCLK_BIT) | \ FEATURE_MASK(FEATURE_DPM_MP0CLK_BIT)) #define SMU_11_0_7_GFX_BUSY_THRESHOLD 15 static struct cmn2asic_msg_mapping sienna_cichlid_message_map[SMU_MSG_MAX_COUNT] = { MSG_MAP(TestMessage, PPSMC_MSG_TestMessage, 1), MSG_MAP(GetSmuVersion, PPSMC_MSG_GetSmuVersion, 1), MSG_MAP(GetDriverIfVersion, PPSMC_MSG_GetDriverIfVersion, 1), MSG_MAP(SetAllowedFeaturesMaskLow, PPSMC_MSG_SetAllowedFeaturesMaskLow, 0), MSG_MAP(SetAllowedFeaturesMaskHigh, PPSMC_MSG_SetAllowedFeaturesMaskHigh, 0), MSG_MAP(EnableAllSmuFeatures, PPSMC_MSG_EnableAllSmuFeatures, 0), MSG_MAP(DisableAllSmuFeatures, PPSMC_MSG_DisableAllSmuFeatures, 0), MSG_MAP(EnableSmuFeaturesLow, PPSMC_MSG_EnableSmuFeaturesLow, 1), MSG_MAP(EnableSmuFeaturesHigh, PPSMC_MSG_EnableSmuFeaturesHigh, 1), MSG_MAP(DisableSmuFeaturesLow, PPSMC_MSG_DisableSmuFeaturesLow, 1), MSG_MAP(DisableSmuFeaturesHigh, PPSMC_MSG_DisableSmuFeaturesHigh, 1), MSG_MAP(GetEnabledSmuFeaturesLow, PPSMC_MSG_GetRunningSmuFeaturesLow, 1), MSG_MAP(GetEnabledSmuFeaturesHigh, PPSMC_MSG_GetRunningSmuFeaturesHigh, 1), MSG_MAP(SetWorkloadMask, PPSMC_MSG_SetWorkloadMask, 1), MSG_MAP(SetPptLimit, PPSMC_MSG_SetPptLimit, 0), MSG_MAP(SetDriverDramAddrHigh, PPSMC_MSG_SetDriverDramAddrHigh, 0), MSG_MAP(SetDriverDramAddrLow, PPSMC_MSG_SetDriverDramAddrLow, 0), MSG_MAP(SetToolsDramAddrHigh, PPSMC_MSG_SetToolsDramAddrHigh, 0), MSG_MAP(SetToolsDramAddrLow, PPSMC_MSG_SetToolsDramAddrLow, 0), MSG_MAP(TransferTableSmu2Dram, PPSMC_MSG_TransferTableSmu2Dram, 0), MSG_MAP(TransferTableDram2Smu, PPSMC_MSG_TransferTableDram2Smu, 0), MSG_MAP(UseDefaultPPTable, PPSMC_MSG_UseDefaultPPTable, 0), MSG_MAP(RunDcBtc, PPSMC_MSG_RunDcBtc, 0), MSG_MAP(EnterBaco, PPSMC_MSG_EnterBaco, 0), MSG_MAP(SetSoftMinByFreq, PPSMC_MSG_SetSoftMinByFreq, 0), MSG_MAP(SetSoftMaxByFreq, PPSMC_MSG_SetSoftMaxByFreq, 0), MSG_MAP(SetHardMinByFreq, PPSMC_MSG_SetHardMinByFreq, 1), MSG_MAP(SetHardMaxByFreq, PPSMC_MSG_SetHardMaxByFreq, 0), MSG_MAP(GetMinDpmFreq, PPSMC_MSG_GetMinDpmFreq, 1), MSG_MAP(GetMaxDpmFreq, PPSMC_MSG_GetMaxDpmFreq, 1), MSG_MAP(GetDpmFreqByIndex, PPSMC_MSG_GetDpmFreqByIndex, 1), MSG_MAP(SetGeminiMode, PPSMC_MSG_SetGeminiMode, 0), MSG_MAP(SetGeminiApertureHigh, PPSMC_MSG_SetGeminiApertureHigh, 0), MSG_MAP(SetGeminiApertureLow, PPSMC_MSG_SetGeminiApertureLow, 0), MSG_MAP(OverridePcieParameters, PPSMC_MSG_OverridePcieParameters, 0), MSG_MAP(ReenableAcDcInterrupt, PPSMC_MSG_ReenableAcDcInterrupt, 0), MSG_MAP(NotifyPowerSource, PPSMC_MSG_NotifyPowerSource, 0), MSG_MAP(SetUclkFastSwitch, PPSMC_MSG_SetUclkFastSwitch, 0), MSG_MAP(SetVideoFps, PPSMC_MSG_SetVideoFps, 0), MSG_MAP(PrepareMp1ForUnload, PPSMC_MSG_PrepareMp1ForUnload, 1), MSG_MAP(AllowGfxOff, PPSMC_MSG_AllowGfxOff, 0), MSG_MAP(DisallowGfxOff, PPSMC_MSG_DisallowGfxOff, 0), MSG_MAP(GetPptLimit, PPSMC_MSG_GetPptLimit, 0), MSG_MAP(GetDcModeMaxDpmFreq, PPSMC_MSG_GetDcModeMaxDpmFreq, 1), MSG_MAP(ExitBaco, PPSMC_MSG_ExitBaco, 0), MSG_MAP(PowerUpVcn, PPSMC_MSG_PowerUpVcn, 0), MSG_MAP(PowerDownVcn, PPSMC_MSG_PowerDownVcn, 0), MSG_MAP(PowerUpJpeg, PPSMC_MSG_PowerUpJpeg, 0), MSG_MAP(PowerDownJpeg, PPSMC_MSG_PowerDownJpeg, 0), MSG_MAP(BacoAudioD3PME, PPSMC_MSG_BacoAudioD3PME, 0), MSG_MAP(ArmD3, PPSMC_MSG_ArmD3, 0), MSG_MAP(Mode1Reset, PPSMC_MSG_Mode1Reset, 0), }; static struct cmn2asic_mapping sienna_cichlid_clk_map[SMU_CLK_COUNT] = { CLK_MAP(GFXCLK, PPCLK_GFXCLK), CLK_MAP(SCLK, PPCLK_GFXCLK), CLK_MAP(SOCCLK, PPCLK_SOCCLK), CLK_MAP(FCLK, PPCLK_FCLK), CLK_MAP(UCLK, PPCLK_UCLK), CLK_MAP(MCLK, PPCLK_UCLK), CLK_MAP(DCLK, PPCLK_DCLK_0), CLK_MAP(DCLK1, PPCLK_DCLK_1), CLK_MAP(VCLK, PPCLK_VCLK_0), CLK_MAP(VCLK1, PPCLK_VCLK_1), CLK_MAP(DCEFCLK, PPCLK_DCEFCLK), CLK_MAP(DISPCLK, PPCLK_DISPCLK), CLK_MAP(PIXCLK, PPCLK_PIXCLK), CLK_MAP(PHYCLK, PPCLK_PHYCLK), }; static struct cmn2asic_mapping sienna_cichlid_feature_mask_map[SMU_FEATURE_COUNT] = { FEA_MAP(DPM_PREFETCHER), FEA_MAP(DPM_GFXCLK), FEA_MAP(DPM_GFX_GPO), FEA_MAP(DPM_UCLK), FEA_MAP(DPM_SOCCLK), FEA_MAP(DPM_MP0CLK), FEA_MAP(DPM_LINK), FEA_MAP(DPM_DCEFCLK), FEA_MAP(MEM_VDDCI_SCALING), FEA_MAP(MEM_MVDD_SCALING), FEA_MAP(DS_GFXCLK), FEA_MAP(DS_SOCCLK), FEA_MAP(DS_LCLK), FEA_MAP(DS_DCEFCLK), FEA_MAP(DS_UCLK), FEA_MAP(GFX_ULV), FEA_MAP(FW_DSTATE), FEA_MAP(GFXOFF), FEA_MAP(BACO), FEA_MAP(MM_DPM_PG), FEA_MAP(RSMU_SMN_CG), FEA_MAP(PPT), FEA_MAP(TDC), FEA_MAP(APCC_PLUS), FEA_MAP(GTHR), FEA_MAP(ACDC), FEA_MAP(VR0HOT), FEA_MAP(VR1HOT), FEA_MAP(FW_CTF), FEA_MAP(FAN_CONTROL), FEA_MAP(THERMAL), FEA_MAP(GFX_DCS), FEA_MAP(RM), FEA_MAP(LED_DISPLAY), FEA_MAP(GFX_SS), FEA_MAP(OUT_OF_BAND_MONITOR), FEA_MAP(TEMP_DEPENDENT_VMIN), FEA_MAP(MMHUB_PG), FEA_MAP(ATHUB_PG), FEA_MAP(APCC_DFLL), }; static struct cmn2asic_mapping sienna_cichlid_table_map[SMU_TABLE_COUNT] = { TAB_MAP(PPTABLE), TAB_MAP(WATERMARKS), TAB_MAP(AVFS_PSM_DEBUG), TAB_MAP(AVFS_FUSE_OVERRIDE), TAB_MAP(PMSTATUSLOG), TAB_MAP(SMU_METRICS), TAB_MAP(DRIVER_SMU_CONFIG), TAB_MAP(ACTIVITY_MONITOR_COEFF), TAB_MAP(OVERDRIVE), TAB_MAP(I2C_COMMANDS), TAB_MAP(PACE), }; static struct cmn2asic_mapping sienna_cichlid_pwr_src_map[SMU_POWER_SOURCE_COUNT] = { PWR_MAP(AC), PWR_MAP(DC), }; static struct cmn2asic_mapping sienna_cichlid_workload_map[PP_SMC_POWER_PROFILE_COUNT] = { WORKLOAD_MAP(PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT, WORKLOAD_PPLIB_DEFAULT_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_FULLSCREEN3D, WORKLOAD_PPLIB_FULL_SCREEN_3D_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_POWERSAVING, WORKLOAD_PPLIB_POWER_SAVING_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_VIDEO, WORKLOAD_PPLIB_VIDEO_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_VR, WORKLOAD_PPLIB_VR_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_COMPUTE, WORKLOAD_PPLIB_CUSTOM_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_CUSTOM, WORKLOAD_PPLIB_CUSTOM_BIT), }; static int sienna_cichlid_get_allowed_feature_mask(struct smu_context *smu, uint32_t *feature_mask, uint32_t num) { struct amdgpu_device *adev = smu->adev; if (num > 2) return -EINVAL; memset(feature_mask, 0, sizeof(uint32_t) * num); *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_PREFETCHER_BIT) | FEATURE_MASK(FEATURE_DPM_FCLK_BIT) | FEATURE_MASK(FEATURE_DPM_MP0CLK_BIT) | FEATURE_MASK(FEATURE_DS_SOCCLK_BIT) | FEATURE_MASK(FEATURE_DS_DCEFCLK_BIT) | FEATURE_MASK(FEATURE_DS_FCLK_BIT) | FEATURE_MASK(FEATURE_DS_UCLK_BIT) | FEATURE_MASK(FEATURE_FW_DSTATE_BIT) | FEATURE_MASK(FEATURE_DF_CSTATE_BIT) | FEATURE_MASK(FEATURE_RSMU_SMN_CG_BIT) | FEATURE_MASK(FEATURE_GFX_SS_BIT) | FEATURE_MASK(FEATURE_VR0HOT_BIT) | FEATURE_MASK(FEATURE_PPT_BIT) | FEATURE_MASK(FEATURE_TDC_BIT) | FEATURE_MASK(FEATURE_BACO_BIT) | FEATURE_MASK(FEATURE_APCC_DFLL_BIT) | FEATURE_MASK(FEATURE_FW_CTF_BIT) | FEATURE_MASK(FEATURE_FAN_CONTROL_BIT) | FEATURE_MASK(FEATURE_THERMAL_BIT) | FEATURE_MASK(FEATURE_OUT_OF_BAND_MONITOR_BIT); if (adev->pm.pp_feature & PP_SCLK_DPM_MASK) { *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_GFXCLK_BIT); *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_GFX_GPO_BIT); } if (adev->pm.pp_feature & PP_MCLK_DPM_MASK) *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_UCLK_BIT) | FEATURE_MASK(FEATURE_MEM_VDDCI_SCALING_BIT) | FEATURE_MASK(FEATURE_MEM_MVDD_SCALING_BIT); if (adev->pm.pp_feature & PP_PCIE_DPM_MASK) *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_LINK_BIT); if (adev->pm.pp_feature & PP_DCEFCLK_DPM_MASK) *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_DCEFCLK_BIT); if (adev->pm.pp_feature & PP_SOCCLK_DPM_MASK) *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_SOCCLK_BIT); if (adev->pm.pp_feature & PP_ULV_MASK) *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_GFX_ULV_BIT); if (adev->pm.pp_feature & PP_SCLK_DEEP_SLEEP_MASK) *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DS_GFXCLK_BIT); if (adev->pm.pp_feature & PP_GFXOFF_MASK) *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_GFXOFF_BIT); if (smu->adev->pg_flags & AMD_PG_SUPPORT_ATHUB) *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_ATHUB_PG_BIT); if (smu->adev->pg_flags & AMD_PG_SUPPORT_MMHUB) *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_MMHUB_PG_BIT); if (smu->adev->pg_flags & AMD_PG_SUPPORT_VCN || smu->adev->pg_flags & AMD_PG_SUPPORT_JPEG) *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_MM_DPM_PG_BIT); return 0; } static int sienna_cichlid_check_powerplay_table(struct smu_context *smu) { struct smu_table_context *table_context = &smu->smu_table; struct smu_11_0_7_powerplay_table *powerplay_table = table_context->power_play_table; struct smu_baco_context *smu_baco = &smu->smu_baco; mutex_lock(&smu_baco->mutex); if (powerplay_table->platform_caps & SMU_11_0_7_PP_PLATFORM_CAP_BACO || powerplay_table->platform_caps & SMU_11_0_7_PP_PLATFORM_CAP_MACO) smu_baco->platform_support = true; mutex_unlock(&smu_baco->mutex); table_context->thermal_controller_type = powerplay_table->thermal_controller_type; return 0; } static int sienna_cichlid_append_powerplay_table(struct smu_context *smu) { struct smu_table_context *table_context = &smu->smu_table; PPTable_t *smc_pptable = table_context->driver_pptable; struct atom_smc_dpm_info_v4_9 *smc_dpm_table; int index, ret; index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, smc_dpm_info); ret = amdgpu_atombios_get_data_table(smu->adev, index, NULL, NULL, NULL, (uint8_t **)&smc_dpm_table); if (ret) return ret; memcpy(smc_pptable->I2cControllers, smc_dpm_table->I2cControllers, sizeof(*smc_dpm_table) - sizeof(smc_dpm_table->table_header)); return 0; } static int sienna_cichlid_store_powerplay_table(struct smu_context *smu) { struct smu_table_context *table_context = &smu->smu_table; struct smu_11_0_7_powerplay_table *powerplay_table = table_context->power_play_table; memcpy(table_context->driver_pptable, &powerplay_table->smc_pptable, sizeof(PPTable_t)); return 0; } static int sienna_cichlid_setup_pptable(struct smu_context *smu) { int ret = 0; ret = smu_v11_0_setup_pptable(smu); if (ret) return ret; ret = sienna_cichlid_store_powerplay_table(smu); if (ret) return ret; ret = sienna_cichlid_append_powerplay_table(smu); if (ret) return ret; ret = sienna_cichlid_check_powerplay_table(smu); if (ret) return ret; return ret; } static int sienna_cichlid_tables_init(struct smu_context *smu) { struct smu_table_context *smu_table = &smu->smu_table; struct smu_table *tables = smu_table->tables; SMU_TABLE_INIT(tables, SMU_TABLE_PPTABLE, sizeof(PPTable_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_WATERMARKS, sizeof(Watermarks_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_SMU_METRICS, sizeof(SmuMetrics_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_I2C_COMMANDS, sizeof(SwI2cRequest_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_OVERDRIVE, sizeof(OverDriveTable_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_PMSTATUSLOG, SMU11_TOOL_SIZE, PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_ACTIVITY_MONITOR_COEFF, sizeof(DpmActivityMonitorCoeffInt_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); smu_table->metrics_table = kzalloc(sizeof(SmuMetrics_t), GFP_KERNEL); if (!smu_table->metrics_table) return -ENOMEM; smu_table->metrics_time = 0; smu_table->watermarks_table = kzalloc(sizeof(Watermarks_t), GFP_KERNEL); if (!smu_table->watermarks_table) return -ENOMEM; return 0; } static int sienna_cichlid_get_smu_metrics_data(struct smu_context *smu, MetricsMember_t member, uint32_t *value) { struct smu_table_context *smu_table= &smu->smu_table; SmuMetrics_t *metrics = (SmuMetrics_t *)smu_table->metrics_table; int ret = 0; mutex_lock(&smu->metrics_lock); if (!smu_table->metrics_time || time_after(jiffies, smu_table->metrics_time + msecs_to_jiffies(1))) { ret = smu_cmn_update_table(smu, SMU_TABLE_SMU_METRICS, 0, smu_table->metrics_table, false); if (ret) { dev_info(smu->adev->dev, "Failed to export SMU metrics table!\n"); mutex_unlock(&smu->metrics_lock); return ret; } smu_table->metrics_time = jiffies; } switch (member) { case METRICS_CURR_GFXCLK: *value = metrics->CurrClock[PPCLK_GFXCLK]; break; case METRICS_CURR_SOCCLK: *value = metrics->CurrClock[PPCLK_SOCCLK]; break; case METRICS_CURR_UCLK: *value = metrics->CurrClock[PPCLK_UCLK]; break; case METRICS_CURR_VCLK: *value = metrics->CurrClock[PPCLK_VCLK_0]; break; case METRICS_CURR_VCLK1: *value = metrics->CurrClock[PPCLK_VCLK_1]; break; case METRICS_CURR_DCLK: *value = metrics->CurrClock[PPCLK_DCLK_0]; break; case METRICS_CURR_DCLK1: *value = metrics->CurrClock[PPCLK_DCLK_1]; break; case METRICS_CURR_DCEFCLK: *value = metrics->CurrClock[PPCLK_DCEFCLK]; break; case METRICS_AVERAGE_GFXCLK: if (metrics->AverageGfxActivity <= SMU_11_0_7_GFX_BUSY_THRESHOLD) *value = metrics->AverageGfxclkFrequencyPostDs; else *value = metrics->AverageGfxclkFrequencyPreDs; break; case METRICS_AVERAGE_FCLK: *value = metrics->AverageFclkFrequencyPostDs; break; case METRICS_AVERAGE_UCLK: *value = metrics->AverageUclkFrequencyPostDs; break; case METRICS_AVERAGE_GFXACTIVITY: *value = metrics->AverageGfxActivity; break; case METRICS_AVERAGE_MEMACTIVITY: *value = metrics->AverageUclkActivity; break; case METRICS_AVERAGE_SOCKETPOWER: *value = metrics->AverageSocketPower << 8; break; case METRICS_TEMPERATURE_EDGE: *value = metrics->TemperatureEdge * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_TEMPERATURE_HOTSPOT: *value = metrics->TemperatureHotspot * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_TEMPERATURE_MEM: *value = metrics->TemperatureMem * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_TEMPERATURE_VRGFX: *value = metrics->TemperatureVrGfx * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_TEMPERATURE_VRSOC: *value = metrics->TemperatureVrSoc * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_THROTTLER_STATUS: *value = metrics->ThrottlerStatus; break; case METRICS_CURR_FANSPEED: *value = metrics->CurrFanSpeed; break; default: *value = UINT_MAX; break; } mutex_unlock(&smu->metrics_lock); return ret; } static int sienna_cichlid_allocate_dpm_context(struct smu_context *smu) { struct smu_dpm_context *smu_dpm = &smu->smu_dpm; smu_dpm->dpm_context = kzalloc(sizeof(struct smu_11_0_dpm_context), GFP_KERNEL); if (!smu_dpm->dpm_context) return -ENOMEM; smu_dpm->dpm_context_size = sizeof(struct smu_11_0_dpm_context); return 0; } static int sienna_cichlid_init_smc_tables(struct smu_context *smu) { int ret = 0; ret = sienna_cichlid_tables_init(smu); if (ret) return ret; ret = sienna_cichlid_allocate_dpm_context(smu); if (ret) return ret; return smu_v11_0_init_smc_tables(smu); } static int sienna_cichlid_set_default_dpm_table(struct smu_context *smu) { struct smu_11_0_dpm_context *dpm_context = smu->smu_dpm.dpm_context; PPTable_t *driver_ppt = smu->smu_table.driver_pptable; struct smu_11_0_dpm_table *dpm_table; struct amdgpu_device *adev = smu->adev; int ret = 0; /* socclk dpm table setup */ dpm_table = &dpm_context->dpm_tables.soc_table; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) { ret = smu_v11_0_set_single_dpm_table(smu, SMU_SOCCLK, dpm_table); if (ret) return ret; dpm_table->is_fine_grained = !driver_ppt->DpmDescriptor[PPCLK_SOCCLK].SnapToDiscrete; } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.socclk / 100; dpm_table->dpm_levels[0].enabled = true; dpm_table->min = dpm_table->dpm_levels[0].value; dpm_table->max = dpm_table->dpm_levels[0].value; } /* gfxclk dpm table setup */ dpm_table = &dpm_context->dpm_tables.gfx_table; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT)) { ret = smu_v11_0_set_single_dpm_table(smu, SMU_GFXCLK, dpm_table); if (ret) return ret; dpm_table->is_fine_grained = !driver_ppt->DpmDescriptor[PPCLK_GFXCLK].SnapToDiscrete; } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.gfxclk / 100; dpm_table->dpm_levels[0].enabled = true; dpm_table->min = dpm_table->dpm_levels[0].value; dpm_table->max = dpm_table->dpm_levels[0].value; } /* uclk dpm table setup */ dpm_table = &dpm_context->dpm_tables.uclk_table; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) { ret = smu_v11_0_set_single_dpm_table(smu, SMU_UCLK, dpm_table); if (ret) return ret; dpm_table->is_fine_grained = !driver_ppt->DpmDescriptor[PPCLK_UCLK].SnapToDiscrete; } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.uclk / 100; dpm_table->dpm_levels[0].enabled = true; dpm_table->min = dpm_table->dpm_levels[0].value; dpm_table->max = dpm_table->dpm_levels[0].value; } /* fclk dpm table setup */ dpm_table = &dpm_context->dpm_tables.fclk_table; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_FCLK_BIT)) { ret = smu_v11_0_set_single_dpm_table(smu, SMU_FCLK, dpm_table); if (ret) return ret; dpm_table->is_fine_grained = !driver_ppt->DpmDescriptor[PPCLK_FCLK].SnapToDiscrete; } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.fclk / 100; dpm_table->dpm_levels[0].enabled = true; dpm_table->min = dpm_table->dpm_levels[0].value; dpm_table->max = dpm_table->dpm_levels[0].value; } /* vclk0 dpm table setup */ dpm_table = &dpm_context->dpm_tables.vclk_table; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_MM_DPM_PG_BIT)) { ret = smu_v11_0_set_single_dpm_table(smu, SMU_VCLK, dpm_table); if (ret) return ret; dpm_table->is_fine_grained = !driver_ppt->DpmDescriptor[PPCLK_VCLK_0].SnapToDiscrete; } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.vclk / 100; dpm_table->dpm_levels[0].enabled = true; dpm_table->min = dpm_table->dpm_levels[0].value; dpm_table->max = dpm_table->dpm_levels[0].value; } /* vclk1 dpm table setup */ if (adev->vcn.num_vcn_inst > 1) { dpm_table = &dpm_context->dpm_tables.vclk1_table; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_MM_DPM_PG_BIT)) { ret = smu_v11_0_set_single_dpm_table(smu, SMU_VCLK1, dpm_table); if (ret) return ret; dpm_table->is_fine_grained = !driver_ppt->DpmDescriptor[PPCLK_VCLK_1].SnapToDiscrete; } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.vclk / 100; dpm_table->dpm_levels[0].enabled = true; dpm_table->min = dpm_table->dpm_levels[0].value; dpm_table->max = dpm_table->dpm_levels[0].value; } } /* dclk0 dpm table setup */ dpm_table = &dpm_context->dpm_tables.dclk_table; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_MM_DPM_PG_BIT)) { ret = smu_v11_0_set_single_dpm_table(smu, SMU_DCLK, dpm_table); if (ret) return ret; dpm_table->is_fine_grained = !driver_ppt->DpmDescriptor[PPCLK_DCLK_0].SnapToDiscrete; } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.dclk / 100; dpm_table->dpm_levels[0].enabled = true; dpm_table->min = dpm_table->dpm_levels[0].value; dpm_table->max = dpm_table->dpm_levels[0].value; } /* dclk1 dpm table setup */ if (adev->vcn.num_vcn_inst > 1) { dpm_table = &dpm_context->dpm_tables.dclk1_table; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_MM_DPM_PG_BIT)) { ret = smu_v11_0_set_single_dpm_table(smu, SMU_DCLK1, dpm_table); if (ret) return ret; dpm_table->is_fine_grained = !driver_ppt->DpmDescriptor[PPCLK_DCLK_1].SnapToDiscrete; } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.dclk / 100; dpm_table->dpm_levels[0].enabled = true; dpm_table->min = dpm_table->dpm_levels[0].value; dpm_table->max = dpm_table->dpm_levels[0].value; } } /* dcefclk dpm table setup */ dpm_table = &dpm_context->dpm_tables.dcef_table; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) { ret = smu_v11_0_set_single_dpm_table(smu, SMU_DCEFCLK, dpm_table); if (ret) return ret; dpm_table->is_fine_grained = !driver_ppt->DpmDescriptor[PPCLK_DCEFCLK].SnapToDiscrete; } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.dcefclk / 100; dpm_table->dpm_levels[0].enabled = true; dpm_table->min = dpm_table->dpm_levels[0].value; dpm_table->max = dpm_table->dpm_levels[0].value; } /* pixelclk dpm table setup */ dpm_table = &dpm_context->dpm_tables.pixel_table; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) { ret = smu_v11_0_set_single_dpm_table(smu, SMU_PIXCLK, dpm_table); if (ret) return ret; dpm_table->is_fine_grained = !driver_ppt->DpmDescriptor[PPCLK_PIXCLK].SnapToDiscrete; } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.dcefclk / 100; dpm_table->dpm_levels[0].enabled = true; dpm_table->min = dpm_table->dpm_levels[0].value; dpm_table->max = dpm_table->dpm_levels[0].value; } /* displayclk dpm table setup */ dpm_table = &dpm_context->dpm_tables.display_table; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) { ret = smu_v11_0_set_single_dpm_table(smu, SMU_DISPCLK, dpm_table); if (ret) return ret; dpm_table->is_fine_grained = !driver_ppt->DpmDescriptor[PPCLK_DISPCLK].SnapToDiscrete; } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.dcefclk / 100; dpm_table->dpm_levels[0].enabled = true; dpm_table->min = dpm_table->dpm_levels[0].value; dpm_table->max = dpm_table->dpm_levels[0].value; } /* phyclk dpm table setup */ dpm_table = &dpm_context->dpm_tables.phy_table; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) { ret = smu_v11_0_set_single_dpm_table(smu, SMU_PHYCLK, dpm_table); if (ret) return ret; dpm_table->is_fine_grained = !driver_ppt->DpmDescriptor[PPCLK_PHYCLK].SnapToDiscrete; } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.dcefclk / 100; dpm_table->dpm_levels[0].enabled = true; dpm_table->min = dpm_table->dpm_levels[0].value; dpm_table->max = dpm_table->dpm_levels[0].value; } return 0; } static int sienna_cichlid_dpm_set_vcn_enable(struct smu_context *smu, bool enable) { struct amdgpu_device *adev = smu->adev; int ret = 0; if (enable) { /* vcn dpm on is a prerequisite for vcn power gate messages */ if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_MM_DPM_PG_BIT)) { ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_PowerUpVcn, 0, NULL); if (ret) return ret; if (adev->vcn.num_vcn_inst > 1) { ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_PowerUpVcn, 0x10000, NULL); if (ret) return ret; } } } else { if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_MM_DPM_PG_BIT)) { ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_PowerDownVcn, 0, NULL); if (ret) return ret; if (adev->vcn.num_vcn_inst > 1) { ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_PowerDownVcn, 0x10000, NULL); if (ret) return ret; } } } return ret; } static int sienna_cichlid_dpm_set_jpeg_enable(struct smu_context *smu, bool enable) { int ret = 0; if (enable) { if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_MM_DPM_PG_BIT)) { ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_PowerUpJpeg, 0, NULL); if (ret) return ret; } } else { if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_MM_DPM_PG_BIT)) { ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_PowerDownJpeg, 0, NULL); if (ret) return ret; } } return ret; } static int sienna_cichlid_get_current_clk_freq_by_table(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t *value) { MetricsMember_t member_type; int clk_id = 0; clk_id = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_CLK, clk_type); if (clk_id < 0) return clk_id; switch (clk_id) { case PPCLK_GFXCLK: member_type = METRICS_CURR_GFXCLK; break; case PPCLK_UCLK: member_type = METRICS_CURR_UCLK; break; case PPCLK_SOCCLK: member_type = METRICS_CURR_SOCCLK; break; case PPCLK_FCLK: member_type = METRICS_CURR_FCLK; break; case PPCLK_VCLK_0: member_type = METRICS_CURR_VCLK; break; case PPCLK_VCLK_1: member_type = METRICS_CURR_VCLK1; break; case PPCLK_DCLK_0: member_type = METRICS_CURR_DCLK; break; case PPCLK_DCLK_1: member_type = METRICS_CURR_DCLK1; break; case PPCLK_DCEFCLK: member_type = METRICS_CURR_DCEFCLK; break; default: return -EINVAL; } return sienna_cichlid_get_smu_metrics_data(smu, member_type, value); } static bool sienna_cichlid_is_support_fine_grained_dpm(struct smu_context *smu, enum smu_clk_type clk_type) { PPTable_t *pptable = smu->smu_table.driver_pptable; DpmDescriptor_t *dpm_desc = NULL; uint32_t clk_index = 0; clk_index = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_CLK, clk_type); dpm_desc = &pptable->DpmDescriptor[clk_index]; /* 0 - Fine grained DPM, 1 - Discrete DPM */ return dpm_desc->SnapToDiscrete == 0 ? true : false; } static int sienna_cichlid_print_clk_levels(struct smu_context *smu, enum smu_clk_type clk_type, char *buf) { struct amdgpu_device *adev = smu->adev; struct smu_table_context *table_context = &smu->smu_table; struct smu_dpm_context *smu_dpm = &smu->smu_dpm; struct smu_11_0_dpm_context *dpm_context = smu_dpm->dpm_context; PPTable_t *pptable = (PPTable_t *)table_context->driver_pptable; int i, size = 0, ret = 0; uint32_t cur_value = 0, value = 0, count = 0; uint32_t freq_values[3] = {0}; uint32_t mark_index = 0; uint32_t gen_speed, lane_width; switch (clk_type) { case SMU_GFXCLK: case SMU_SCLK: case SMU_SOCCLK: case SMU_MCLK: case SMU_UCLK: case SMU_FCLK: case SMU_DCEFCLK: ret = sienna_cichlid_get_current_clk_freq_by_table(smu, clk_type, &cur_value); if (ret) goto print_clk_out; /* no need to disable gfxoff when retrieving the current gfxclk */ if ((clk_type == SMU_GFXCLK) || (clk_type == SMU_SCLK)) amdgpu_gfx_off_ctrl(adev, false); ret = smu_v11_0_get_dpm_level_count(smu, clk_type, &count); if (ret) goto print_clk_out; if (!sienna_cichlid_is_support_fine_grained_dpm(smu, clk_type)) { for (i = 0; i < count; i++) { ret = smu_v11_0_get_dpm_freq_by_index(smu, clk_type, i, &value); if (ret) goto print_clk_out; size += sprintf(buf + size, "%d: %uMhz %s\n", i, value, cur_value == value ? "*" : ""); } } else { ret = smu_v11_0_get_dpm_freq_by_index(smu, clk_type, 0, &freq_values[0]); if (ret) goto print_clk_out; ret = smu_v11_0_get_dpm_freq_by_index(smu, clk_type, count - 1, &freq_values[2]); if (ret) goto print_clk_out; freq_values[1] = cur_value; mark_index = cur_value == freq_values[0] ? 0 : cur_value == freq_values[2] ? 2 : 1; if (mark_index != 1) freq_values[1] = (freq_values[0] + freq_values[2]) / 2; for (i = 0; i < 3; i++) { size += sprintf(buf + size, "%d: %uMhz %s\n", i, freq_values[i], i == mark_index ? "*" : ""); } } break; case SMU_PCIE: gen_speed = (RREG32_PCIE(smnPCIE_LC_SPEED_CNTL) & PSWUSP0_PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE_MASK) >> PSWUSP0_PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE__SHIFT; lane_width = (RREG32_PCIE(smnPCIE_LC_LINK_WIDTH_CNTL) & PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD_MASK) >> PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD__SHIFT; for (i = 0; i < NUM_LINK_LEVELS; i++) size += sprintf(buf + size, "%d: %s %s %dMhz %s\n", i, (dpm_context->dpm_tables.pcie_table.pcie_gen[i] == 0) ? "2.5GT/s," : (dpm_context->dpm_tables.pcie_table.pcie_gen[i] == 1) ? "5.0GT/s," : (dpm_context->dpm_tables.pcie_table.pcie_gen[i] == 2) ? "8.0GT/s," : (dpm_context->dpm_tables.pcie_table.pcie_gen[i] == 3) ? "16.0GT/s," : "", (dpm_context->dpm_tables.pcie_table.pcie_lane[i] == 1) ? "x1" : (dpm_context->dpm_tables.pcie_table.pcie_lane[i] == 2) ? "x2" : (dpm_context->dpm_tables.pcie_table.pcie_lane[i] == 3) ? "x4" : (dpm_context->dpm_tables.pcie_table.pcie_lane[i] == 4) ? "x8" : (dpm_context->dpm_tables.pcie_table.pcie_lane[i] == 5) ? "x12" : (dpm_context->dpm_tables.pcie_table.pcie_lane[i] == 6) ? "x16" : "", pptable->LclkFreq[i], (gen_speed == dpm_context->dpm_tables.pcie_table.pcie_gen[i]) && (lane_width == dpm_context->dpm_tables.pcie_table.pcie_lane[i]) ? "*" : ""); break; default: break; } print_clk_out: if ((clk_type == SMU_GFXCLK) || (clk_type == SMU_SCLK)) amdgpu_gfx_off_ctrl(adev, true); return size; } static int sienna_cichlid_force_clk_levels(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t mask) { struct amdgpu_device *adev = smu->adev; int ret = 0, size = 0; uint32_t soft_min_level = 0, soft_max_level = 0, min_freq = 0, max_freq = 0; soft_min_level = mask ? (ffs(mask) - 1) : 0; soft_max_level = mask ? (fls(mask) - 1) : 0; if ((clk_type == SMU_GFXCLK) || (clk_type == SMU_SCLK)) amdgpu_gfx_off_ctrl(adev, false); switch (clk_type) { case SMU_GFXCLK: case SMU_SCLK: case SMU_SOCCLK: case SMU_MCLK: case SMU_UCLK: case SMU_DCEFCLK: case SMU_FCLK: /* There is only 2 levels for fine grained DPM */ if (sienna_cichlid_is_support_fine_grained_dpm(smu, clk_type)) { soft_max_level = (soft_max_level >= 1 ? 1 : 0); soft_min_level = (soft_min_level >= 1 ? 1 : 0); } ret = smu_v11_0_get_dpm_freq_by_index(smu, clk_type, soft_min_level, &min_freq); if (ret) goto forec_level_out; ret = smu_v11_0_get_dpm_freq_by_index(smu, clk_type, soft_max_level, &max_freq); if (ret) goto forec_level_out; ret = smu_v11_0_set_soft_freq_limited_range(smu, clk_type, min_freq, max_freq); if (ret) goto forec_level_out; break; default: break; } forec_level_out: if ((clk_type == SMU_GFXCLK) || (clk_type == SMU_SCLK)) amdgpu_gfx_off_ctrl(adev, true); return size; } static int sienna_cichlid_populate_umd_state_clk(struct smu_context *smu) { struct smu_11_0_dpm_context *dpm_context = smu->smu_dpm.dpm_context; struct smu_11_0_dpm_table *gfx_table = &dpm_context->dpm_tables.gfx_table; struct smu_11_0_dpm_table *mem_table = &dpm_context->dpm_tables.uclk_table; struct smu_11_0_dpm_table *soc_table = &dpm_context->dpm_tables.soc_table; struct smu_umd_pstate_table *pstate_table = &smu->pstate_table; pstate_table->gfxclk_pstate.min = gfx_table->min; pstate_table->gfxclk_pstate.peak = gfx_table->max; pstate_table->uclk_pstate.min = mem_table->min; pstate_table->uclk_pstate.peak = mem_table->max; pstate_table->socclk_pstate.min = soc_table->min; pstate_table->socclk_pstate.peak = soc_table->max; return 0; } static int sienna_cichlid_pre_display_config_changed(struct smu_context *smu) { int ret = 0; uint32_t max_freq = 0; /* Sienna_Cichlid do not support to change display num currently */ return 0; #if 0 ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, 0, NULL); if (ret) return ret; #endif if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) { ret = smu_v11_0_get_dpm_ultimate_freq(smu, SMU_UCLK, NULL, &max_freq); if (ret) return ret; ret = smu_v11_0_set_hard_freq_limited_range(smu, SMU_UCLK, 0, max_freq); if (ret) return ret; } return ret; } static int sienna_cichlid_display_config_changed(struct smu_context *smu) { int ret = 0; if ((smu->watermarks_bitmap & WATERMARKS_EXIST) && smu_cmn_feature_is_supported(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) && smu_cmn_feature_is_supported(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) { #if 0 ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, smu->display_config->num_display, NULL); #endif if (ret) return ret; } return ret; } static int sienna_cichlid_get_gpu_power(struct smu_context *smu, uint32_t *value) { if (!value) return -EINVAL; return sienna_cichlid_get_smu_metrics_data(smu, METRICS_AVERAGE_SOCKETPOWER, value); } static int sienna_cichlid_get_current_activity_percent(struct smu_context *smu, enum amd_pp_sensors sensor, uint32_t *value) { int ret = 0; if (!value) return -EINVAL; switch (sensor) { case AMDGPU_PP_SENSOR_GPU_LOAD: ret = sienna_cichlid_get_smu_metrics_data(smu, METRICS_AVERAGE_GFXACTIVITY, value); break; case AMDGPU_PP_SENSOR_MEM_LOAD: ret = sienna_cichlid_get_smu_metrics_data(smu, METRICS_AVERAGE_MEMACTIVITY, value); break; default: dev_err(smu->adev->dev, "Invalid sensor for retrieving clock activity\n"); return -EINVAL; } return ret; } static bool sienna_cichlid_is_dpm_running(struct smu_context *smu) { int ret = 0; uint32_t feature_mask[2]; uint64_t feature_enabled; ret = smu_cmn_get_enabled_mask(smu, feature_mask, 2); if (ret) return false; feature_enabled = (uint64_t)feature_mask[1] << 32 | feature_mask[0]; return !!(feature_enabled & SMC_DPM_FEATURE); } static int sienna_cichlid_get_fan_speed_rpm(struct smu_context *smu, uint32_t *speed) { if (!speed) return -EINVAL; return sienna_cichlid_get_smu_metrics_data(smu, METRICS_CURR_FANSPEED, speed); } static int sienna_cichlid_get_fan_speed_percent(struct smu_context *smu, uint32_t *speed) { int ret = 0; uint32_t percent = 0; uint32_t current_rpm; PPTable_t *pptable = smu->smu_table.driver_pptable; ret = sienna_cichlid_get_fan_speed_rpm(smu, ¤t_rpm); if (ret) return ret; percent = current_rpm * 100 / pptable->FanMaximumRpm; *speed = percent > 100 ? 100 : percent; return ret; } static int sienna_cichlid_get_power_profile_mode(struct smu_context *smu, char *buf) { DpmActivityMonitorCoeffInt_t activity_monitor; uint32_t i, size = 0; int16_t workload_type = 0; static const char *profile_name[] = { "BOOTUP_DEFAULT", "3D_FULL_SCREEN", "POWER_SAVING", "VIDEO", "VR", "COMPUTE", "CUSTOM"}; static const char *title[] = { "PROFILE_INDEX(NAME)", "CLOCK_TYPE(NAME)", "FPS", "MinFreqType", "MinActiveFreqType", "MinActiveFreq", "BoosterFreqType", "BoosterFreq", "PD_Data_limit_c", "PD_Data_error_coeff", "PD_Data_error_rate_coeff"}; int result = 0; if (!buf) return -EINVAL; size += sprintf(buf + size, "%16s %s %s %s %s %s %s %s %s %s %s\n", title[0], title[1], title[2], title[3], title[4], title[5], title[6], title[7], title[8], title[9], title[10]); for (i = 0; i <= PP_SMC_POWER_PROFILE_CUSTOM; i++) { /* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */ workload_type = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_WORKLOAD, i); if (workload_type < 0) return -EINVAL; result = smu_cmn_update_table(smu, SMU_TABLE_ACTIVITY_MONITOR_COEFF, workload_type, (void *)(&activity_monitor), false); if (result) { dev_err(smu->adev->dev, "[%s] Failed to get activity monitor!", __func__); return result; } size += sprintf(buf + size, "%2d %14s%s:\n", i, profile_name[i], (i == smu->power_profile_mode) ? "*" : " "); size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n", " ", 0, "GFXCLK", activity_monitor.Gfx_FPS, activity_monitor.Gfx_MinFreqStep, activity_monitor.Gfx_MinActiveFreqType, activity_monitor.Gfx_MinActiveFreq, activity_monitor.Gfx_BoosterFreqType, activity_monitor.Gfx_BoosterFreq, activity_monitor.Gfx_PD_Data_limit_c, activity_monitor.Gfx_PD_Data_error_coeff, activity_monitor.Gfx_PD_Data_error_rate_coeff); size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n", " ", 1, "SOCCLK", activity_monitor.Fclk_FPS, activity_monitor.Fclk_MinFreqStep, activity_monitor.Fclk_MinActiveFreqType, activity_monitor.Fclk_MinActiveFreq, activity_monitor.Fclk_BoosterFreqType, activity_monitor.Fclk_BoosterFreq, activity_monitor.Fclk_PD_Data_limit_c, activity_monitor.Fclk_PD_Data_error_coeff, activity_monitor.Fclk_PD_Data_error_rate_coeff); size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n", " ", 2, "MEMLK", activity_monitor.Mem_FPS, activity_monitor.Mem_MinFreqStep, activity_monitor.Mem_MinActiveFreqType, activity_monitor.Mem_MinActiveFreq, activity_monitor.Mem_BoosterFreqType, activity_monitor.Mem_BoosterFreq, activity_monitor.Mem_PD_Data_limit_c, activity_monitor.Mem_PD_Data_error_coeff, activity_monitor.Mem_PD_Data_error_rate_coeff); } return size; } static int sienna_cichlid_set_power_profile_mode(struct smu_context *smu, long *input, uint32_t size) { DpmActivityMonitorCoeffInt_t activity_monitor; int workload_type, ret = 0; smu->power_profile_mode = input[size]; if (smu->power_profile_mode > PP_SMC_POWER_PROFILE_CUSTOM) { dev_err(smu->adev->dev, "Invalid power profile mode %d\n", smu->power_profile_mode); return -EINVAL; } if (smu->power_profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) { ret = smu_cmn_update_table(smu, SMU_TABLE_ACTIVITY_MONITOR_COEFF, WORKLOAD_PPLIB_CUSTOM_BIT, (void *)(&activity_monitor), false); if (ret) { dev_err(smu->adev->dev, "[%s] Failed to get activity monitor!", __func__); return ret; } switch (input[0]) { case 0: /* Gfxclk */ activity_monitor.Gfx_FPS = input[1]; activity_monitor.Gfx_MinFreqStep = input[2]; activity_monitor.Gfx_MinActiveFreqType = input[3]; activity_monitor.Gfx_MinActiveFreq = input[4]; activity_monitor.Gfx_BoosterFreqType = input[5]; activity_monitor.Gfx_BoosterFreq = input[6]; activity_monitor.Gfx_PD_Data_limit_c = input[7]; activity_monitor.Gfx_PD_Data_error_coeff = input[8]; activity_monitor.Gfx_PD_Data_error_rate_coeff = input[9]; break; case 1: /* Socclk */ activity_monitor.Fclk_FPS = input[1]; activity_monitor.Fclk_MinFreqStep = input[2]; activity_monitor.Fclk_MinActiveFreqType = input[3]; activity_monitor.Fclk_MinActiveFreq = input[4]; activity_monitor.Fclk_BoosterFreqType = input[5]; activity_monitor.Fclk_BoosterFreq = input[6]; activity_monitor.Fclk_PD_Data_limit_c = input[7]; activity_monitor.Fclk_PD_Data_error_coeff = input[8]; activity_monitor.Fclk_PD_Data_error_rate_coeff = input[9]; break; case 2: /* Memlk */ activity_monitor.Mem_FPS = input[1]; activity_monitor.Mem_MinFreqStep = input[2]; activity_monitor.Mem_MinActiveFreqType = input[3]; activity_monitor.Mem_MinActiveFreq = input[4]; activity_monitor.Mem_BoosterFreqType = input[5]; activity_monitor.Mem_BoosterFreq = input[6]; activity_monitor.Mem_PD_Data_limit_c = input[7]; activity_monitor.Mem_PD_Data_error_coeff = input[8]; activity_monitor.Mem_PD_Data_error_rate_coeff = input[9]; break; } ret = smu_cmn_update_table(smu, SMU_TABLE_ACTIVITY_MONITOR_COEFF, WORKLOAD_PPLIB_CUSTOM_BIT, (void *)(&activity_monitor), true); if (ret) { dev_err(smu->adev->dev, "[%s] Failed to set activity monitor!", __func__); return ret; } } /* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */ workload_type = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_WORKLOAD, smu->power_profile_mode); if (workload_type < 0) return -EINVAL; smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetWorkloadMask, 1 << workload_type, NULL); return ret; } static int sienna_cichlid_notify_smc_display_config(struct smu_context *smu) { struct smu_clocks min_clocks = {0}; struct pp_display_clock_request clock_req; int ret = 0; min_clocks.dcef_clock = smu->display_config->min_dcef_set_clk; min_clocks.dcef_clock_in_sr = smu->display_config->min_dcef_deep_sleep_set_clk; min_clocks.memory_clock = smu->display_config->min_mem_set_clock; if (smu_cmn_feature_is_supported(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) { clock_req.clock_type = amd_pp_dcef_clock; clock_req.clock_freq_in_khz = min_clocks.dcef_clock * 10; ret = smu_v11_0_display_clock_voltage_request(smu, &clock_req); if (!ret) { if (smu_cmn_feature_is_supported(smu, SMU_FEATURE_DS_DCEFCLK_BIT)) { ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetMinDeepSleepDcefclk, min_clocks.dcef_clock_in_sr/100, NULL); if (ret) { dev_err(smu->adev->dev, "Attempt to set divider for DCEFCLK Failed!"); return ret; } } } else { dev_info(smu->adev->dev, "Attempt to set Hard Min for DCEFCLK Failed!"); } } if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) { ret = smu_v11_0_set_hard_freq_limited_range(smu, SMU_UCLK, min_clocks.memory_clock/100, 0); if (ret) { dev_err(smu->adev->dev, "[%s] Set hard min uclk failed!", __func__); return ret; } } return 0; } static int sienna_cichlid_set_watermarks_table(struct smu_context *smu, struct dm_pp_wm_sets_with_clock_ranges_soc15 *clock_ranges) { Watermarks_t *table = smu->smu_table.watermarks_table; int ret = 0; int i; if (clock_ranges) { if (clock_ranges->num_wm_dmif_sets > 4 || clock_ranges->num_wm_mcif_sets > 4) return -EINVAL; for (i = 0; i < clock_ranges->num_wm_dmif_sets; i++) { table->WatermarkRow[1][i].MinClock = cpu_to_le16((uint16_t) (clock_ranges->wm_dmif_clocks_ranges[i].wm_min_dcfclk_clk_in_khz / 1000)); table->WatermarkRow[1][i].MaxClock = cpu_to_le16((uint16_t) (clock_ranges->wm_dmif_clocks_ranges[i].wm_max_dcfclk_clk_in_khz / 1000)); table->WatermarkRow[1][i].MinUclk = cpu_to_le16((uint16_t) (clock_ranges->wm_dmif_clocks_ranges[i].wm_min_mem_clk_in_khz / 1000)); table->WatermarkRow[1][i].MaxUclk = cpu_to_le16((uint16_t) (clock_ranges->wm_dmif_clocks_ranges[i].wm_max_mem_clk_in_khz / 1000)); table->WatermarkRow[1][i].WmSetting = (uint8_t) clock_ranges->wm_dmif_clocks_ranges[i].wm_set_id; } for (i = 0; i < clock_ranges->num_wm_mcif_sets; i++) { table->WatermarkRow[0][i].MinClock = cpu_to_le16((uint16_t) (clock_ranges->wm_mcif_clocks_ranges[i].wm_min_socclk_clk_in_khz / 1000)); table->WatermarkRow[0][i].MaxClock = cpu_to_le16((uint16_t) (clock_ranges->wm_mcif_clocks_ranges[i].wm_max_socclk_clk_in_khz / 1000)); table->WatermarkRow[0][i].MinUclk = cpu_to_le16((uint16_t) (clock_ranges->wm_mcif_clocks_ranges[i].wm_min_mem_clk_in_khz / 1000)); table->WatermarkRow[0][i].MaxUclk = cpu_to_le16((uint16_t) (clock_ranges->wm_mcif_clocks_ranges[i].wm_max_mem_clk_in_khz / 1000)); table->WatermarkRow[0][i].WmSetting = (uint8_t) clock_ranges->wm_mcif_clocks_ranges[i].wm_set_id; } smu->watermarks_bitmap |= WATERMARKS_EXIST; } if ((smu->watermarks_bitmap & WATERMARKS_EXIST) && !(smu->watermarks_bitmap & WATERMARKS_LOADED)) { ret = smu_cmn_write_watermarks_table(smu); if (ret) { dev_err(smu->adev->dev, "Failed to update WMTABLE!"); return ret; } smu->watermarks_bitmap |= WATERMARKS_LOADED; } return 0; } static int sienna_cichlid_thermal_get_temperature(struct smu_context *smu, enum amd_pp_sensors sensor, uint32_t *value) { int ret = 0; if (!value) return -EINVAL; switch (sensor) { case AMDGPU_PP_SENSOR_HOTSPOT_TEMP: ret = sienna_cichlid_get_smu_metrics_data(smu, METRICS_TEMPERATURE_HOTSPOT, value); break; case AMDGPU_PP_SENSOR_EDGE_TEMP: ret = sienna_cichlid_get_smu_metrics_data(smu, METRICS_TEMPERATURE_EDGE, value); break; case AMDGPU_PP_SENSOR_MEM_TEMP: ret = sienna_cichlid_get_smu_metrics_data(smu, METRICS_TEMPERATURE_MEM, value); break; default: dev_err(smu->adev->dev, "Invalid sensor for retrieving temp\n"); return -EINVAL; } return ret; } static int sienna_cichlid_read_sensor(struct smu_context *smu, enum amd_pp_sensors sensor, void *data, uint32_t *size) { int ret = 0; struct smu_table_context *table_context = &smu->smu_table; PPTable_t *pptable = table_context->driver_pptable; if(!data || !size) return -EINVAL; mutex_lock(&smu->sensor_lock); switch (sensor) { case AMDGPU_PP_SENSOR_MAX_FAN_RPM: *(uint32_t *)data = pptable->FanMaximumRpm; *size = 4; break; case AMDGPU_PP_SENSOR_MEM_LOAD: case AMDGPU_PP_SENSOR_GPU_LOAD: ret = sienna_cichlid_get_current_activity_percent(smu, sensor, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_GPU_POWER: ret = sienna_cichlid_get_gpu_power(smu, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_HOTSPOT_TEMP: case AMDGPU_PP_SENSOR_EDGE_TEMP: case AMDGPU_PP_SENSOR_MEM_TEMP: ret = sienna_cichlid_thermal_get_temperature(smu, sensor, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_GFX_MCLK: ret = sienna_cichlid_get_current_clk_freq_by_table(smu, SMU_UCLK, (uint32_t *)data); *(uint32_t *)data *= 100; *size = 4; break; case AMDGPU_PP_SENSOR_GFX_SCLK: ret = sienna_cichlid_get_current_clk_freq_by_table(smu, SMU_GFXCLK, (uint32_t *)data); *(uint32_t *)data *= 100; *size = 4; break; case AMDGPU_PP_SENSOR_VDDGFX: ret = smu_v11_0_get_gfx_vdd(smu, (uint32_t *)data); *size = 4; break; default: ret = -EOPNOTSUPP; break; } mutex_unlock(&smu->sensor_lock); return ret; } static int sienna_cichlid_get_uclk_dpm_states(struct smu_context *smu, uint32_t *clocks_in_khz, uint32_t *num_states) { uint32_t num_discrete_levels = 0; uint16_t *dpm_levels = NULL; uint16_t i = 0; struct smu_table_context *table_context = &smu->smu_table; PPTable_t *driver_ppt = NULL; if (!clocks_in_khz || !num_states || !table_context->driver_pptable) return -EINVAL; driver_ppt = table_context->driver_pptable; num_discrete_levels = driver_ppt->DpmDescriptor[PPCLK_UCLK].NumDiscreteLevels; dpm_levels = driver_ppt->FreqTableUclk; if (num_discrete_levels == 0 || dpm_levels == NULL) return -EINVAL; *num_states = num_discrete_levels; for (i = 0; i < num_discrete_levels; i++) { /* convert to khz */ *clocks_in_khz = (*dpm_levels) * 1000; clocks_in_khz++; dpm_levels++; } return 0; } static int sienna_cichlid_get_thermal_temperature_range(struct smu_context *smu, struct smu_temperature_range *range) { struct smu_table_context *table_context = &smu->smu_table; struct smu_11_0_7_powerplay_table *powerplay_table = table_context->power_play_table; PPTable_t *pptable = smu->smu_table.driver_pptable; if (!range) return -EINVAL; memcpy(range, &smu11_thermal_policy[0], sizeof(struct smu_temperature_range)); range->max = pptable->TemperatureLimit[TEMP_EDGE] * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; range->edge_emergency_max = (pptable->TemperatureLimit[TEMP_EDGE] + CTF_OFFSET_EDGE) * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; range->hotspot_crit_max = pptable->TemperatureLimit[TEMP_HOTSPOT] * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; range->hotspot_emergency_max = (pptable->TemperatureLimit[TEMP_HOTSPOT] + CTF_OFFSET_HOTSPOT) * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; range->mem_crit_max = pptable->TemperatureLimit[TEMP_MEM] * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; range->mem_emergency_max = (pptable->TemperatureLimit[TEMP_MEM] + CTF_OFFSET_MEM)* SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; range->software_shutdown_temp = powerplay_table->software_shutdown_temp; return 0; } static int sienna_cichlid_display_disable_memory_clock_switch(struct smu_context *smu, bool disable_memory_clock_switch) { int ret = 0; struct smu_11_0_max_sustainable_clocks *max_sustainable_clocks = (struct smu_11_0_max_sustainable_clocks *) smu->smu_table.max_sustainable_clocks; uint32_t min_memory_clock = smu->hard_min_uclk_req_from_dal; uint32_t max_memory_clock = max_sustainable_clocks->uclock; if(smu->disable_uclk_switch == disable_memory_clock_switch) return 0; if(disable_memory_clock_switch) ret = smu_v11_0_set_hard_freq_limited_range(smu, SMU_UCLK, max_memory_clock, 0); else ret = smu_v11_0_set_hard_freq_limited_range(smu, SMU_UCLK, min_memory_clock, 0); if(!ret) smu->disable_uclk_switch = disable_memory_clock_switch; return ret; } static int sienna_cichlid_get_power_limit(struct smu_context *smu) { struct smu_11_0_7_powerplay_table *powerplay_table = (struct smu_11_0_7_powerplay_table *)smu->smu_table.power_play_table; PPTable_t *pptable = smu->smu_table.driver_pptable; uint32_t power_limit, od_percent; if (smu_v11_0_get_current_power_limit(smu, &power_limit)) { /* the last hope to figure out the ppt limit */ if (!pptable) { dev_err(smu->adev->dev, "Cannot get PPT limit due to pptable missing!"); return -EINVAL; } power_limit = pptable->SocketPowerLimitAc[PPT_THROTTLER_PPT0]; } smu->current_power_limit = power_limit; if (smu->od_enabled) { od_percent = le32_to_cpu(powerplay_table->overdrive_table.max[SMU_11_0_7_ODSETTING_POWERPERCENTAGE]); dev_dbg(smu->adev->dev, "ODSETTING_POWERPERCENTAGE: %d (default: %d)\n", od_percent, power_limit); power_limit *= (100 + od_percent); power_limit /= 100; } smu->max_power_limit = power_limit; return 0; } static int sienna_cichlid_update_pcie_parameters(struct smu_context *smu, uint32_t pcie_gen_cap, uint32_t pcie_width_cap) { struct smu_11_0_dpm_context *dpm_context = smu->smu_dpm.dpm_context; PPTable_t *pptable = smu->smu_table.driver_pptable; uint32_t smu_pcie_arg; int ret, i; /* lclk dpm table setup */ for (i = 0; i < MAX_PCIE_CONF; i++) { dpm_context->dpm_tables.pcie_table.pcie_gen[i] = pptable->PcieGenSpeed[i]; dpm_context->dpm_tables.pcie_table.pcie_lane[i] = pptable->PcieLaneCount[i]; } for (i = 0; i < NUM_LINK_LEVELS; i++) { smu_pcie_arg = (i << 16) | ((pptable->PcieGenSpeed[i] <= pcie_gen_cap) ? (pptable->PcieGenSpeed[i] << 8) : (pcie_gen_cap << 8)) | ((pptable->PcieLaneCount[i] <= pcie_width_cap) ? pptable->PcieLaneCount[i] : pcie_width_cap); ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_OverridePcieParameters, smu_pcie_arg, NULL); if (ret) return ret; if (pptable->PcieGenSpeed[i] > pcie_gen_cap) dpm_context->dpm_tables.pcie_table.pcie_gen[i] = pcie_gen_cap; if (pptable->PcieLaneCount[i] > pcie_width_cap) dpm_context->dpm_tables.pcie_table.pcie_lane[i] = pcie_width_cap; } return 0; } static int sienna_cichlid_get_dpm_ultimate_freq(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t *min, uint32_t *max) { struct amdgpu_device *adev = smu->adev; int ret; if (clk_type == SMU_GFXCLK) amdgpu_gfx_off_ctrl(adev, false); ret = smu_v11_0_get_dpm_ultimate_freq(smu, clk_type, min, max); if (clk_type == SMU_GFXCLK) amdgpu_gfx_off_ctrl(adev, true); return ret; } static int sienna_cichlid_run_btc(struct smu_context *smu) { return smu_cmn_send_smc_msg(smu, SMU_MSG_RunDcBtc, NULL); } static bool sienna_cichlid_is_baco_supported(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; uint32_t val; if (amdgpu_sriov_vf(adev) || (!smu_v11_0_baco_is_support(smu))) return false; val = RREG32_SOC15(NBIO, 0, mmRCC_BIF_STRAP0); return (val & RCC_BIF_STRAP0__STRAP_PX_CAPABLE_MASK) ? true : false; } static bool sienna_cichlid_is_mode1_reset_supported(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; uint32_t val; u32 smu_version; /** * SRIOV env will not support SMU mode1 reset * PM FW support mode1 reset from 58.26 */ smu_cmn_get_smc_version(smu, NULL, &smu_version); if (amdgpu_sriov_vf(adev) || (smu_version < 0x003a1a00)) return false; /** * mode1 reset relies on PSP, so we should check if * PSP is alive. */ val = RREG32_SOC15(MP0, 0, mmMP0_SMN_C2PMSG_81); return val != 0x0; } static void sienna_cichlid_dump_pptable(struct smu_context *smu) { struct smu_table_context *table_context = &smu->smu_table; PPTable_t *pptable = table_context->driver_pptable; int i; dev_info(smu->adev->dev, "Dumped PPTable:\n"); dev_info(smu->adev->dev, "Version = 0x%08x\n", pptable->Version); dev_info(smu->adev->dev, "FeaturesToRun[0] = 0x%08x\n", pptable->FeaturesToRun[0]); dev_info(smu->adev->dev, "FeaturesToRun[1] = 0x%08x\n", pptable->FeaturesToRun[1]); for (i = 0; i < PPT_THROTTLER_COUNT; i++) { dev_info(smu->adev->dev, "SocketPowerLimitAc[%d] = 0x%x\n", i, pptable->SocketPowerLimitAc[i]); dev_info(smu->adev->dev, "SocketPowerLimitAcTau[%d] = 0x%x\n", i, pptable->SocketPowerLimitAcTau[i]); dev_info(smu->adev->dev, "SocketPowerLimitDc[%d] = 0x%x\n", i, pptable->SocketPowerLimitDc[i]); dev_info(smu->adev->dev, "SocketPowerLimitDcTau[%d] = 0x%x\n", i, pptable->SocketPowerLimitDcTau[i]); } for (i = 0; i < TDC_THROTTLER_COUNT; i++) { dev_info(smu->adev->dev, "TdcLimit[%d] = 0x%x\n", i, pptable->TdcLimit[i]); dev_info(smu->adev->dev, "TdcLimitTau[%d] = 0x%x\n", i, pptable->TdcLimitTau[i]); } for (i = 0; i < TEMP_COUNT; i++) { dev_info(smu->adev->dev, "TemperatureLimit[%d] = 0x%x\n", i, pptable->TemperatureLimit[i]); } dev_info(smu->adev->dev, "FitLimit = 0x%x\n", pptable->FitLimit); dev_info(smu->adev->dev, "TotalPowerConfig = 0x%x\n", pptable->TotalPowerConfig); dev_info(smu->adev->dev, "TotalPowerPadding[0] = 0x%x\n", pptable->TotalPowerPadding[0]); dev_info(smu->adev->dev, "TotalPowerPadding[1] = 0x%x\n", pptable->TotalPowerPadding[1]); dev_info(smu->adev->dev, "TotalPowerPadding[2] = 0x%x\n", pptable->TotalPowerPadding[2]); dev_info(smu->adev->dev, "ApccPlusResidencyLimit = 0x%x\n", pptable->ApccPlusResidencyLimit); for (i = 0; i < NUM_SMNCLK_DPM_LEVELS; i++) { dev_info(smu->adev->dev, "SmnclkDpmFreq[%d] = 0x%x\n", i, pptable->SmnclkDpmFreq[i]); dev_info(smu->adev->dev, "SmnclkDpmVoltage[%d] = 0x%x\n", i, pptable->SmnclkDpmVoltage[i]); } dev_info(smu->adev->dev, "PaddingAPCC[0] = 0x%x\n", pptable->PaddingAPCC[0]); dev_info(smu->adev->dev, "PaddingAPCC[1] = 0x%x\n", pptable->PaddingAPCC[1]); dev_info(smu->adev->dev, "PaddingAPCC[2] = 0x%x\n", pptable->PaddingAPCC[2]); dev_info(smu->adev->dev, "PaddingAPCC[3] = 0x%x\n", pptable->PaddingAPCC[3]); dev_info(smu->adev->dev, "ThrottlerControlMask = 0x%x\n", pptable->ThrottlerControlMask); dev_info(smu->adev->dev, "FwDStateMask = 0x%x\n", pptable->FwDStateMask); dev_info(smu->adev->dev, "UlvVoltageOffsetSoc = 0x%x\n", pptable->UlvVoltageOffsetSoc); dev_info(smu->adev->dev, "UlvVoltageOffsetGfx = 0x%x\n", pptable->UlvVoltageOffsetGfx); dev_info(smu->adev->dev, "MinVoltageUlvGfx = 0x%x\n", pptable->MinVoltageUlvGfx); dev_info(smu->adev->dev, "MinVoltageUlvSoc = 0x%x\n", pptable->MinVoltageUlvSoc); dev_info(smu->adev->dev, "SocLIVmin = 0x%x\n", pptable->SocLIVmin); dev_info(smu->adev->dev, "PaddingLIVmin = 0x%x\n", pptable->PaddingLIVmin); dev_info(smu->adev->dev, "GceaLinkMgrIdleThreshold = 0x%x\n", pptable->GceaLinkMgrIdleThreshold); dev_info(smu->adev->dev, "paddingRlcUlvParams[0] = 0x%x\n", pptable->paddingRlcUlvParams[0]); dev_info(smu->adev->dev, "paddingRlcUlvParams[1] = 0x%x\n", pptable->paddingRlcUlvParams[1]); dev_info(smu->adev->dev, "paddingRlcUlvParams[2] = 0x%x\n", pptable->paddingRlcUlvParams[2]); dev_info(smu->adev->dev, "MinVoltageGfx = 0x%x\n", pptable->MinVoltageGfx); dev_info(smu->adev->dev, "MinVoltageSoc = 0x%x\n", pptable->MinVoltageSoc); dev_info(smu->adev->dev, "MaxVoltageGfx = 0x%x\n", pptable->MaxVoltageGfx); dev_info(smu->adev->dev, "MaxVoltageSoc = 0x%x\n", pptable->MaxVoltageSoc); dev_info(smu->adev->dev, "LoadLineResistanceGfx = 0x%x\n", pptable->LoadLineResistanceGfx); dev_info(smu->adev->dev, "LoadLineResistanceSoc = 0x%x\n", pptable->LoadLineResistanceSoc); dev_info(smu->adev->dev, "VDDGFX_TVmin = 0x%x\n", pptable->VDDGFX_TVmin); dev_info(smu->adev->dev, "VDDSOC_TVmin = 0x%x\n", pptable->VDDSOC_TVmin); dev_info(smu->adev->dev, "VDDGFX_Vmin_HiTemp = 0x%x\n", pptable->VDDGFX_Vmin_HiTemp); dev_info(smu->adev->dev, "VDDGFX_Vmin_LoTemp = 0x%x\n", pptable->VDDGFX_Vmin_LoTemp); dev_info(smu->adev->dev, "VDDSOC_Vmin_HiTemp = 0x%x\n", pptable->VDDSOC_Vmin_HiTemp); dev_info(smu->adev->dev, "VDDSOC_Vmin_LoTemp = 0x%x\n", pptable->VDDSOC_Vmin_LoTemp); dev_info(smu->adev->dev, "VDDGFX_TVminHystersis = 0x%x\n", pptable->VDDGFX_TVminHystersis); dev_info(smu->adev->dev, "VDDSOC_TVminHystersis = 0x%x\n", pptable->VDDSOC_TVminHystersis); dev_info(smu->adev->dev, "[PPCLK_GFXCLK]\n" " .VoltageMode = 0x%02x\n" " .SnapToDiscrete = 0x%02x\n" " .NumDiscreteLevels = 0x%02x\n" " .padding = 0x%02x\n" " .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n" " .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n" " .SsFmin = 0x%04x\n" " .Padding_16 = 0x%04x\n", pptable->DpmDescriptor[PPCLK_GFXCLK].VoltageMode, pptable->DpmDescriptor[PPCLK_GFXCLK].SnapToDiscrete, pptable->DpmDescriptor[PPCLK_GFXCLK].NumDiscreteLevels, pptable->DpmDescriptor[PPCLK_GFXCLK].Padding, pptable->DpmDescriptor[PPCLK_GFXCLK].ConversionToAvfsClk.m, pptable->DpmDescriptor[PPCLK_GFXCLK].ConversionToAvfsClk.b, pptable->DpmDescriptor[PPCLK_GFXCLK].SsCurve.a, pptable->DpmDescriptor[PPCLK_GFXCLK].SsCurve.b, pptable->DpmDescriptor[PPCLK_GFXCLK].SsCurve.c, pptable->DpmDescriptor[PPCLK_GFXCLK].SsFmin, pptable->DpmDescriptor[PPCLK_GFXCLK].Padding16); dev_info(smu->adev->dev, "[PPCLK_SOCCLK]\n" " .VoltageMode = 0x%02x\n" " .SnapToDiscrete = 0x%02x\n" " .NumDiscreteLevels = 0x%02x\n" " .padding = 0x%02x\n" " .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n" " .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n" " .SsFmin = 0x%04x\n" " .Padding_16 = 0x%04x\n", pptable->DpmDescriptor[PPCLK_SOCCLK].VoltageMode, pptable->DpmDescriptor[PPCLK_SOCCLK].SnapToDiscrete, pptable->DpmDescriptor[PPCLK_SOCCLK].NumDiscreteLevels, pptable->DpmDescriptor[PPCLK_SOCCLK].Padding, pptable->DpmDescriptor[PPCLK_SOCCLK].ConversionToAvfsClk.m, pptable->DpmDescriptor[PPCLK_SOCCLK].ConversionToAvfsClk.b, pptable->DpmDescriptor[PPCLK_SOCCLK].SsCurve.a, pptable->DpmDescriptor[PPCLK_SOCCLK].SsCurve.b, pptable->DpmDescriptor[PPCLK_SOCCLK].SsCurve.c, pptable->DpmDescriptor[PPCLK_SOCCLK].SsFmin, pptable->DpmDescriptor[PPCLK_SOCCLK].Padding16); dev_info(smu->adev->dev, "[PPCLK_UCLK]\n" " .VoltageMode = 0x%02x\n" " .SnapToDiscrete = 0x%02x\n" " .NumDiscreteLevels = 0x%02x\n" " .padding = 0x%02x\n" " .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n" " .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n" " .SsFmin = 0x%04x\n" " .Padding_16 = 0x%04x\n", pptable->DpmDescriptor[PPCLK_UCLK].VoltageMode, pptable->DpmDescriptor[PPCLK_UCLK].SnapToDiscrete, pptable->DpmDescriptor[PPCLK_UCLK].NumDiscreteLevels, pptable->DpmDescriptor[PPCLK_UCLK].Padding, pptable->DpmDescriptor[PPCLK_UCLK].ConversionToAvfsClk.m, pptable->DpmDescriptor[PPCLK_UCLK].ConversionToAvfsClk.b, pptable->DpmDescriptor[PPCLK_UCLK].SsCurve.a, pptable->DpmDescriptor[PPCLK_UCLK].SsCurve.b, pptable->DpmDescriptor[PPCLK_UCLK].SsCurve.c, pptable->DpmDescriptor[PPCLK_UCLK].SsFmin, pptable->DpmDescriptor[PPCLK_UCLK].Padding16); dev_info(smu->adev->dev, "[PPCLK_FCLK]\n" " .VoltageMode = 0x%02x\n" " .SnapToDiscrete = 0x%02x\n" " .NumDiscreteLevels = 0x%02x\n" " .padding = 0x%02x\n" " .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n" " .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n" " .SsFmin = 0x%04x\n" " .Padding_16 = 0x%04x\n", pptable->DpmDescriptor[PPCLK_FCLK].VoltageMode, pptable->DpmDescriptor[PPCLK_FCLK].SnapToDiscrete, pptable->DpmDescriptor[PPCLK_FCLK].NumDiscreteLevels, pptable->DpmDescriptor[PPCLK_FCLK].Padding, pptable->DpmDescriptor[PPCLK_FCLK].ConversionToAvfsClk.m, pptable->DpmDescriptor[PPCLK_FCLK].ConversionToAvfsClk.b, pptable->DpmDescriptor[PPCLK_FCLK].SsCurve.a, pptable->DpmDescriptor[PPCLK_FCLK].SsCurve.b, pptable->DpmDescriptor[PPCLK_FCLK].SsCurve.c, pptable->DpmDescriptor[PPCLK_FCLK].SsFmin, pptable->DpmDescriptor[PPCLK_FCLK].Padding16); dev_info(smu->adev->dev, "[PPCLK_DCLK_0]\n" " .VoltageMode = 0x%02x\n" " .SnapToDiscrete = 0x%02x\n" " .NumDiscreteLevels = 0x%02x\n" " .padding = 0x%02x\n" " .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n" " .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n" " .SsFmin = 0x%04x\n" " .Padding_16 = 0x%04x\n", pptable->DpmDescriptor[PPCLK_DCLK_0].VoltageMode, pptable->DpmDescriptor[PPCLK_DCLK_0].SnapToDiscrete, pptable->DpmDescriptor[PPCLK_DCLK_0].NumDiscreteLevels, pptable->DpmDescriptor[PPCLK_DCLK_0].Padding, pptable->DpmDescriptor[PPCLK_DCLK_0].ConversionToAvfsClk.m, pptable->DpmDescriptor[PPCLK_DCLK_0].ConversionToAvfsClk.b, pptable->DpmDescriptor[PPCLK_DCLK_0].SsCurve.a, pptable->DpmDescriptor[PPCLK_DCLK_0].SsCurve.b, pptable->DpmDescriptor[PPCLK_DCLK_0].SsCurve.c, pptable->DpmDescriptor[PPCLK_DCLK_0].SsFmin, pptable->DpmDescriptor[PPCLK_DCLK_0].Padding16); dev_info(smu->adev->dev, "[PPCLK_VCLK_0]\n" " .VoltageMode = 0x%02x\n" " .SnapToDiscrete = 0x%02x\n" " .NumDiscreteLevels = 0x%02x\n" " .padding = 0x%02x\n" " .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n" " .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n" " .SsFmin = 0x%04x\n" " .Padding_16 = 0x%04x\n", pptable->DpmDescriptor[PPCLK_VCLK_0].VoltageMode, pptable->DpmDescriptor[PPCLK_VCLK_0].SnapToDiscrete, pptable->DpmDescriptor[PPCLK_VCLK_0].NumDiscreteLevels, pptable->DpmDescriptor[PPCLK_VCLK_0].Padding, pptable->DpmDescriptor[PPCLK_VCLK_0].ConversionToAvfsClk.m, pptable->DpmDescriptor[PPCLK_VCLK_0].ConversionToAvfsClk.b, pptable->DpmDescriptor[PPCLK_VCLK_0].SsCurve.a, pptable->DpmDescriptor[PPCLK_VCLK_0].SsCurve.b, pptable->DpmDescriptor[PPCLK_VCLK_0].SsCurve.c, pptable->DpmDescriptor[PPCLK_VCLK_0].SsFmin, pptable->DpmDescriptor[PPCLK_VCLK_0].Padding16); dev_info(smu->adev->dev, "[PPCLK_DCLK_1]\n" " .VoltageMode = 0x%02x\n" " .SnapToDiscrete = 0x%02x\n" " .NumDiscreteLevels = 0x%02x\n" " .padding = 0x%02x\n" " .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n" " .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n" " .SsFmin = 0x%04x\n" " .Padding_16 = 0x%04x\n", pptable->DpmDescriptor[PPCLK_DCLK_1].VoltageMode, pptable->DpmDescriptor[PPCLK_DCLK_1].SnapToDiscrete, pptable->DpmDescriptor[PPCLK_DCLK_1].NumDiscreteLevels, pptable->DpmDescriptor[PPCLK_DCLK_1].Padding, pptable->DpmDescriptor[PPCLK_DCLK_1].ConversionToAvfsClk.m, pptable->DpmDescriptor[PPCLK_DCLK_1].ConversionToAvfsClk.b, pptable->DpmDescriptor[PPCLK_DCLK_1].SsCurve.a, pptable->DpmDescriptor[PPCLK_DCLK_1].SsCurve.b, pptable->DpmDescriptor[PPCLK_DCLK_1].SsCurve.c, pptable->DpmDescriptor[PPCLK_DCLK_1].SsFmin, pptable->DpmDescriptor[PPCLK_DCLK_1].Padding16); dev_info(smu->adev->dev, "[PPCLK_VCLK_1]\n" " .VoltageMode = 0x%02x\n" " .SnapToDiscrete = 0x%02x\n" " .NumDiscreteLevels = 0x%02x\n" " .padding = 0x%02x\n" " .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n" " .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n" " .SsFmin = 0x%04x\n" " .Padding_16 = 0x%04x\n", pptable->DpmDescriptor[PPCLK_VCLK_1].VoltageMode, pptable->DpmDescriptor[PPCLK_VCLK_1].SnapToDiscrete, pptable->DpmDescriptor[PPCLK_VCLK_1].NumDiscreteLevels, pptable->DpmDescriptor[PPCLK_VCLK_1].Padding, pptable->DpmDescriptor[PPCLK_VCLK_1].ConversionToAvfsClk.m, pptable->DpmDescriptor[PPCLK_VCLK_1].ConversionToAvfsClk.b, pptable->DpmDescriptor[PPCLK_VCLK_1].SsCurve.a, pptable->DpmDescriptor[PPCLK_VCLK_1].SsCurve.b, pptable->DpmDescriptor[PPCLK_VCLK_1].SsCurve.c, pptable->DpmDescriptor[PPCLK_VCLK_1].SsFmin, pptable->DpmDescriptor[PPCLK_VCLK_1].Padding16); dev_info(smu->adev->dev, "FreqTableGfx\n"); for (i = 0; i < NUM_GFXCLK_DPM_LEVELS; i++) dev_info(smu->adev->dev, " .[%02d] = 0x%x\n", i, pptable->FreqTableGfx[i]); dev_info(smu->adev->dev, "FreqTableVclk\n"); for (i = 0; i < NUM_VCLK_DPM_LEVELS; i++) dev_info(smu->adev->dev, " .[%02d] = 0x%x\n", i, pptable->FreqTableVclk[i]); dev_info(smu->adev->dev, "FreqTableDclk\n"); for (i = 0; i < NUM_DCLK_DPM_LEVELS; i++) dev_info(smu->adev->dev, " .[%02d] = 0x%x\n", i, pptable->FreqTableDclk[i]); dev_info(smu->adev->dev, "FreqTableSocclk\n"); for (i = 0; i < NUM_SOCCLK_DPM_LEVELS; i++) dev_info(smu->adev->dev, " .[%02d] = 0x%x\n", i, pptable->FreqTableSocclk[i]); dev_info(smu->adev->dev, "FreqTableUclk\n"); for (i = 0; i < NUM_UCLK_DPM_LEVELS; i++) dev_info(smu->adev->dev, " .[%02d] = 0x%x\n", i, pptable->FreqTableUclk[i]); dev_info(smu->adev->dev, "FreqTableFclk\n"); for (i = 0; i < NUM_FCLK_DPM_LEVELS; i++) dev_info(smu->adev->dev, " .[%02d] = 0x%x\n", i, pptable->FreqTableFclk[i]); dev_info(smu->adev->dev, "Paddingclks[0] = 0x%x\n", pptable->Paddingclks[0]); dev_info(smu->adev->dev, "Paddingclks[1] = 0x%x\n", pptable->Paddingclks[1]); dev_info(smu->adev->dev, "Paddingclks[2] = 0x%x\n", pptable->Paddingclks[2]); dev_info(smu->adev->dev, "Paddingclks[3] = 0x%x\n", pptable->Paddingclks[3]); dev_info(smu->adev->dev, "Paddingclks[4] = 0x%x\n", pptable->Paddingclks[4]); dev_info(smu->adev->dev, "Paddingclks[5] = 0x%x\n", pptable->Paddingclks[5]); dev_info(smu->adev->dev, "Paddingclks[6] = 0x%x\n", pptable->Paddingclks[6]); dev_info(smu->adev->dev, "Paddingclks[7] = 0x%x\n", pptable->Paddingclks[7]); dev_info(smu->adev->dev, "Paddingclks[8] = 0x%x\n", pptable->Paddingclks[8]); dev_info(smu->adev->dev, "Paddingclks[9] = 0x%x\n", pptable->Paddingclks[9]); dev_info(smu->adev->dev, "Paddingclks[10] = 0x%x\n", pptable->Paddingclks[10]); dev_info(smu->adev->dev, "Paddingclks[11] = 0x%x\n", pptable->Paddingclks[11]); dev_info(smu->adev->dev, "Paddingclks[12] = 0x%x\n", pptable->Paddingclks[12]); dev_info(smu->adev->dev, "Paddingclks[13] = 0x%x\n", pptable->Paddingclks[13]); dev_info(smu->adev->dev, "Paddingclks[14] = 0x%x\n", pptable->Paddingclks[14]); dev_info(smu->adev->dev, "Paddingclks[15] = 0x%x\n", pptable->Paddingclks[15]); dev_info(smu->adev->dev, "DcModeMaxFreq\n"); dev_info(smu->adev->dev, " .PPCLK_GFXCLK = 0x%x\n", pptable->DcModeMaxFreq[PPCLK_GFXCLK]); dev_info(smu->adev->dev, " .PPCLK_SOCCLK = 0x%x\n", pptable->DcModeMaxFreq[PPCLK_SOCCLK]); dev_info(smu->adev->dev, " .PPCLK_UCLK = 0x%x\n", pptable->DcModeMaxFreq[PPCLK_UCLK]); dev_info(smu->adev->dev, " .PPCLK_FCLK = 0x%x\n", pptable->DcModeMaxFreq[PPCLK_FCLK]); dev_info(smu->adev->dev, " .PPCLK_DCLK_0 = 0x%x\n", pptable->DcModeMaxFreq[PPCLK_DCLK_0]); dev_info(smu->adev->dev, " .PPCLK_VCLK_0 = 0x%x\n", pptable->DcModeMaxFreq[PPCLK_VCLK_0]); dev_info(smu->adev->dev, " .PPCLK_DCLK_1 = 0x%x\n", pptable->DcModeMaxFreq[PPCLK_DCLK_1]); dev_info(smu->adev->dev, " .PPCLK_VCLK_1 = 0x%x\n", pptable->DcModeMaxFreq[PPCLK_VCLK_1]); dev_info(smu->adev->dev, "FreqTableUclkDiv\n"); for (i = 0; i < NUM_UCLK_DPM_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->FreqTableUclkDiv[i]); dev_info(smu->adev->dev, "FclkBoostFreq = 0x%x\n", pptable->FclkBoostFreq); dev_info(smu->adev->dev, "FclkParamPadding = 0x%x\n", pptable->FclkParamPadding); dev_info(smu->adev->dev, "Mp0clkFreq\n"); for (i = 0; i < NUM_MP0CLK_DPM_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->Mp0clkFreq[i]); dev_info(smu->adev->dev, "Mp0DpmVoltage\n"); for (i = 0; i < NUM_MP0CLK_DPM_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->Mp0DpmVoltage[i]); dev_info(smu->adev->dev, "MemVddciVoltage\n"); for (i = 0; i < NUM_UCLK_DPM_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->MemVddciVoltage[i]); dev_info(smu->adev->dev, "MemMvddVoltage\n"); for (i = 0; i < NUM_UCLK_DPM_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->MemMvddVoltage[i]); dev_info(smu->adev->dev, "GfxclkFgfxoffEntry = 0x%x\n", pptable->GfxclkFgfxoffEntry); dev_info(smu->adev->dev, "GfxclkFinit = 0x%x\n", pptable->GfxclkFinit); dev_info(smu->adev->dev, "GfxclkFidle = 0x%x\n", pptable->GfxclkFidle); dev_info(smu->adev->dev, "GfxclkSource = 0x%x\n", pptable->GfxclkSource); dev_info(smu->adev->dev, "GfxclkPadding = 0x%x\n", pptable->GfxclkPadding); dev_info(smu->adev->dev, "GfxGpoSubFeatureMask = 0x%x\n", pptable->GfxGpoSubFeatureMask); dev_info(smu->adev->dev, "GfxGpoEnabledWorkPolicyMask = 0x%x\n", pptable->GfxGpoEnabledWorkPolicyMask); dev_info(smu->adev->dev, "GfxGpoDisabledWorkPolicyMask = 0x%x\n", pptable->GfxGpoDisabledWorkPolicyMask); dev_info(smu->adev->dev, "GfxGpoPadding[0] = 0x%x\n", pptable->GfxGpoPadding[0]); dev_info(smu->adev->dev, "GfxGpoVotingAllow = 0x%x\n", pptable->GfxGpoVotingAllow); dev_info(smu->adev->dev, "GfxGpoPadding32[0] = 0x%x\n", pptable->GfxGpoPadding32[0]); dev_info(smu->adev->dev, "GfxGpoPadding32[1] = 0x%x\n", pptable->GfxGpoPadding32[1]); dev_info(smu->adev->dev, "GfxGpoPadding32[2] = 0x%x\n", pptable->GfxGpoPadding32[2]); dev_info(smu->adev->dev, "GfxGpoPadding32[3] = 0x%x\n", pptable->GfxGpoPadding32[3]); dev_info(smu->adev->dev, "GfxDcsFopt = 0x%x\n", pptable->GfxDcsFopt); dev_info(smu->adev->dev, "GfxDcsFclkFopt = 0x%x\n", pptable->GfxDcsFclkFopt); dev_info(smu->adev->dev, "GfxDcsUclkFopt = 0x%x\n", pptable->GfxDcsUclkFopt); dev_info(smu->adev->dev, "DcsGfxOffVoltage = 0x%x\n", pptable->DcsGfxOffVoltage); dev_info(smu->adev->dev, "DcsMinGfxOffTime = 0x%x\n", pptable->DcsMinGfxOffTime); dev_info(smu->adev->dev, "DcsMaxGfxOffTime = 0x%x\n", pptable->DcsMaxGfxOffTime); dev_info(smu->adev->dev, "DcsMinCreditAccum = 0x%x\n", pptable->DcsMinCreditAccum); dev_info(smu->adev->dev, "DcsExitHysteresis = 0x%x\n", pptable->DcsExitHysteresis); dev_info(smu->adev->dev, "DcsTimeout = 0x%x\n", pptable->DcsTimeout); dev_info(smu->adev->dev, "DcsParamPadding[0] = 0x%x\n", pptable->DcsParamPadding[0]); dev_info(smu->adev->dev, "DcsParamPadding[1] = 0x%x\n", pptable->DcsParamPadding[1]); dev_info(smu->adev->dev, "DcsParamPadding[2] = 0x%x\n", pptable->DcsParamPadding[2]); dev_info(smu->adev->dev, "DcsParamPadding[3] = 0x%x\n", pptable->DcsParamPadding[3]); dev_info(smu->adev->dev, "DcsParamPadding[4] = 0x%x\n", pptable->DcsParamPadding[4]); dev_info(smu->adev->dev, "FlopsPerByteTable\n"); for (i = 0; i < RLC_PACE_TABLE_NUM_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->FlopsPerByteTable[i]); dev_info(smu->adev->dev, "LowestUclkReservedForUlv = 0x%x\n", pptable->LowestUclkReservedForUlv); dev_info(smu->adev->dev, "vddingMem[0] = 0x%x\n", pptable->PaddingMem[0]); dev_info(smu->adev->dev, "vddingMem[1] = 0x%x\n", pptable->PaddingMem[1]); dev_info(smu->adev->dev, "vddingMem[2] = 0x%x\n", pptable->PaddingMem[2]); dev_info(smu->adev->dev, "UclkDpmPstates\n"); for (i = 0; i < NUM_UCLK_DPM_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->UclkDpmPstates[i]); dev_info(smu->adev->dev, "UclkDpmSrcFreqRange\n"); dev_info(smu->adev->dev, " .Fmin = 0x%x\n", pptable->UclkDpmSrcFreqRange.Fmin); dev_info(smu->adev->dev, " .Fmax = 0x%x\n", pptable->UclkDpmSrcFreqRange.Fmax); dev_info(smu->adev->dev, "UclkDpmTargFreqRange\n"); dev_info(smu->adev->dev, " .Fmin = 0x%x\n", pptable->UclkDpmTargFreqRange.Fmin); dev_info(smu->adev->dev, " .Fmax = 0x%x\n", pptable->UclkDpmTargFreqRange.Fmax); dev_info(smu->adev->dev, "UclkDpmMidstepFreq = 0x%x\n", pptable->UclkDpmMidstepFreq); dev_info(smu->adev->dev, "UclkMidstepPadding = 0x%x\n", pptable->UclkMidstepPadding); dev_info(smu->adev->dev, "PcieGenSpeed\n"); for (i = 0; i < NUM_LINK_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->PcieGenSpeed[i]); dev_info(smu->adev->dev, "PcieLaneCount\n"); for (i = 0; i < NUM_LINK_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->PcieLaneCount[i]); dev_info(smu->adev->dev, "LclkFreq\n"); for (i = 0; i < NUM_LINK_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->LclkFreq[i]); dev_info(smu->adev->dev, "FanStopTemp = 0x%x\n", pptable->FanStopTemp); dev_info(smu->adev->dev, "FanStartTemp = 0x%x\n", pptable->FanStartTemp); dev_info(smu->adev->dev, "FanGain\n"); for (i = 0; i < TEMP_COUNT; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->FanGain[i]); dev_info(smu->adev->dev, "FanPwmMin = 0x%x\n", pptable->FanPwmMin); dev_info(smu->adev->dev, "FanAcousticLimitRpm = 0x%x\n", pptable->FanAcousticLimitRpm); dev_info(smu->adev->dev, "FanThrottlingRpm = 0x%x\n", pptable->FanThrottlingRpm); dev_info(smu->adev->dev, "FanMaximumRpm = 0x%x\n", pptable->FanMaximumRpm); dev_info(smu->adev->dev, "MGpuFanBoostLimitRpm = 0x%x\n", pptable->MGpuFanBoostLimitRpm); dev_info(smu->adev->dev, "FanTargetTemperature = 0x%x\n", pptable->FanTargetTemperature); dev_info(smu->adev->dev, "FanTargetGfxclk = 0x%x\n", pptable->FanTargetGfxclk); dev_info(smu->adev->dev, "FanPadding16 = 0x%x\n", pptable->FanPadding16); dev_info(smu->adev->dev, "FanTempInputSelect = 0x%x\n", pptable->FanTempInputSelect); dev_info(smu->adev->dev, "FanPadding = 0x%x\n", pptable->FanPadding); dev_info(smu->adev->dev, "FanZeroRpmEnable = 0x%x\n", pptable->FanZeroRpmEnable); dev_info(smu->adev->dev, "FanTachEdgePerRev = 0x%x\n", pptable->FanTachEdgePerRev); dev_info(smu->adev->dev, "FuzzyFan_ErrorSetDelta = 0x%x\n", pptable->FuzzyFan_ErrorSetDelta); dev_info(smu->adev->dev, "FuzzyFan_ErrorRateSetDelta = 0x%x\n", pptable->FuzzyFan_ErrorRateSetDelta); dev_info(smu->adev->dev, "FuzzyFan_PwmSetDelta = 0x%x\n", pptable->FuzzyFan_PwmSetDelta); dev_info(smu->adev->dev, "FuzzyFan_Reserved = 0x%x\n", pptable->FuzzyFan_Reserved); dev_info(smu->adev->dev, "OverrideAvfsGb[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->OverrideAvfsGb[AVFS_VOLTAGE_GFX]); dev_info(smu->adev->dev, "OverrideAvfsGb[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->OverrideAvfsGb[AVFS_VOLTAGE_SOC]); dev_info(smu->adev->dev, "dBtcGbGfxDfllModelSelect = 0x%x\n", pptable->dBtcGbGfxDfllModelSelect); dev_info(smu->adev->dev, "Padding8_Avfs = 0x%x\n", pptable->Padding8_Avfs); dev_info(smu->adev->dev, "qAvfsGb[AVFS_VOLTAGE_GFX]{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->qAvfsGb[AVFS_VOLTAGE_GFX].a, pptable->qAvfsGb[AVFS_VOLTAGE_GFX].b, pptable->qAvfsGb[AVFS_VOLTAGE_GFX].c); dev_info(smu->adev->dev, "qAvfsGb[AVFS_VOLTAGE_SOC]{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->qAvfsGb[AVFS_VOLTAGE_SOC].a, pptable->qAvfsGb[AVFS_VOLTAGE_SOC].b, pptable->qAvfsGb[AVFS_VOLTAGE_SOC].c); dev_info(smu->adev->dev, "dBtcGbGfxPll{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->dBtcGbGfxPll.a, pptable->dBtcGbGfxPll.b, pptable->dBtcGbGfxPll.c); dev_info(smu->adev->dev, "dBtcGbGfxAfll{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->dBtcGbGfxDfll.a, pptable->dBtcGbGfxDfll.b, pptable->dBtcGbGfxDfll.c); dev_info(smu->adev->dev, "dBtcGbSoc{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->dBtcGbSoc.a, pptable->dBtcGbSoc.b, pptable->dBtcGbSoc.c); dev_info(smu->adev->dev, "qAgingGb[AVFS_VOLTAGE_GFX]{m = 0x%x b = 0x%x}\n", pptable->qAgingGb[AVFS_VOLTAGE_GFX].m, pptable->qAgingGb[AVFS_VOLTAGE_GFX].b); dev_info(smu->adev->dev, "qAgingGb[AVFS_VOLTAGE_SOC]{m = 0x%x b = 0x%x}\n", pptable->qAgingGb[AVFS_VOLTAGE_SOC].m, pptable->qAgingGb[AVFS_VOLTAGE_SOC].b); dev_info(smu->adev->dev, "PiecewiseLinearDroopIntGfxDfll\n"); for (i = 0; i < NUM_PIECE_WISE_LINEAR_DROOP_MODEL_VF_POINTS; i++) { dev_info(smu->adev->dev, " Fset[%d] = 0x%x\n", i, pptable->PiecewiseLinearDroopIntGfxDfll.Fset[i]); dev_info(smu->adev->dev, " Vdroop[%d] = 0x%x\n", i, pptable->PiecewiseLinearDroopIntGfxDfll.Vdroop[i]); } dev_info(smu->adev->dev, "qStaticVoltageOffset[AVFS_VOLTAGE_GFX]{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->qStaticVoltageOffset[AVFS_VOLTAGE_GFX].a, pptable->qStaticVoltageOffset[AVFS_VOLTAGE_GFX].b, pptable->qStaticVoltageOffset[AVFS_VOLTAGE_GFX].c); dev_info(smu->adev->dev, "qStaticVoltageOffset[AVFS_VOLTAGE_SOC]{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->qStaticVoltageOffset[AVFS_VOLTAGE_SOC].a, pptable->qStaticVoltageOffset[AVFS_VOLTAGE_SOC].b, pptable->qStaticVoltageOffset[AVFS_VOLTAGE_SOC].c); dev_info(smu->adev->dev, "DcTol[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcTol[AVFS_VOLTAGE_GFX]); dev_info(smu->adev->dev, "DcTol[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcTol[AVFS_VOLTAGE_SOC]); dev_info(smu->adev->dev, "DcBtcEnabled[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcBtcEnabled[AVFS_VOLTAGE_GFX]); dev_info(smu->adev->dev, "DcBtcEnabled[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcBtcEnabled[AVFS_VOLTAGE_SOC]); dev_info(smu->adev->dev, "Padding8_GfxBtc[0] = 0x%x\n", pptable->Padding8_GfxBtc[0]); dev_info(smu->adev->dev, "Padding8_GfxBtc[1] = 0x%x\n", pptable->Padding8_GfxBtc[1]); dev_info(smu->adev->dev, "DcBtcMin[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcBtcMin[AVFS_VOLTAGE_GFX]); dev_info(smu->adev->dev, "DcBtcMin[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcBtcMin[AVFS_VOLTAGE_SOC]); dev_info(smu->adev->dev, "DcBtcMax[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcBtcMax[AVFS_VOLTAGE_GFX]); dev_info(smu->adev->dev, "DcBtcMax[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcBtcMax[AVFS_VOLTAGE_SOC]); dev_info(smu->adev->dev, "DcBtcGb[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcBtcGb[AVFS_VOLTAGE_GFX]); dev_info(smu->adev->dev, "DcBtcGb[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcBtcGb[AVFS_VOLTAGE_SOC]); dev_info(smu->adev->dev, "XgmiDpmPstates\n"); for (i = 0; i < NUM_XGMI_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->XgmiDpmPstates[i]); dev_info(smu->adev->dev, "XgmiDpmSpare[0] = 0x%02x\n", pptable->XgmiDpmSpare[0]); dev_info(smu->adev->dev, "XgmiDpmSpare[1] = 0x%02x\n", pptable->XgmiDpmSpare[1]); dev_info(smu->adev->dev, "DebugOverrides = 0x%x\n", pptable->DebugOverrides); dev_info(smu->adev->dev, "ReservedEquation0{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->ReservedEquation0.a, pptable->ReservedEquation0.b, pptable->ReservedEquation0.c); dev_info(smu->adev->dev, "ReservedEquation1{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->ReservedEquation1.a, pptable->ReservedEquation1.b, pptable->ReservedEquation1.c); dev_info(smu->adev->dev, "ReservedEquation2{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->ReservedEquation2.a, pptable->ReservedEquation2.b, pptable->ReservedEquation2.c); dev_info(smu->adev->dev, "ReservedEquation3{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->ReservedEquation3.a, pptable->ReservedEquation3.b, pptable->ReservedEquation3.c); dev_info(smu->adev->dev, "SkuReserved[0] = 0x%x\n", pptable->SkuReserved[0]); dev_info(smu->adev->dev, "SkuReserved[1] = 0x%x\n", pptable->SkuReserved[1]); dev_info(smu->adev->dev, "SkuReserved[2] = 0x%x\n", pptable->SkuReserved[2]); dev_info(smu->adev->dev, "SkuReserved[3] = 0x%x\n", pptable->SkuReserved[3]); dev_info(smu->adev->dev, "SkuReserved[4] = 0x%x\n", pptable->SkuReserved[4]); dev_info(smu->adev->dev, "SkuReserved[5] = 0x%x\n", pptable->SkuReserved[5]); dev_info(smu->adev->dev, "SkuReserved[6] = 0x%x\n", pptable->SkuReserved[6]); dev_info(smu->adev->dev, "SkuReserved[7] = 0x%x\n", pptable->SkuReserved[7]); dev_info(smu->adev->dev, "SkuReserved[8] = 0x%x\n", pptable->SkuReserved[8]); dev_info(smu->adev->dev, "SkuReserved[9] = 0x%x\n", pptable->SkuReserved[9]); dev_info(smu->adev->dev, "SkuReserved[10] = 0x%x\n", pptable->SkuReserved[10]); dev_info(smu->adev->dev, "SkuReserved[11] = 0x%x\n", pptable->SkuReserved[11]); dev_info(smu->adev->dev, "SkuReserved[12] = 0x%x\n", pptable->SkuReserved[12]); dev_info(smu->adev->dev, "SkuReserved[13] = 0x%x\n", pptable->SkuReserved[13]); dev_info(smu->adev->dev, "GamingClk[0] = 0x%x\n", pptable->GamingClk[0]); dev_info(smu->adev->dev, "GamingClk[1] = 0x%x\n", pptable->GamingClk[1]); dev_info(smu->adev->dev, "GamingClk[2] = 0x%x\n", pptable->GamingClk[2]); dev_info(smu->adev->dev, "GamingClk[3] = 0x%x\n", pptable->GamingClk[3]); dev_info(smu->adev->dev, "GamingClk[4] = 0x%x\n", pptable->GamingClk[4]); dev_info(smu->adev->dev, "GamingClk[5] = 0x%x\n", pptable->GamingClk[5]); for (i = 0; i < NUM_I2C_CONTROLLERS; i++) { dev_info(smu->adev->dev, "I2cControllers[%d]:\n", i); dev_info(smu->adev->dev, " .Enabled = 0x%x\n", pptable->I2cControllers[i].Enabled); dev_info(smu->adev->dev, " .Speed = 0x%x\n", pptable->I2cControllers[i].Speed); dev_info(smu->adev->dev, " .SlaveAddress = 0x%x\n", pptable->I2cControllers[i].SlaveAddress); dev_info(smu->adev->dev, " .ControllerPort = 0x%x\n", pptable->I2cControllers[i].ControllerPort); dev_info(smu->adev->dev, " .ControllerName = 0x%x\n", pptable->I2cControllers[i].ControllerName); dev_info(smu->adev->dev, " .ThermalThrottler = 0x%x\n", pptable->I2cControllers[i].ThermalThrotter); dev_info(smu->adev->dev, " .I2cProtocol = 0x%x\n", pptable->I2cControllers[i].I2cProtocol); dev_info(smu->adev->dev, " .PaddingConfig = 0x%x\n", pptable->I2cControllers[i].PaddingConfig); } dev_info(smu->adev->dev, "GpioScl = 0x%x\n", pptable->GpioScl); dev_info(smu->adev->dev, "GpioSda = 0x%x\n", pptable->GpioSda); dev_info(smu->adev->dev, "FchUsbPdSlaveAddr = 0x%x\n", pptable->FchUsbPdSlaveAddr); dev_info(smu->adev->dev, "I2cSpare[0] = 0x%x\n", pptable->I2cSpare[0]); dev_info(smu->adev->dev, "Board Parameters:\n"); dev_info(smu->adev->dev, "VddGfxVrMapping = 0x%x\n", pptable->VddGfxVrMapping); dev_info(smu->adev->dev, "VddSocVrMapping = 0x%x\n", pptable->VddSocVrMapping); dev_info(smu->adev->dev, "VddMem0VrMapping = 0x%x\n", pptable->VddMem0VrMapping); dev_info(smu->adev->dev, "VddMem1VrMapping = 0x%x\n", pptable->VddMem1VrMapping); dev_info(smu->adev->dev, "GfxUlvPhaseSheddingMask = 0x%x\n", pptable->GfxUlvPhaseSheddingMask); dev_info(smu->adev->dev, "SocUlvPhaseSheddingMask = 0x%x\n", pptable->SocUlvPhaseSheddingMask); dev_info(smu->adev->dev, "VddciUlvPhaseSheddingMask = 0x%x\n", pptable->VddciUlvPhaseSheddingMask); dev_info(smu->adev->dev, "MvddUlvPhaseSheddingMask = 0x%x\n", pptable->MvddUlvPhaseSheddingMask); dev_info(smu->adev->dev, "GfxMaxCurrent = 0x%x\n", pptable->GfxMaxCurrent); dev_info(smu->adev->dev, "GfxOffset = 0x%x\n", pptable->GfxOffset); dev_info(smu->adev->dev, "Padding_TelemetryGfx = 0x%x\n", pptable->Padding_TelemetryGfx); dev_info(smu->adev->dev, "SocMaxCurrent = 0x%x\n", pptable->SocMaxCurrent); dev_info(smu->adev->dev, "SocOffset = 0x%x\n", pptable->SocOffset); dev_info(smu->adev->dev, "Padding_TelemetrySoc = 0x%x\n", pptable->Padding_TelemetrySoc); dev_info(smu->adev->dev, "Mem0MaxCurrent = 0x%x\n", pptable->Mem0MaxCurrent); dev_info(smu->adev->dev, "Mem0Offset = 0x%x\n", pptable->Mem0Offset); dev_info(smu->adev->dev, "Padding_TelemetryMem0 = 0x%x\n", pptable->Padding_TelemetryMem0); dev_info(smu->adev->dev, "Mem1MaxCurrent = 0x%x\n", pptable->Mem1MaxCurrent); dev_info(smu->adev->dev, "Mem1Offset = 0x%x\n", pptable->Mem1Offset); dev_info(smu->adev->dev, "Padding_TelemetryMem1 = 0x%x\n", pptable->Padding_TelemetryMem1); dev_info(smu->adev->dev, "MvddRatio = 0x%x\n", pptable->MvddRatio); dev_info(smu->adev->dev, "AcDcGpio = 0x%x\n", pptable->AcDcGpio); dev_info(smu->adev->dev, "AcDcPolarity = 0x%x\n", pptable->AcDcPolarity); dev_info(smu->adev->dev, "VR0HotGpio = 0x%x\n", pptable->VR0HotGpio); dev_info(smu->adev->dev, "VR0HotPolarity = 0x%x\n", pptable->VR0HotPolarity); dev_info(smu->adev->dev, "VR1HotGpio = 0x%x\n", pptable->VR1HotGpio); dev_info(smu->adev->dev, "VR1HotPolarity = 0x%x\n", pptable->VR1HotPolarity); dev_info(smu->adev->dev, "GthrGpio = 0x%x\n", pptable->GthrGpio); dev_info(smu->adev->dev, "GthrPolarity = 0x%x\n", pptable->GthrPolarity); dev_info(smu->adev->dev, "LedPin0 = 0x%x\n", pptable->LedPin0); dev_info(smu->adev->dev, "LedPin1 = 0x%x\n", pptable->LedPin1); dev_info(smu->adev->dev, "LedPin2 = 0x%x\n", pptable->LedPin2); dev_info(smu->adev->dev, "LedEnableMask = 0x%x\n", pptable->LedEnableMask); dev_info(smu->adev->dev, "LedPcie = 0x%x\n", pptable->LedPcie); dev_info(smu->adev->dev, "LedError = 0x%x\n", pptable->LedError); dev_info(smu->adev->dev, "LedSpare1[0] = 0x%x\n", pptable->LedSpare1[0]); dev_info(smu->adev->dev, "LedSpare1[1] = 0x%x\n", pptable->LedSpare1[1]); dev_info(smu->adev->dev, "PllGfxclkSpreadEnabled = 0x%x\n", pptable->PllGfxclkSpreadEnabled); dev_info(smu->adev->dev, "PllGfxclkSpreadPercent = 0x%x\n", pptable->PllGfxclkSpreadPercent); dev_info(smu->adev->dev, "PllGfxclkSpreadFreq = 0x%x\n", pptable->PllGfxclkSpreadFreq); dev_info(smu->adev->dev, "DfllGfxclkSpreadEnabled = 0x%x\n", pptable->DfllGfxclkSpreadEnabled); dev_info(smu->adev->dev, "DfllGfxclkSpreadPercent = 0x%x\n", pptable->DfllGfxclkSpreadPercent); dev_info(smu->adev->dev, "DfllGfxclkSpreadFreq = 0x%x\n", pptable->DfllGfxclkSpreadFreq); dev_info(smu->adev->dev, "UclkSpreadPadding = 0x%x\n", pptable->UclkSpreadPadding); dev_info(smu->adev->dev, "UclkSpreadFreq = 0x%x\n", pptable->UclkSpreadFreq); dev_info(smu->adev->dev, "FclkSpreadEnabled = 0x%x\n", pptable->FclkSpreadEnabled); dev_info(smu->adev->dev, "FclkSpreadPercent = 0x%x\n", pptable->FclkSpreadPercent); dev_info(smu->adev->dev, "FclkSpreadFreq = 0x%x\n", pptable->FclkSpreadFreq); dev_info(smu->adev->dev, "MemoryChannelEnabled = 0x%x\n", pptable->MemoryChannelEnabled); dev_info(smu->adev->dev, "DramBitWidth = 0x%x\n", pptable->DramBitWidth); dev_info(smu->adev->dev, "PaddingMem1[0] = 0x%x\n", pptable->PaddingMem1[0]); dev_info(smu->adev->dev, "PaddingMem1[1] = 0x%x\n", pptable->PaddingMem1[1]); dev_info(smu->adev->dev, "PaddingMem1[2] = 0x%x\n", pptable->PaddingMem1[2]); dev_info(smu->adev->dev, "TotalBoardPower = 0x%x\n", pptable->TotalBoardPower); dev_info(smu->adev->dev, "BoardPowerPadding = 0x%x\n", pptable->BoardPowerPadding); dev_info(smu->adev->dev, "XgmiLinkSpeed\n"); for (i = 0; i < NUM_XGMI_PSTATE_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->XgmiLinkSpeed[i]); dev_info(smu->adev->dev, "XgmiLinkWidth\n"); for (i = 0; i < NUM_XGMI_PSTATE_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->XgmiLinkWidth[i]); dev_info(smu->adev->dev, "XgmiFclkFreq\n"); for (i = 0; i < NUM_XGMI_PSTATE_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->XgmiFclkFreq[i]); dev_info(smu->adev->dev, "XgmiSocVoltage\n"); for (i = 0; i < NUM_XGMI_PSTATE_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = 0x%x\n", i, pptable->XgmiSocVoltage[i]); dev_info(smu->adev->dev, "HsrEnabled = 0x%x\n", pptable->HsrEnabled); dev_info(smu->adev->dev, "VddqOffEnabled = 0x%x\n", pptable->VddqOffEnabled); dev_info(smu->adev->dev, "PaddingUmcFlags[0] = 0x%x\n", pptable->PaddingUmcFlags[0]); dev_info(smu->adev->dev, "PaddingUmcFlags[1] = 0x%x\n", pptable->PaddingUmcFlags[1]); dev_info(smu->adev->dev, "BoardReserved[0] = 0x%x\n", pptable->BoardReserved[0]); dev_info(smu->adev->dev, "BoardReserved[1] = 0x%x\n", pptable->BoardReserved[1]); dev_info(smu->adev->dev, "BoardReserved[2] = 0x%x\n", pptable->BoardReserved[2]); dev_info(smu->adev->dev, "BoardReserved[3] = 0x%x\n", pptable->BoardReserved[3]); dev_info(smu->adev->dev, "BoardReserved[4] = 0x%x\n", pptable->BoardReserved[4]); dev_info(smu->adev->dev, "BoardReserved[5] = 0x%x\n", pptable->BoardReserved[5]); dev_info(smu->adev->dev, "BoardReserved[6] = 0x%x\n", pptable->BoardReserved[6]); dev_info(smu->adev->dev, "BoardReserved[7] = 0x%x\n", pptable->BoardReserved[7]); dev_info(smu->adev->dev, "BoardReserved[8] = 0x%x\n", pptable->BoardReserved[8]); dev_info(smu->adev->dev, "BoardReserved[9] = 0x%x\n", pptable->BoardReserved[9]); dev_info(smu->adev->dev, "BoardReserved[10] = 0x%x\n", pptable->BoardReserved[10]); dev_info(smu->adev->dev, "MmHubPadding[0] = 0x%x\n", pptable->MmHubPadding[0]); dev_info(smu->adev->dev, "MmHubPadding[1] = 0x%x\n", pptable->MmHubPadding[1]); dev_info(smu->adev->dev, "MmHubPadding[2] = 0x%x\n", pptable->MmHubPadding[2]); dev_info(smu->adev->dev, "MmHubPadding[3] = 0x%x\n", pptable->MmHubPadding[3]); dev_info(smu->adev->dev, "MmHubPadding[4] = 0x%x\n", pptable->MmHubPadding[4]); dev_info(smu->adev->dev, "MmHubPadding[5] = 0x%x\n", pptable->MmHubPadding[5]); dev_info(smu->adev->dev, "MmHubPadding[6] = 0x%x\n", pptable->MmHubPadding[6]); dev_info(smu->adev->dev, "MmHubPadding[7] = 0x%x\n", pptable->MmHubPadding[7]); } static void sienna_cichlid_fill_i2c_req(SwI2cRequest_t *req, bool write, uint8_t address, uint32_t numbytes, uint8_t *data) { int i; req->I2CcontrollerPort = 0; req->I2CSpeed = 2; req->SlaveAddress = address; req->NumCmds = numbytes; for (i = 0; i < numbytes; i++) { SwI2cCmd_t *cmd = &req->SwI2cCmds[i]; /* First 2 bytes are always write for lower 2b EEPROM address */ if (i < 2) cmd->CmdConfig = CMDCONFIG_READWRITE_MASK; else cmd->CmdConfig = write ? CMDCONFIG_READWRITE_MASK : 0; /* Add RESTART for read after address filled */ cmd->CmdConfig |= (i == 2 && !write) ? CMDCONFIG_RESTART_MASK : 0; /* Add STOP in the end */ cmd->CmdConfig |= (i == (numbytes - 1)) ? CMDCONFIG_STOP_MASK : 0; /* Fill with data regardless if read or write to simplify code */ cmd->ReadWriteData = data[i]; } } static int sienna_cichlid_i2c_read_data(struct i2c_adapter *control, uint8_t address, uint8_t *data, uint32_t numbytes) { uint32_t i, ret = 0; SwI2cRequest_t req; struct amdgpu_device *adev = to_amdgpu_device(control); struct smu_table_context *smu_table = &adev->smu.smu_table; struct smu_table *table = &smu_table->driver_table; if (numbytes > MAX_SW_I2C_COMMANDS) { dev_err(adev->dev, "numbytes requested %d is over max allowed %d\n", numbytes, MAX_SW_I2C_COMMANDS); return -EINVAL; } memset(&req, 0, sizeof(req)); sienna_cichlid_fill_i2c_req(&req, false, address, numbytes, data); mutex_lock(&adev->smu.mutex); /* Now read data starting with that address */ ret = smu_cmn_update_table(&adev->smu, SMU_TABLE_I2C_COMMANDS, 0, &req, true); mutex_unlock(&adev->smu.mutex); if (!ret) { SwI2cRequest_t *res = (SwI2cRequest_t *)table->cpu_addr; /* Assume SMU fills res.SwI2cCmds[i].Data with read bytes */ for (i = 0; i < numbytes; i++) data[i] = res->SwI2cCmds[i].ReadWriteData; dev_dbg(adev->dev, "sienna_cichlid_i2c_read_data, address = %x, bytes = %d, data :", (uint16_t)address, numbytes); print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_NONE, 8, 1, data, numbytes, false); } else dev_err(adev->dev, "sienna_cichlid_i2c_read_data - error occurred :%x", ret); return ret; } static int sienna_cichlid_i2c_write_data(struct i2c_adapter *control, uint8_t address, uint8_t *data, uint32_t numbytes) { uint32_t ret; SwI2cRequest_t req; struct amdgpu_device *adev = to_amdgpu_device(control); if (numbytes > MAX_SW_I2C_COMMANDS) { dev_err(adev->dev, "numbytes requested %d is over max allowed %d\n", numbytes, MAX_SW_I2C_COMMANDS); return -EINVAL; } memset(&req, 0, sizeof(req)); sienna_cichlid_fill_i2c_req(&req, true, address, numbytes, data); mutex_lock(&adev->smu.mutex); ret = smu_cmn_update_table(&adev->smu, SMU_TABLE_I2C_COMMANDS, 0, &req, true); mutex_unlock(&adev->smu.mutex); if (!ret) { dev_dbg(adev->dev, "sienna_cichlid_i2c_write(), address = %x, bytes = %d , data: ", (uint16_t)address, numbytes); print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_NONE, 8, 1, data, numbytes, false); /* * According to EEPROM spec there is a MAX of 10 ms required for * EEPROM to flush internal RX buffer after STOP was issued at the * end of write transaction. During this time the EEPROM will not be * responsive to any more commands - so wait a bit more. */ msleep(10); } else dev_err(adev->dev, "sienna_cichlid_i2c_write- error occurred :%x", ret); return ret; } static int sienna_cichlid_i2c_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg *msgs, int num) { uint32_t i, j, ret, data_size, data_chunk_size, next_eeprom_addr = 0; uint8_t *data_ptr, data_chunk[MAX_SW_I2C_COMMANDS] = { 0 }; for (i = 0; i < num; i++) { /* * SMU interface allows at most MAX_SW_I2C_COMMANDS bytes of data at * once and hence the data needs to be spliced into chunks and sent each * chunk separately */ data_size = msgs[i].len - 2; data_chunk_size = MAX_SW_I2C_COMMANDS - 2; next_eeprom_addr = (msgs[i].buf[0] << 8 & 0xff00) | (msgs[i].buf[1] & 0xff); data_ptr = msgs[i].buf + 2; for (j = 0; j < data_size / data_chunk_size; j++) { /* Insert the EEPROM dest addess, bits 0-15 */ data_chunk[0] = ((next_eeprom_addr >> 8) & 0xff); data_chunk[1] = (next_eeprom_addr & 0xff); if (msgs[i].flags & I2C_M_RD) { ret = sienna_cichlid_i2c_read_data(i2c_adap, (uint8_t)msgs[i].addr, data_chunk, MAX_SW_I2C_COMMANDS); memcpy(data_ptr, data_chunk + 2, data_chunk_size); } else { memcpy(data_chunk + 2, data_ptr, data_chunk_size); ret = sienna_cichlid_i2c_write_data(i2c_adap, (uint8_t)msgs[i].addr, data_chunk, MAX_SW_I2C_COMMANDS); } if (ret) { num = -EIO; goto fail; } next_eeprom_addr += data_chunk_size; data_ptr += data_chunk_size; } if (data_size % data_chunk_size) { data_chunk[0] = ((next_eeprom_addr >> 8) & 0xff); data_chunk[1] = (next_eeprom_addr & 0xff); if (msgs[i].flags & I2C_M_RD) { ret = sienna_cichlid_i2c_read_data(i2c_adap, (uint8_t)msgs[i].addr, data_chunk, (data_size % data_chunk_size) + 2); memcpy(data_ptr, data_chunk + 2, data_size % data_chunk_size); } else { memcpy(data_chunk + 2, data_ptr, data_size % data_chunk_size); ret = sienna_cichlid_i2c_write_data(i2c_adap, (uint8_t)msgs[i].addr, data_chunk, (data_size % data_chunk_size) + 2); } if (ret) { num = -EIO; goto fail; } } } fail: return num; } static u32 sienna_cichlid_i2c_func(struct i2c_adapter *adap) { return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; } static const struct i2c_algorithm sienna_cichlid_i2c_algo = { .master_xfer = sienna_cichlid_i2c_xfer, .functionality = sienna_cichlid_i2c_func, }; static int sienna_cichlid_i2c_control_init(struct smu_context *smu, struct i2c_adapter *control) { struct amdgpu_device *adev = to_amdgpu_device(control); int res; control->owner = THIS_MODULE; control->class = I2C_CLASS_SPD; control->dev.parent = &adev->pdev->dev; control->algo = &sienna_cichlid_i2c_algo; snprintf(control->name, sizeof(control->name), "AMDGPU SMU"); res = i2c_add_adapter(control); if (res) DRM_ERROR("Failed to register hw i2c, err: %d\n", res); return res; } static void sienna_cichlid_i2c_control_fini(struct smu_context *smu, struct i2c_adapter *control) { i2c_del_adapter(control); } static const struct pptable_funcs sienna_cichlid_ppt_funcs = { .get_allowed_feature_mask = sienna_cichlid_get_allowed_feature_mask, .set_default_dpm_table = sienna_cichlid_set_default_dpm_table, .dpm_set_vcn_enable = sienna_cichlid_dpm_set_vcn_enable, .dpm_set_jpeg_enable = sienna_cichlid_dpm_set_jpeg_enable, .i2c_init = sienna_cichlid_i2c_control_init, .i2c_fini = sienna_cichlid_i2c_control_fini, .print_clk_levels = sienna_cichlid_print_clk_levels, .force_clk_levels = sienna_cichlid_force_clk_levels, .populate_umd_state_clk = sienna_cichlid_populate_umd_state_clk, .pre_display_config_changed = sienna_cichlid_pre_display_config_changed, .display_config_changed = sienna_cichlid_display_config_changed, .notify_smc_display_config = sienna_cichlid_notify_smc_display_config, .is_dpm_running = sienna_cichlid_is_dpm_running, .get_fan_speed_percent = sienna_cichlid_get_fan_speed_percent, .get_fan_speed_rpm = sienna_cichlid_get_fan_speed_rpm, .get_power_profile_mode = sienna_cichlid_get_power_profile_mode, .set_power_profile_mode = sienna_cichlid_set_power_profile_mode, .set_watermarks_table = sienna_cichlid_set_watermarks_table, .read_sensor = sienna_cichlid_read_sensor, .get_uclk_dpm_states = sienna_cichlid_get_uclk_dpm_states, .set_performance_level = smu_v11_0_set_performance_level, .get_thermal_temperature_range = sienna_cichlid_get_thermal_temperature_range, .display_disable_memory_clock_switch = sienna_cichlid_display_disable_memory_clock_switch, .get_power_limit = sienna_cichlid_get_power_limit, .update_pcie_parameters = sienna_cichlid_update_pcie_parameters, .dump_pptable = sienna_cichlid_dump_pptable, .init_microcode = smu_v11_0_init_microcode, .load_microcode = smu_v11_0_load_microcode, .init_smc_tables = sienna_cichlid_init_smc_tables, .fini_smc_tables = smu_v11_0_fini_smc_tables, .init_power = smu_v11_0_init_power, .fini_power = smu_v11_0_fini_power, .check_fw_status = smu_v11_0_check_fw_status, .setup_pptable = sienna_cichlid_setup_pptable, .get_vbios_bootup_values = smu_v11_0_get_vbios_bootup_values, .check_fw_version = smu_v11_0_check_fw_version, .write_pptable = smu_cmn_write_pptable, .set_driver_table_location = smu_v11_0_set_driver_table_location, .set_tool_table_location = smu_v11_0_set_tool_table_location, .notify_memory_pool_location = smu_v11_0_notify_memory_pool_location, .system_features_control = smu_v11_0_system_features_control, .send_smc_msg_with_param = smu_cmn_send_smc_msg_with_param, .send_smc_msg = smu_cmn_send_smc_msg, .init_display_count = NULL, .set_allowed_mask = smu_v11_0_set_allowed_mask, .get_enabled_mask = smu_cmn_get_enabled_mask, .feature_is_enabled = smu_cmn_feature_is_enabled, .disable_all_features_with_exception = smu_cmn_disable_all_features_with_exception, .notify_display_change = NULL, .set_power_limit = smu_v11_0_set_power_limit, .init_max_sustainable_clocks = smu_v11_0_init_max_sustainable_clocks, .enable_thermal_alert = smu_v11_0_enable_thermal_alert, .disable_thermal_alert = smu_v11_0_disable_thermal_alert, .set_min_dcef_deep_sleep = NULL, .display_clock_voltage_request = smu_v11_0_display_clock_voltage_request, .get_fan_control_mode = smu_v11_0_get_fan_control_mode, .set_fan_control_mode = smu_v11_0_set_fan_control_mode, .set_fan_speed_percent = smu_v11_0_set_fan_speed_percent, .set_fan_speed_rpm = smu_v11_0_set_fan_speed_rpm, .set_xgmi_pstate = smu_v11_0_set_xgmi_pstate, .gfx_off_control = smu_v11_0_gfx_off_control, .register_irq_handler = smu_v11_0_register_irq_handler, .set_azalia_d3_pme = smu_v11_0_set_azalia_d3_pme, .get_max_sustainable_clocks_by_dc = smu_v11_0_get_max_sustainable_clocks_by_dc, .baco_is_support= sienna_cichlid_is_baco_supported, .baco_get_state = smu_v11_0_baco_get_state, .baco_set_state = smu_v11_0_baco_set_state, .baco_enter = smu_v11_0_baco_enter, .baco_exit = smu_v11_0_baco_exit, .mode1_reset_is_support = sienna_cichlid_is_mode1_reset_supported, .mode1_reset = smu_v11_0_mode1_reset, .get_dpm_ultimate_freq = sienna_cichlid_get_dpm_ultimate_freq, .set_soft_freq_limited_range = smu_v11_0_set_soft_freq_limited_range, .run_btc = sienna_cichlid_run_btc, .get_pp_feature_mask = smu_cmn_get_pp_feature_mask, .set_pp_feature_mask = smu_cmn_set_pp_feature_mask, }; void sienna_cichlid_set_ppt_funcs(struct smu_context *smu) { smu->ppt_funcs = &sienna_cichlid_ppt_funcs; smu->message_map = sienna_cichlid_message_map; smu->clock_map = sienna_cichlid_clk_map; smu->feature_map = sienna_cichlid_feature_mask_map; smu->table_map = sienna_cichlid_table_map; smu->pwr_src_map = sienna_cichlid_pwr_src_map; smu->workload_map = sienna_cichlid_workload_map; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1