Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ville Syrjälä | 5542 | 54.15% | 52 | 49.06% |
Swati Sharma | 2058 | 20.11% | 15 | 14.15% |
Lionel Landwerlin | 1013 | 9.90% | 4 | 3.77% |
Shashank Sharma | 621 | 6.07% | 3 | 2.83% |
Uma Shankar | 230 | 2.25% | 5 | 4.72% |
Jani Nikula | 223 | 2.18% | 4 | 3.77% |
Ander Conselvan de Oliveira | 183 | 1.79% | 3 | 2.83% |
Matt Roper | 110 | 1.07% | 2 | 1.89% |
Animesh Manna | 88 | 0.86% | 2 | 1.89% |
Maarten Lankhorst | 87 | 0.85% | 4 | 3.77% |
Chris Wilson | 37 | 0.36% | 2 | 1.89% |
Johnson Lin | 15 | 0.15% | 1 | 0.94% |
Tvrtko A. Ursulin | 9 | 0.09% | 4 | 3.77% |
Pankaj Bharadiya | 6 | 0.06% | 1 | 0.94% |
Wambui Karuga | 6 | 0.06% | 1 | 0.94% |
Rodrigo Vivi | 5 | 0.05% | 2 | 1.89% |
Jyri Sarha | 2 | 0.02% | 1 | 0.94% |
Total | 10235 | 106 |
/* * Copyright © 2016 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * */ #include "intel_color.h" #include "intel_display_types.h" #define CTM_COEFF_SIGN (1ULL << 63) #define CTM_COEFF_1_0 (1ULL << 32) #define CTM_COEFF_2_0 (CTM_COEFF_1_0 << 1) #define CTM_COEFF_4_0 (CTM_COEFF_2_0 << 1) #define CTM_COEFF_8_0 (CTM_COEFF_4_0 << 1) #define CTM_COEFF_0_5 (CTM_COEFF_1_0 >> 1) #define CTM_COEFF_0_25 (CTM_COEFF_0_5 >> 1) #define CTM_COEFF_0_125 (CTM_COEFF_0_25 >> 1) #define CTM_COEFF_LIMITED_RANGE ((235ULL - 16ULL) * CTM_COEFF_1_0 / 255) #define CTM_COEFF_NEGATIVE(coeff) (((coeff) & CTM_COEFF_SIGN) != 0) #define CTM_COEFF_ABS(coeff) ((coeff) & (CTM_COEFF_SIGN - 1)) #define LEGACY_LUT_LENGTH 256 /* * ILK+ csc matrix: * * |R/Cr| | c0 c1 c2 | ( |R/Cr| |preoff0| ) |postoff0| * |G/Y | = | c3 c4 c5 | x ( |G/Y | + |preoff1| ) + |postoff1| * |B/Cb| | c6 c7 c8 | ( |B/Cb| |preoff2| ) |postoff2| * * ILK/SNB don't have explicit post offsets, and instead * CSC_MODE_YUV_TO_RGB and CSC_BLACK_SCREEN_OFFSET are used: * CSC_MODE_YUV_TO_RGB=0 + CSC_BLACK_SCREEN_OFFSET=0 -> 1/2, 0, 1/2 * CSC_MODE_YUV_TO_RGB=0 + CSC_BLACK_SCREEN_OFFSET=1 -> 1/2, 1/16, 1/2 * CSC_MODE_YUV_TO_RGB=1 + CSC_BLACK_SCREEN_OFFSET=0 -> 0, 0, 0 * CSC_MODE_YUV_TO_RGB=1 + CSC_BLACK_SCREEN_OFFSET=1 -> 1/16, 1/16, 1/16 */ /* * Extract the CSC coefficient from a CTM coefficient (in U32.32 fixed point * format). This macro takes the coefficient we want transformed and the * number of fractional bits. * * We only have a 9 bits precision window which slides depending on the value * of the CTM coefficient and we write the value from bit 3. We also round the * value. */ #define ILK_CSC_COEFF_FP(coeff, fbits) \ (clamp_val(((coeff) >> (32 - (fbits) - 3)) + 4, 0, 0xfff) & 0xff8) #define ILK_CSC_COEFF_LIMITED_RANGE 0x0dc0 #define ILK_CSC_COEFF_1_0 0x7800 #define ILK_CSC_POSTOFF_LIMITED_RANGE (16 * (1 << 12) / 255) /* Nop pre/post offsets */ static const u16 ilk_csc_off_zero[3] = {}; /* Identity matrix */ static const u16 ilk_csc_coeff_identity[9] = { ILK_CSC_COEFF_1_0, 0, 0, 0, ILK_CSC_COEFF_1_0, 0, 0, 0, ILK_CSC_COEFF_1_0, }; /* Limited range RGB post offsets */ static const u16 ilk_csc_postoff_limited_range[3] = { ILK_CSC_POSTOFF_LIMITED_RANGE, ILK_CSC_POSTOFF_LIMITED_RANGE, ILK_CSC_POSTOFF_LIMITED_RANGE, }; /* Full range RGB -> limited range RGB matrix */ static const u16 ilk_csc_coeff_limited_range[9] = { ILK_CSC_COEFF_LIMITED_RANGE, 0, 0, 0, ILK_CSC_COEFF_LIMITED_RANGE, 0, 0, 0, ILK_CSC_COEFF_LIMITED_RANGE, }; /* BT.709 full range RGB -> limited range YCbCr matrix */ static const u16 ilk_csc_coeff_rgb_to_ycbcr[9] = { 0x1e08, 0x9cc0, 0xb528, 0x2ba8, 0x09d8, 0x37e8, 0xbce8, 0x9ad8, 0x1e08, }; /* Limited range YCbCr post offsets */ static const u16 ilk_csc_postoff_rgb_to_ycbcr[3] = { 0x0800, 0x0100, 0x0800, }; static bool lut_is_legacy(const struct drm_property_blob *lut) { return drm_color_lut_size(lut) == LEGACY_LUT_LENGTH; } static bool crtc_state_is_legacy_gamma(const struct intel_crtc_state *crtc_state) { return !crtc_state->hw.degamma_lut && !crtc_state->hw.ctm && crtc_state->hw.gamma_lut && lut_is_legacy(crtc_state->hw.gamma_lut); } /* * When using limited range, multiply the matrix given by userspace by * the matrix that we would use for the limited range. */ static u64 *ctm_mult_by_limited(u64 *result, const u64 *input) { int i; for (i = 0; i < 9; i++) { u64 user_coeff = input[i]; u32 limited_coeff = CTM_COEFF_LIMITED_RANGE; u32 abs_coeff = clamp_val(CTM_COEFF_ABS(user_coeff), 0, CTM_COEFF_4_0 - 1) >> 2; /* * By scaling every co-efficient with limited range (16-235) * vs full range (0-255) the final o/p will be scaled down to * fit in the limited range supported by the panel. */ result[i] = mul_u32_u32(limited_coeff, abs_coeff) >> 30; result[i] |= user_coeff & CTM_COEFF_SIGN; } return result; } static void ilk_update_pipe_csc(struct intel_crtc *crtc, const u16 preoff[3], const u16 coeff[9], const u16 postoff[3]) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; intel_de_write(dev_priv, PIPE_CSC_PREOFF_HI(pipe), preoff[0]); intel_de_write(dev_priv, PIPE_CSC_PREOFF_ME(pipe), preoff[1]); intel_de_write(dev_priv, PIPE_CSC_PREOFF_LO(pipe), preoff[2]); intel_de_write(dev_priv, PIPE_CSC_COEFF_RY_GY(pipe), coeff[0] << 16 | coeff[1]); intel_de_write(dev_priv, PIPE_CSC_COEFF_BY(pipe), coeff[2] << 16); intel_de_write(dev_priv, PIPE_CSC_COEFF_RU_GU(pipe), coeff[3] << 16 | coeff[4]); intel_de_write(dev_priv, PIPE_CSC_COEFF_BU(pipe), coeff[5] << 16); intel_de_write(dev_priv, PIPE_CSC_COEFF_RV_GV(pipe), coeff[6] << 16 | coeff[7]); intel_de_write(dev_priv, PIPE_CSC_COEFF_BV(pipe), coeff[8] << 16); if (INTEL_GEN(dev_priv) >= 7) { intel_de_write(dev_priv, PIPE_CSC_POSTOFF_HI(pipe), postoff[0]); intel_de_write(dev_priv, PIPE_CSC_POSTOFF_ME(pipe), postoff[1]); intel_de_write(dev_priv, PIPE_CSC_POSTOFF_LO(pipe), postoff[2]); } } static void icl_update_output_csc(struct intel_crtc *crtc, const u16 preoff[3], const u16 coeff[9], const u16 postoff[3]) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; intel_de_write(dev_priv, PIPE_CSC_OUTPUT_PREOFF_HI(pipe), preoff[0]); intel_de_write(dev_priv, PIPE_CSC_OUTPUT_PREOFF_ME(pipe), preoff[1]); intel_de_write(dev_priv, PIPE_CSC_OUTPUT_PREOFF_LO(pipe), preoff[2]); intel_de_write(dev_priv, PIPE_CSC_OUTPUT_COEFF_RY_GY(pipe), coeff[0] << 16 | coeff[1]); intel_de_write(dev_priv, PIPE_CSC_OUTPUT_COEFF_BY(pipe), coeff[2] << 16); intel_de_write(dev_priv, PIPE_CSC_OUTPUT_COEFF_RU_GU(pipe), coeff[3] << 16 | coeff[4]); intel_de_write(dev_priv, PIPE_CSC_OUTPUT_COEFF_BU(pipe), coeff[5] << 16); intel_de_write(dev_priv, PIPE_CSC_OUTPUT_COEFF_RV_GV(pipe), coeff[6] << 16 | coeff[7]); intel_de_write(dev_priv, PIPE_CSC_OUTPUT_COEFF_BV(pipe), coeff[8] << 16); intel_de_write(dev_priv, PIPE_CSC_OUTPUT_POSTOFF_HI(pipe), postoff[0]); intel_de_write(dev_priv, PIPE_CSC_OUTPUT_POSTOFF_ME(pipe), postoff[1]); intel_de_write(dev_priv, PIPE_CSC_OUTPUT_POSTOFF_LO(pipe), postoff[2]); } static bool ilk_csc_limited_range(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); /* * FIXME if there's a gamma LUT after the CSC, we should * do the range compression using the gamma LUT instead. */ return crtc_state->limited_color_range && (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) || IS_GEN_RANGE(dev_priv, 9, 10)); } static void ilk_csc_convert_ctm(const struct intel_crtc_state *crtc_state, u16 coeffs[9]) { const struct drm_color_ctm *ctm = crtc_state->hw.ctm->data; const u64 *input; u64 temp[9]; int i; if (ilk_csc_limited_range(crtc_state)) input = ctm_mult_by_limited(temp, ctm->matrix); else input = ctm->matrix; /* * Convert fixed point S31.32 input to format supported by the * hardware. */ for (i = 0; i < 9; i++) { u64 abs_coeff = ((1ULL << 63) - 1) & input[i]; /* * Clamp input value to min/max supported by * hardware. */ abs_coeff = clamp_val(abs_coeff, 0, CTM_COEFF_4_0 - 1); coeffs[i] = 0; /* sign bit */ if (CTM_COEFF_NEGATIVE(input[i])) coeffs[i] |= 1 << 15; if (abs_coeff < CTM_COEFF_0_125) coeffs[i] |= (3 << 12) | ILK_CSC_COEFF_FP(abs_coeff, 12); else if (abs_coeff < CTM_COEFF_0_25) coeffs[i] |= (2 << 12) | ILK_CSC_COEFF_FP(abs_coeff, 11); else if (abs_coeff < CTM_COEFF_0_5) coeffs[i] |= (1 << 12) | ILK_CSC_COEFF_FP(abs_coeff, 10); else if (abs_coeff < CTM_COEFF_1_0) coeffs[i] |= ILK_CSC_COEFF_FP(abs_coeff, 9); else if (abs_coeff < CTM_COEFF_2_0) coeffs[i] |= (7 << 12) | ILK_CSC_COEFF_FP(abs_coeff, 8); else coeffs[i] |= (6 << 12) | ILK_CSC_COEFF_FP(abs_coeff, 7); } } static void ilk_load_csc_matrix(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); bool limited_color_range = ilk_csc_limited_range(crtc_state); if (crtc_state->hw.ctm) { u16 coeff[9]; ilk_csc_convert_ctm(crtc_state, coeff); ilk_update_pipe_csc(crtc, ilk_csc_off_zero, coeff, limited_color_range ? ilk_csc_postoff_limited_range : ilk_csc_off_zero); } else if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) { ilk_update_pipe_csc(crtc, ilk_csc_off_zero, ilk_csc_coeff_rgb_to_ycbcr, ilk_csc_postoff_rgb_to_ycbcr); } else if (limited_color_range) { ilk_update_pipe_csc(crtc, ilk_csc_off_zero, ilk_csc_coeff_limited_range, ilk_csc_postoff_limited_range); } else if (crtc_state->csc_enable) { /* * On GLK+ both pipe CSC and degamma LUT are controlled * by csc_enable. Hence for the cases where the degama * LUT is needed but CSC is not we need to load an * identity matrix. */ drm_WARN_ON(&dev_priv->drm, !IS_CANNONLAKE(dev_priv) && !IS_GEMINILAKE(dev_priv)); ilk_update_pipe_csc(crtc, ilk_csc_off_zero, ilk_csc_coeff_identity, ilk_csc_off_zero); } intel_de_write(dev_priv, PIPE_CSC_MODE(crtc->pipe), crtc_state->csc_mode); } static void icl_load_csc_matrix(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); if (crtc_state->hw.ctm) { u16 coeff[9]; ilk_csc_convert_ctm(crtc_state, coeff); ilk_update_pipe_csc(crtc, ilk_csc_off_zero, coeff, ilk_csc_off_zero); } if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) { icl_update_output_csc(crtc, ilk_csc_off_zero, ilk_csc_coeff_rgb_to_ycbcr, ilk_csc_postoff_rgb_to_ycbcr); } else if (crtc_state->limited_color_range) { icl_update_output_csc(crtc, ilk_csc_off_zero, ilk_csc_coeff_limited_range, ilk_csc_postoff_limited_range); } intel_de_write(dev_priv, PIPE_CSC_MODE(crtc->pipe), crtc_state->csc_mode); } static void chv_load_cgm_csc(struct intel_crtc *crtc, const struct drm_property_blob *blob) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct drm_color_ctm *ctm = blob->data; enum pipe pipe = crtc->pipe; u16 coeffs[9]; int i; for (i = 0; i < ARRAY_SIZE(coeffs); i++) { u64 abs_coeff = ((1ULL << 63) - 1) & ctm->matrix[i]; /* Round coefficient. */ abs_coeff += 1 << (32 - 13); /* Clamp to hardware limits. */ abs_coeff = clamp_val(abs_coeff, 0, CTM_COEFF_8_0 - 1); coeffs[i] = 0; /* Write coefficients in S3.12 format. */ if (ctm->matrix[i] & (1ULL << 63)) coeffs[i] |= 1 << 15; coeffs[i] |= ((abs_coeff >> 32) & 7) << 12; coeffs[i] |= (abs_coeff >> 20) & 0xfff; } intel_de_write(dev_priv, CGM_PIPE_CSC_COEFF01(pipe), coeffs[1] << 16 | coeffs[0]); intel_de_write(dev_priv, CGM_PIPE_CSC_COEFF23(pipe), coeffs[3] << 16 | coeffs[2]); intel_de_write(dev_priv, CGM_PIPE_CSC_COEFF45(pipe), coeffs[5] << 16 | coeffs[4]); intel_de_write(dev_priv, CGM_PIPE_CSC_COEFF67(pipe), coeffs[7] << 16 | coeffs[6]); intel_de_write(dev_priv, CGM_PIPE_CSC_COEFF8(pipe), coeffs[8]); } /* convert hw value with given bit_precision to lut property val */ static u32 intel_color_lut_pack(u32 val, int bit_precision) { u32 max = 0xffff >> (16 - bit_precision); val = clamp_val(val, 0, max); if (bit_precision < 16) val <<= 16 - bit_precision; return val; } static u32 i9xx_lut_8(const struct drm_color_lut *color) { return drm_color_lut_extract(color->red, 8) << 16 | drm_color_lut_extract(color->green, 8) << 8 | drm_color_lut_extract(color->blue, 8); } static void i9xx_lut_8_pack(struct drm_color_lut *entry, u32 val) { entry->red = intel_color_lut_pack(REG_FIELD_GET(LGC_PALETTE_RED_MASK, val), 8); entry->green = intel_color_lut_pack(REG_FIELD_GET(LGC_PALETTE_GREEN_MASK, val), 8); entry->blue = intel_color_lut_pack(REG_FIELD_GET(LGC_PALETTE_BLUE_MASK, val), 8); } /* i965+ "10.6" bit interpolated format "even DW" (low 8 bits) */ static u32 i965_lut_10p6_ldw(const struct drm_color_lut *color) { return (color->red & 0xff) << 16 | (color->green & 0xff) << 8 | (color->blue & 0xff); } /* i965+ "10.6" interpolated format "odd DW" (high 8 bits) */ static u32 i965_lut_10p6_udw(const struct drm_color_lut *color) { return (color->red >> 8) << 16 | (color->green >> 8) << 8 | (color->blue >> 8); } static void i965_lut_10p6_pack(struct drm_color_lut *entry, u32 ldw, u32 udw) { entry->red = REG_FIELD_GET(PALETTE_RED_MASK, udw) << 8 | REG_FIELD_GET(PALETTE_RED_MASK, ldw); entry->green = REG_FIELD_GET(PALETTE_GREEN_MASK, udw) << 8 | REG_FIELD_GET(PALETTE_GREEN_MASK, ldw); entry->blue = REG_FIELD_GET(PALETTE_BLUE_MASK, udw) << 8 | REG_FIELD_GET(PALETTE_BLUE_MASK, ldw); } static u16 i965_lut_11p6_max_pack(u32 val) { /* PIPEGCMAX is 11.6, clamp to 10.6 */ return clamp_val(val, 0, 0xffff); } static u32 ilk_lut_10(const struct drm_color_lut *color) { return drm_color_lut_extract(color->red, 10) << 20 | drm_color_lut_extract(color->green, 10) << 10 | drm_color_lut_extract(color->blue, 10); } static void ilk_lut_10_pack(struct drm_color_lut *entry, u32 val) { entry->red = intel_color_lut_pack(REG_FIELD_GET(PREC_PALETTE_RED_MASK, val), 10); entry->green = intel_color_lut_pack(REG_FIELD_GET(PREC_PALETTE_GREEN_MASK, val), 10); entry->blue = intel_color_lut_pack(REG_FIELD_GET(PREC_PALETTE_BLUE_MASK, val), 10); } static void icl_lut_multi_seg_pack(struct drm_color_lut *entry, u32 ldw, u32 udw) { entry->red = REG_FIELD_GET(PAL_PREC_MULTI_SEG_RED_UDW_MASK, udw) << 6 | REG_FIELD_GET(PAL_PREC_MULTI_SEG_RED_LDW_MASK, ldw); entry->green = REG_FIELD_GET(PAL_PREC_MULTI_SEG_GREEN_UDW_MASK, udw) << 6 | REG_FIELD_GET(PAL_PREC_MULTI_SEG_GREEN_LDW_MASK, ldw); entry->blue = REG_FIELD_GET(PAL_PREC_MULTI_SEG_BLUE_UDW_MASK, udw) << 6 | REG_FIELD_GET(PAL_PREC_MULTI_SEG_BLUE_LDW_MASK, ldw); } static void i9xx_color_commit(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; u32 val; val = intel_de_read(dev_priv, PIPECONF(pipe)); val &= ~PIPECONF_GAMMA_MODE_MASK_I9XX; val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); intel_de_write(dev_priv, PIPECONF(pipe), val); } static void ilk_color_commit(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; u32 val; val = intel_de_read(dev_priv, PIPECONF(pipe)); val &= ~PIPECONF_GAMMA_MODE_MASK_ILK; val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); intel_de_write(dev_priv, PIPECONF(pipe), val); ilk_load_csc_matrix(crtc_state); } static void hsw_color_commit(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); intel_de_write(dev_priv, GAMMA_MODE(crtc->pipe), crtc_state->gamma_mode); ilk_load_csc_matrix(crtc_state); } static void skl_color_commit(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; u32 val = 0; /* * We don't (yet) allow userspace to control the pipe background color, * so force it to black, but apply pipe gamma and CSC appropriately * so that its handling will match how we program our planes. */ if (crtc_state->gamma_enable) val |= SKL_BOTTOM_COLOR_GAMMA_ENABLE; if (crtc_state->csc_enable) val |= SKL_BOTTOM_COLOR_CSC_ENABLE; intel_de_write(dev_priv, SKL_BOTTOM_COLOR(pipe), val); intel_de_write(dev_priv, GAMMA_MODE(crtc->pipe), crtc_state->gamma_mode); if (INTEL_GEN(dev_priv) >= 11) icl_load_csc_matrix(crtc_state); else ilk_load_csc_matrix(crtc_state); } static void i9xx_load_lut_8(struct intel_crtc *crtc, const struct drm_property_blob *blob) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct drm_color_lut *lut; enum pipe pipe = crtc->pipe; int i; if (!blob) return; lut = blob->data; for (i = 0; i < 256; i++) intel_de_write(dev_priv, PALETTE(pipe, i), i9xx_lut_8(&lut[i])); } static void i9xx_load_luts(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct drm_property_blob *gamma_lut = crtc_state->hw.gamma_lut; assert_pll_enabled(dev_priv, crtc->pipe); i9xx_load_lut_8(crtc, gamma_lut); } static void i965_load_lut_10p6(struct intel_crtc *crtc, const struct drm_property_blob *blob) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct drm_color_lut *lut = blob->data; int i, lut_size = drm_color_lut_size(blob); enum pipe pipe = crtc->pipe; for (i = 0; i < lut_size - 1; i++) { intel_de_write(dev_priv, PALETTE(pipe, 2 * i + 0), i965_lut_10p6_ldw(&lut[i])); intel_de_write(dev_priv, PALETTE(pipe, 2 * i + 1), i965_lut_10p6_udw(&lut[i])); } intel_de_write(dev_priv, PIPEGCMAX(pipe, 0), lut[i].red); intel_de_write(dev_priv, PIPEGCMAX(pipe, 1), lut[i].green); intel_de_write(dev_priv, PIPEGCMAX(pipe, 2), lut[i].blue); } static void i965_load_luts(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct drm_property_blob *gamma_lut = crtc_state->hw.gamma_lut; if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) assert_dsi_pll_enabled(dev_priv); else assert_pll_enabled(dev_priv, crtc->pipe); if (crtc_state->gamma_mode == GAMMA_MODE_MODE_8BIT) i9xx_load_lut_8(crtc, gamma_lut); else i965_load_lut_10p6(crtc, gamma_lut); } static void ilk_load_lut_8(struct intel_crtc *crtc, const struct drm_property_blob *blob) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct drm_color_lut *lut; enum pipe pipe = crtc->pipe; int i; if (!blob) return; lut = blob->data; for (i = 0; i < 256; i++) intel_de_write(dev_priv, LGC_PALETTE(pipe, i), i9xx_lut_8(&lut[i])); } static void ilk_load_lut_10(struct intel_crtc *crtc, const struct drm_property_blob *blob) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct drm_color_lut *lut = blob->data; int i, lut_size = drm_color_lut_size(blob); enum pipe pipe = crtc->pipe; for (i = 0; i < lut_size; i++) intel_de_write(dev_priv, PREC_PALETTE(pipe, i), ilk_lut_10(&lut[i])); } static void ilk_load_luts(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); const struct drm_property_blob *gamma_lut = crtc_state->hw.gamma_lut; if (crtc_state->gamma_mode == GAMMA_MODE_MODE_8BIT) ilk_load_lut_8(crtc, gamma_lut); else ilk_load_lut_10(crtc, gamma_lut); } static int ivb_lut_10_size(u32 prec_index) { if (prec_index & PAL_PREC_SPLIT_MODE) return 512; else return 1024; } /* * IVB/HSW Bspec / PAL_PREC_INDEX: * "Restriction : Index auto increment mode is not * supported and must not be enabled." */ static void ivb_load_lut_10(struct intel_crtc *crtc, const struct drm_property_blob *blob, u32 prec_index) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); int hw_lut_size = ivb_lut_10_size(prec_index); const struct drm_color_lut *lut = blob->data; int i, lut_size = drm_color_lut_size(blob); enum pipe pipe = crtc->pipe; for (i = 0; i < hw_lut_size; i++) { /* We discard half the user entries in split gamma mode */ const struct drm_color_lut *entry = &lut[i * (lut_size - 1) / (hw_lut_size - 1)]; intel_de_write(dev_priv, PREC_PAL_INDEX(pipe), prec_index++); intel_de_write(dev_priv, PREC_PAL_DATA(pipe), ilk_lut_10(entry)); } /* * Reset the index, otherwise it prevents the legacy palette to be * written properly. */ intel_de_write(dev_priv, PREC_PAL_INDEX(pipe), 0); } /* On BDW+ the index auto increment mode actually works */ static void bdw_load_lut_10(struct intel_crtc *crtc, const struct drm_property_blob *blob, u32 prec_index) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); int hw_lut_size = ivb_lut_10_size(prec_index); const struct drm_color_lut *lut = blob->data; int i, lut_size = drm_color_lut_size(blob); enum pipe pipe = crtc->pipe; intel_de_write(dev_priv, PREC_PAL_INDEX(pipe), prec_index | PAL_PREC_AUTO_INCREMENT); for (i = 0; i < hw_lut_size; i++) { /* We discard half the user entries in split gamma mode */ const struct drm_color_lut *entry = &lut[i * (lut_size - 1) / (hw_lut_size - 1)]; intel_de_write(dev_priv, PREC_PAL_DATA(pipe), ilk_lut_10(entry)); } /* * Reset the index, otherwise it prevents the legacy palette to be * written properly. */ intel_de_write(dev_priv, PREC_PAL_INDEX(pipe), 0); } static void ivb_load_lut_ext_max(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; /* Program the max register to clamp values > 1.0. */ intel_dsb_reg_write(crtc_state, PREC_PAL_EXT_GC_MAX(pipe, 0), 1 << 16); intel_dsb_reg_write(crtc_state, PREC_PAL_EXT_GC_MAX(pipe, 1), 1 << 16); intel_dsb_reg_write(crtc_state, PREC_PAL_EXT_GC_MAX(pipe, 2), 1 << 16); /* * Program the gc max 2 register to clamp values > 1.0. * ToDo: Extend the ABI to be able to program values * from 3.0 to 7.0 */ if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) { intel_dsb_reg_write(crtc_state, PREC_PAL_EXT2_GC_MAX(pipe, 0), 1 << 16); intel_dsb_reg_write(crtc_state, PREC_PAL_EXT2_GC_MAX(pipe, 1), 1 << 16); intel_dsb_reg_write(crtc_state, PREC_PAL_EXT2_GC_MAX(pipe, 2), 1 << 16); } } static void ivb_load_luts(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); const struct drm_property_blob *gamma_lut = crtc_state->hw.gamma_lut; const struct drm_property_blob *degamma_lut = crtc_state->hw.degamma_lut; if (crtc_state->gamma_mode == GAMMA_MODE_MODE_8BIT) { ilk_load_lut_8(crtc, gamma_lut); } else if (crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) { ivb_load_lut_10(crtc, degamma_lut, PAL_PREC_SPLIT_MODE | PAL_PREC_INDEX_VALUE(0)); ivb_load_lut_ext_max(crtc_state); ivb_load_lut_10(crtc, gamma_lut, PAL_PREC_SPLIT_MODE | PAL_PREC_INDEX_VALUE(512)); } else { const struct drm_property_blob *blob = gamma_lut ?: degamma_lut; ivb_load_lut_10(crtc, blob, PAL_PREC_INDEX_VALUE(0)); ivb_load_lut_ext_max(crtc_state); } } static void bdw_load_luts(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); const struct drm_property_blob *gamma_lut = crtc_state->hw.gamma_lut; const struct drm_property_blob *degamma_lut = crtc_state->hw.degamma_lut; if (crtc_state->gamma_mode == GAMMA_MODE_MODE_8BIT) { ilk_load_lut_8(crtc, gamma_lut); } else if (crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) { bdw_load_lut_10(crtc, degamma_lut, PAL_PREC_SPLIT_MODE | PAL_PREC_INDEX_VALUE(0)); ivb_load_lut_ext_max(crtc_state); bdw_load_lut_10(crtc, gamma_lut, PAL_PREC_SPLIT_MODE | PAL_PREC_INDEX_VALUE(512)); } else { const struct drm_property_blob *blob = gamma_lut ?: degamma_lut; bdw_load_lut_10(crtc, blob, PAL_PREC_INDEX_VALUE(0)); ivb_load_lut_ext_max(crtc_state); } } static void glk_load_degamma_lut(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; int i, lut_size = INTEL_INFO(dev_priv)->color.degamma_lut_size; const struct drm_color_lut *lut = crtc_state->hw.degamma_lut->data; /* * When setting the auto-increment bit, the hardware seems to * ignore the index bits, so we need to reset it to index 0 * separately. */ intel_de_write(dev_priv, PRE_CSC_GAMC_INDEX(pipe), 0); intel_de_write(dev_priv, PRE_CSC_GAMC_INDEX(pipe), PRE_CSC_GAMC_AUTO_INCREMENT); for (i = 0; i < lut_size; i++) { /* * First 33 entries represent range from 0 to 1.0 * 34th and 35th entry will represent extended range * inputs 3.0 and 7.0 respectively, currently clamped * at 1.0. Since the precision is 16bit, the user * value can be directly filled to register. * The pipe degamma table in GLK+ onwards doesn't * support different values per channel, so this just * programs green value which will be equal to Red and * Blue into the lut registers. * ToDo: Extend to max 7.0. Enable 32 bit input value * as compared to just 16 to achieve this. */ intel_de_write(dev_priv, PRE_CSC_GAMC_DATA(pipe), lut[i].green); } /* Clamp values > 1.0. */ while (i++ < 35) intel_de_write(dev_priv, PRE_CSC_GAMC_DATA(pipe), 1 << 16); } static void glk_load_degamma_lut_linear(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; int i, lut_size = INTEL_INFO(dev_priv)->color.degamma_lut_size; /* * When setting the auto-increment bit, the hardware seems to * ignore the index bits, so we need to reset it to index 0 * separately. */ intel_de_write(dev_priv, PRE_CSC_GAMC_INDEX(pipe), 0); intel_de_write(dev_priv, PRE_CSC_GAMC_INDEX(pipe), PRE_CSC_GAMC_AUTO_INCREMENT); for (i = 0; i < lut_size; i++) { u32 v = (i << 16) / (lut_size - 1); intel_de_write(dev_priv, PRE_CSC_GAMC_DATA(pipe), v); } /* Clamp values > 1.0. */ while (i++ < 35) intel_de_write(dev_priv, PRE_CSC_GAMC_DATA(pipe), 1 << 16); } static void glk_load_luts(const struct intel_crtc_state *crtc_state) { const struct drm_property_blob *gamma_lut = crtc_state->hw.gamma_lut; struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); /* * On GLK+ both pipe CSC and degamma LUT are controlled * by csc_enable. Hence for the cases where the CSC is * needed but degamma LUT is not we need to load a * linear degamma LUT. In fact we'll just always load * the degama LUT so that we don't have to reload * it every time the pipe CSC is being enabled. */ if (crtc_state->hw.degamma_lut) glk_load_degamma_lut(crtc_state); else glk_load_degamma_lut_linear(crtc_state); if (crtc_state->gamma_mode == GAMMA_MODE_MODE_8BIT) { ilk_load_lut_8(crtc, gamma_lut); } else { bdw_load_lut_10(crtc, gamma_lut, PAL_PREC_INDEX_VALUE(0)); ivb_load_lut_ext_max(crtc_state); } } /* ilk+ "12.4" interpolated format (high 10 bits) */ static u32 ilk_lut_12p4_udw(const struct drm_color_lut *color) { return (color->red >> 6) << 20 | (color->green >> 6) << 10 | (color->blue >> 6); } /* ilk+ "12.4" interpolated format (low 6 bits) */ static u32 ilk_lut_12p4_ldw(const struct drm_color_lut *color) { return (color->red & 0x3f) << 24 | (color->green & 0x3f) << 14 | (color->blue & 0x3f) << 4; } static void icl_load_gcmax(const struct intel_crtc_state *crtc_state, const struct drm_color_lut *color) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); enum pipe pipe = crtc->pipe; /* FIXME LUT entries are 16 bit only, so we can prog 0xFFFF max */ intel_dsb_reg_write(crtc_state, PREC_PAL_GC_MAX(pipe, 0), color->red); intel_dsb_reg_write(crtc_state, PREC_PAL_GC_MAX(pipe, 1), color->green); intel_dsb_reg_write(crtc_state, PREC_PAL_GC_MAX(pipe, 2), color->blue); } static void icl_program_gamma_superfine_segment(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); const struct drm_property_blob *blob = crtc_state->hw.gamma_lut; const struct drm_color_lut *lut = blob->data; enum pipe pipe = crtc->pipe; int i; /* * Program Super Fine segment (let's call it seg1)... * * Super Fine segment's step is 1/(8 * 128 * 256) and it has * 9 entries, corresponding to values 0, 1/(8 * 128 * 256), * 2/(8 * 128 * 256) ... 8/(8 * 128 * 256). */ intel_dsb_reg_write(crtc_state, PREC_PAL_MULTI_SEG_INDEX(pipe), PAL_PREC_AUTO_INCREMENT); for (i = 0; i < 9; i++) { const struct drm_color_lut *entry = &lut[i]; intel_dsb_indexed_reg_write(crtc_state, PREC_PAL_MULTI_SEG_DATA(pipe), ilk_lut_12p4_ldw(entry)); intel_dsb_indexed_reg_write(crtc_state, PREC_PAL_MULTI_SEG_DATA(pipe), ilk_lut_12p4_udw(entry)); } } static void icl_program_gamma_multi_segment(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); const struct drm_property_blob *blob = crtc_state->hw.gamma_lut; const struct drm_color_lut *lut = blob->data; const struct drm_color_lut *entry; enum pipe pipe = crtc->pipe; int i; /* * Program Fine segment (let's call it seg2)... * * Fine segment's step is 1/(128 * 256) i.e. 1/(128 * 256), 2/(128 * 256) * ... 256/(128 * 256). So in order to program fine segment of LUT we * need to pick every 8th entry in the LUT, and program 256 indexes. * * PAL_PREC_INDEX[0] and PAL_PREC_INDEX[1] map to seg2[1], * seg2[0] being unused by the hardware. */ intel_dsb_reg_write(crtc_state, PREC_PAL_INDEX(pipe), PAL_PREC_AUTO_INCREMENT); for (i = 1; i < 257; i++) { entry = &lut[i * 8]; intel_dsb_indexed_reg_write(crtc_state, PREC_PAL_DATA(pipe), ilk_lut_12p4_ldw(entry)); intel_dsb_indexed_reg_write(crtc_state, PREC_PAL_DATA(pipe), ilk_lut_12p4_udw(entry)); } /* * Program Coarse segment (let's call it seg3)... * * Coarse segment starts from index 0 and it's step is 1/256 ie 0, * 1/256, 2/256 ... 256/256. As per the description of each entry in LUT * above, we need to pick every (8 * 128)th entry in LUT, and * program 256 of those. * * Spec is not very clear about if entries seg3[0] and seg3[1] are * being used or not, but we still need to program these to advance * the index. */ for (i = 0; i < 256; i++) { entry = &lut[i * 8 * 128]; intel_dsb_indexed_reg_write(crtc_state, PREC_PAL_DATA(pipe), ilk_lut_12p4_ldw(entry)); intel_dsb_indexed_reg_write(crtc_state, PREC_PAL_DATA(pipe), ilk_lut_12p4_udw(entry)); } /* The last entry in the LUT is to be programmed in GCMAX */ entry = &lut[256 * 8 * 128]; icl_load_gcmax(crtc_state, entry); ivb_load_lut_ext_max(crtc_state); } static void icl_load_luts(const struct intel_crtc_state *crtc_state) { const struct drm_property_blob *gamma_lut = crtc_state->hw.gamma_lut; struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); if (crtc_state->hw.degamma_lut) glk_load_degamma_lut(crtc_state); switch (crtc_state->gamma_mode & GAMMA_MODE_MODE_MASK) { case GAMMA_MODE_MODE_8BIT: ilk_load_lut_8(crtc, gamma_lut); break; case GAMMA_MODE_MODE_12BIT_MULTI_SEGMENTED: icl_program_gamma_superfine_segment(crtc_state); icl_program_gamma_multi_segment(crtc_state); break; default: bdw_load_lut_10(crtc, gamma_lut, PAL_PREC_INDEX_VALUE(0)); ivb_load_lut_ext_max(crtc_state); } intel_dsb_commit(crtc_state); } static u32 chv_cgm_degamma_ldw(const struct drm_color_lut *color) { return drm_color_lut_extract(color->green, 14) << 16 | drm_color_lut_extract(color->blue, 14); } static u32 chv_cgm_degamma_udw(const struct drm_color_lut *color) { return drm_color_lut_extract(color->red, 14); } static void chv_cgm_gamma_pack(struct drm_color_lut *entry, u32 ldw, u32 udw) { entry->green = intel_color_lut_pack(REG_FIELD_GET(CGM_PIPE_GAMMA_GREEN_MASK, ldw), 10); entry->blue = intel_color_lut_pack(REG_FIELD_GET(CGM_PIPE_GAMMA_BLUE_MASK, ldw), 10); entry->red = intel_color_lut_pack(REG_FIELD_GET(CGM_PIPE_GAMMA_RED_MASK, udw), 10); } static void chv_load_cgm_degamma(struct intel_crtc *crtc, const struct drm_property_blob *blob) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct drm_color_lut *lut = blob->data; int i, lut_size = drm_color_lut_size(blob); enum pipe pipe = crtc->pipe; for (i = 0; i < lut_size; i++) { intel_de_write(dev_priv, CGM_PIPE_DEGAMMA(pipe, i, 0), chv_cgm_degamma_ldw(&lut[i])); intel_de_write(dev_priv, CGM_PIPE_DEGAMMA(pipe, i, 1), chv_cgm_degamma_udw(&lut[i])); } } static u32 chv_cgm_gamma_ldw(const struct drm_color_lut *color) { return drm_color_lut_extract(color->green, 10) << 16 | drm_color_lut_extract(color->blue, 10); } static u32 chv_cgm_gamma_udw(const struct drm_color_lut *color) { return drm_color_lut_extract(color->red, 10); } static void chv_load_cgm_gamma(struct intel_crtc *crtc, const struct drm_property_blob *blob) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct drm_color_lut *lut = blob->data; int i, lut_size = drm_color_lut_size(blob); enum pipe pipe = crtc->pipe; for (i = 0; i < lut_size; i++) { intel_de_write(dev_priv, CGM_PIPE_GAMMA(pipe, i, 0), chv_cgm_gamma_ldw(&lut[i])); intel_de_write(dev_priv, CGM_PIPE_GAMMA(pipe, i, 1), chv_cgm_gamma_udw(&lut[i])); } } static void chv_load_luts(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct drm_property_blob *degamma_lut = crtc_state->hw.degamma_lut; const struct drm_property_blob *gamma_lut = crtc_state->hw.gamma_lut; const struct drm_property_blob *ctm = crtc_state->hw.ctm; if (crtc_state->cgm_mode & CGM_PIPE_MODE_CSC) chv_load_cgm_csc(crtc, ctm); if (crtc_state->cgm_mode & CGM_PIPE_MODE_DEGAMMA) chv_load_cgm_degamma(crtc, degamma_lut); if (crtc_state->cgm_mode & CGM_PIPE_MODE_GAMMA) chv_load_cgm_gamma(crtc, gamma_lut); else i965_load_luts(crtc_state); intel_de_write(dev_priv, CGM_PIPE_MODE(crtc->pipe), crtc_state->cgm_mode); } void intel_color_load_luts(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); dev_priv->display.load_luts(crtc_state); } void intel_color_commit(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); dev_priv->display.color_commit(crtc_state); } static bool intel_can_preload_luts(const struct intel_crtc_state *new_crtc_state) { struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state); const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); return !old_crtc_state->hw.gamma_lut && !old_crtc_state->hw.degamma_lut; } static bool chv_can_preload_luts(const struct intel_crtc_state *new_crtc_state) { struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state); const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); /* * CGM_PIPE_MODE is itself single buffered. We'd have to * somehow split it out from chv_load_luts() if we wanted * the ability to preload the CGM LUTs/CSC without tearing. */ if (old_crtc_state->cgm_mode || new_crtc_state->cgm_mode) return false; return !old_crtc_state->hw.gamma_lut; } static bool glk_can_preload_luts(const struct intel_crtc_state *new_crtc_state) { struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state); const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); /* * The hardware degamma is active whenever the pipe * CSC is active. Thus even if the old state has no * software degamma we need to avoid clobbering the * linear hardware degamma mid scanout. */ return !old_crtc_state->csc_enable && !old_crtc_state->hw.gamma_lut; } int intel_color_check(struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); return dev_priv->display.color_check(crtc_state); } void intel_color_get_config(struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); if (dev_priv->display.read_luts) dev_priv->display.read_luts(crtc_state); } static bool need_plane_update(struct intel_plane *plane, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(plane->base.dev); /* * On pre-SKL the pipe gamma enable and pipe csc enable for * the pipe bottom color are configured via the primary plane. * We have to reconfigure that even if the plane is inactive. */ return crtc_state->active_planes & BIT(plane->id) || (INTEL_GEN(dev_priv) < 9 && plane->id == PLANE_PRIMARY); } static int intel_color_add_affected_planes(struct intel_crtc_state *new_crtc_state) { struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state); const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); struct intel_plane *plane; if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) return 0; if (new_crtc_state->gamma_enable == old_crtc_state->gamma_enable && new_crtc_state->csc_enable == old_crtc_state->csc_enable) return 0; for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { struct intel_plane_state *plane_state; if (!need_plane_update(plane, new_crtc_state)) continue; plane_state = intel_atomic_get_plane_state(state, plane); if (IS_ERR(plane_state)) return PTR_ERR(plane_state); new_crtc_state->update_planes |= BIT(plane->id); } return 0; } static int check_lut_size(const struct drm_property_blob *lut, int expected) { int len; if (!lut) return 0; len = drm_color_lut_size(lut); if (len != expected) { DRM_DEBUG_KMS("Invalid LUT size; got %d, expected %d\n", len, expected); return -EINVAL; } return 0; } static int check_luts(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); const struct drm_property_blob *gamma_lut = crtc_state->hw.gamma_lut; const struct drm_property_blob *degamma_lut = crtc_state->hw.degamma_lut; int gamma_length, degamma_length; u32 gamma_tests, degamma_tests; /* Always allow legacy gamma LUT with no further checking. */ if (crtc_state_is_legacy_gamma(crtc_state)) return 0; /* C8 relies on its palette being stored in the legacy LUT */ if (crtc_state->c8_planes) { drm_dbg_kms(&dev_priv->drm, "C8 pixelformat requires the legacy LUT\n"); return -EINVAL; } degamma_length = INTEL_INFO(dev_priv)->color.degamma_lut_size; gamma_length = INTEL_INFO(dev_priv)->color.gamma_lut_size; degamma_tests = INTEL_INFO(dev_priv)->color.degamma_lut_tests; gamma_tests = INTEL_INFO(dev_priv)->color.gamma_lut_tests; if (check_lut_size(degamma_lut, degamma_length) || check_lut_size(gamma_lut, gamma_length)) return -EINVAL; if (drm_color_lut_check(degamma_lut, degamma_tests) || drm_color_lut_check(gamma_lut, gamma_tests)) return -EINVAL; return 0; } static u32 i9xx_gamma_mode(struct intel_crtc_state *crtc_state) { if (!crtc_state->gamma_enable || crtc_state_is_legacy_gamma(crtc_state)) return GAMMA_MODE_MODE_8BIT; else return GAMMA_MODE_MODE_10BIT; /* i965+ only */ } static int i9xx_color_check(struct intel_crtc_state *crtc_state) { int ret; ret = check_luts(crtc_state); if (ret) return ret; crtc_state->gamma_enable = crtc_state->hw.gamma_lut && !crtc_state->c8_planes; crtc_state->gamma_mode = i9xx_gamma_mode(crtc_state); ret = intel_color_add_affected_planes(crtc_state); if (ret) return ret; crtc_state->preload_luts = intel_can_preload_luts(crtc_state); return 0; } static u32 chv_cgm_mode(const struct intel_crtc_state *crtc_state) { u32 cgm_mode = 0; if (crtc_state_is_legacy_gamma(crtc_state)) return 0; if (crtc_state->hw.degamma_lut) cgm_mode |= CGM_PIPE_MODE_DEGAMMA; if (crtc_state->hw.ctm) cgm_mode |= CGM_PIPE_MODE_CSC; if (crtc_state->hw.gamma_lut) cgm_mode |= CGM_PIPE_MODE_GAMMA; return cgm_mode; } /* * CHV color pipeline: * u0.10 -> CGM degamma -> u0.14 -> CGM csc -> u0.14 -> CGM gamma -> * u0.10 -> WGC csc -> u0.10 -> pipe gamma -> u0.10 * * We always bypass the WGC csc and use the CGM csc * instead since it has degamma and better precision. */ static int chv_color_check(struct intel_crtc_state *crtc_state) { int ret; ret = check_luts(crtc_state); if (ret) return ret; /* * Pipe gamma will be used only for the legacy LUT. * Otherwise we bypass it and use the CGM gamma instead. */ crtc_state->gamma_enable = crtc_state_is_legacy_gamma(crtc_state) && !crtc_state->c8_planes; crtc_state->gamma_mode = GAMMA_MODE_MODE_8BIT; crtc_state->cgm_mode = chv_cgm_mode(crtc_state); ret = intel_color_add_affected_planes(crtc_state); if (ret) return ret; crtc_state->preload_luts = chv_can_preload_luts(crtc_state); return 0; } static u32 ilk_gamma_mode(const struct intel_crtc_state *crtc_state) { if (!crtc_state->gamma_enable || crtc_state_is_legacy_gamma(crtc_state)) return GAMMA_MODE_MODE_8BIT; else return GAMMA_MODE_MODE_10BIT; } static u32 ilk_csc_mode(const struct intel_crtc_state *crtc_state) { /* * CSC comes after the LUT in RGB->YCbCr mode. * RGB->YCbCr needs the limited range offsets added to * the output. RGB limited range output is handled by * the hw automagically elsewhere. */ if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) return CSC_BLACK_SCREEN_OFFSET; return CSC_MODE_YUV_TO_RGB | CSC_POSITION_BEFORE_GAMMA; } static int ilk_color_check(struct intel_crtc_state *crtc_state) { int ret; ret = check_luts(crtc_state); if (ret) return ret; crtc_state->gamma_enable = crtc_state->hw.gamma_lut && !crtc_state->c8_planes; /* * We don't expose the ctm on ilk/snb currently, also RGB * limited range output is handled by the hw automagically. */ crtc_state->csc_enable = crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB; crtc_state->gamma_mode = ilk_gamma_mode(crtc_state); crtc_state->csc_mode = ilk_csc_mode(crtc_state); ret = intel_color_add_affected_planes(crtc_state); if (ret) return ret; crtc_state->preload_luts = intel_can_preload_luts(crtc_state); return 0; } static u32 ivb_gamma_mode(const struct intel_crtc_state *crtc_state) { if (!crtc_state->gamma_enable || crtc_state_is_legacy_gamma(crtc_state)) return GAMMA_MODE_MODE_8BIT; else if (crtc_state->hw.gamma_lut && crtc_state->hw.degamma_lut) return GAMMA_MODE_MODE_SPLIT; else return GAMMA_MODE_MODE_10BIT; } static u32 ivb_csc_mode(const struct intel_crtc_state *crtc_state) { bool limited_color_range = ilk_csc_limited_range(crtc_state); /* * CSC comes after the LUT in degamma, RGB->YCbCr, * and RGB full->limited range mode. */ if (crtc_state->hw.degamma_lut || crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB || limited_color_range) return 0; return CSC_POSITION_BEFORE_GAMMA; } static int ivb_color_check(struct intel_crtc_state *crtc_state) { bool limited_color_range = ilk_csc_limited_range(crtc_state); int ret; ret = check_luts(crtc_state); if (ret) return ret; crtc_state->gamma_enable = (crtc_state->hw.gamma_lut || crtc_state->hw.degamma_lut) && !crtc_state->c8_planes; crtc_state->csc_enable = crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB || crtc_state->hw.ctm || limited_color_range; crtc_state->gamma_mode = ivb_gamma_mode(crtc_state); crtc_state->csc_mode = ivb_csc_mode(crtc_state); ret = intel_color_add_affected_planes(crtc_state); if (ret) return ret; crtc_state->preload_luts = intel_can_preload_luts(crtc_state); return 0; } static u32 glk_gamma_mode(const struct intel_crtc_state *crtc_state) { if (!crtc_state->gamma_enable || crtc_state_is_legacy_gamma(crtc_state)) return GAMMA_MODE_MODE_8BIT; else return GAMMA_MODE_MODE_10BIT; } static int glk_color_check(struct intel_crtc_state *crtc_state) { int ret; ret = check_luts(crtc_state); if (ret) return ret; crtc_state->gamma_enable = crtc_state->hw.gamma_lut && !crtc_state->c8_planes; /* On GLK+ degamma LUT is controlled by csc_enable */ crtc_state->csc_enable = crtc_state->hw.degamma_lut || crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB || crtc_state->hw.ctm || crtc_state->limited_color_range; crtc_state->gamma_mode = glk_gamma_mode(crtc_state); crtc_state->csc_mode = 0; ret = intel_color_add_affected_planes(crtc_state); if (ret) return ret; crtc_state->preload_luts = glk_can_preload_luts(crtc_state); return 0; } static u32 icl_gamma_mode(const struct intel_crtc_state *crtc_state) { u32 gamma_mode = 0; if (crtc_state->hw.degamma_lut) gamma_mode |= PRE_CSC_GAMMA_ENABLE; if (crtc_state->hw.gamma_lut && !crtc_state->c8_planes) gamma_mode |= POST_CSC_GAMMA_ENABLE; if (!crtc_state->hw.gamma_lut || crtc_state_is_legacy_gamma(crtc_state)) gamma_mode |= GAMMA_MODE_MODE_8BIT; else gamma_mode |= GAMMA_MODE_MODE_12BIT_MULTI_SEGMENTED; return gamma_mode; } static u32 icl_csc_mode(const struct intel_crtc_state *crtc_state) { u32 csc_mode = 0; if (crtc_state->hw.ctm) csc_mode |= ICL_CSC_ENABLE; if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB || crtc_state->limited_color_range) csc_mode |= ICL_OUTPUT_CSC_ENABLE; return csc_mode; } static int icl_color_check(struct intel_crtc_state *crtc_state) { int ret; ret = check_luts(crtc_state); if (ret) return ret; crtc_state->gamma_mode = icl_gamma_mode(crtc_state); crtc_state->csc_mode = icl_csc_mode(crtc_state); crtc_state->preload_luts = intel_can_preload_luts(crtc_state); return 0; } static int i9xx_gamma_precision(const struct intel_crtc_state *crtc_state) { if (!crtc_state->gamma_enable) return 0; switch (crtc_state->gamma_mode) { case GAMMA_MODE_MODE_8BIT: return 8; case GAMMA_MODE_MODE_10BIT: return 16; default: MISSING_CASE(crtc_state->gamma_mode); return 0; } } static int ilk_gamma_precision(const struct intel_crtc_state *crtc_state) { if (!crtc_state->gamma_enable) return 0; if ((crtc_state->csc_mode & CSC_POSITION_BEFORE_GAMMA) == 0) return 0; switch (crtc_state->gamma_mode) { case GAMMA_MODE_MODE_8BIT: return 8; case GAMMA_MODE_MODE_10BIT: return 10; default: MISSING_CASE(crtc_state->gamma_mode); return 0; } } static int chv_gamma_precision(const struct intel_crtc_state *crtc_state) { if (crtc_state->cgm_mode & CGM_PIPE_MODE_GAMMA) return 10; else return i9xx_gamma_precision(crtc_state); } static int glk_gamma_precision(const struct intel_crtc_state *crtc_state) { if (!crtc_state->gamma_enable) return 0; switch (crtc_state->gamma_mode) { case GAMMA_MODE_MODE_8BIT: return 8; case GAMMA_MODE_MODE_10BIT: return 10; default: MISSING_CASE(crtc_state->gamma_mode); return 0; } } static int icl_gamma_precision(const struct intel_crtc_state *crtc_state) { if ((crtc_state->gamma_mode & POST_CSC_GAMMA_ENABLE) == 0) return 0; switch (crtc_state->gamma_mode & GAMMA_MODE_MODE_MASK) { case GAMMA_MODE_MODE_8BIT: return 8; case GAMMA_MODE_MODE_10BIT: return 10; case GAMMA_MODE_MODE_12BIT_MULTI_SEGMENTED: return 16; default: MISSING_CASE(crtc_state->gamma_mode); return 0; } } int intel_color_get_gamma_bit_precision(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); if (HAS_GMCH(dev_priv)) { if (IS_CHERRYVIEW(dev_priv)) return chv_gamma_precision(crtc_state); else return i9xx_gamma_precision(crtc_state); } else { if (INTEL_GEN(dev_priv) >= 11) return icl_gamma_precision(crtc_state); else if (IS_CANNONLAKE(dev_priv) || IS_GEMINILAKE(dev_priv)) return glk_gamma_precision(crtc_state); else if (IS_IRONLAKE(dev_priv)) return ilk_gamma_precision(crtc_state); } return 0; } static bool err_check(struct drm_color_lut *lut1, struct drm_color_lut *lut2, u32 err) { return ((abs((long)lut2->red - lut1->red)) <= err) && ((abs((long)lut2->blue - lut1->blue)) <= err) && ((abs((long)lut2->green - lut1->green)) <= err); } static bool intel_color_lut_entries_equal(struct drm_color_lut *lut1, struct drm_color_lut *lut2, int lut_size, u32 err) { int i; for (i = 0; i < lut_size; i++) { if (!err_check(&lut1[i], &lut2[i], err)) return false; } return true; } bool intel_color_lut_equal(struct drm_property_blob *blob1, struct drm_property_blob *blob2, u32 gamma_mode, u32 bit_precision) { struct drm_color_lut *lut1, *lut2; int lut_size1, lut_size2; u32 err; if (!blob1 != !blob2) return false; if (!blob1) return true; lut_size1 = drm_color_lut_size(blob1); lut_size2 = drm_color_lut_size(blob2); /* check sw and hw lut size */ if (lut_size1 != lut_size2) return false; lut1 = blob1->data; lut2 = blob2->data; err = 0xffff >> bit_precision; /* check sw and hw lut entry to be equal */ switch (gamma_mode & GAMMA_MODE_MODE_MASK) { case GAMMA_MODE_MODE_8BIT: case GAMMA_MODE_MODE_10BIT: if (!intel_color_lut_entries_equal(lut1, lut2, lut_size2, err)) return false; break; case GAMMA_MODE_MODE_12BIT_MULTI_SEGMENTED: if (!intel_color_lut_entries_equal(lut1, lut2, 9, err)) return false; break; default: MISSING_CASE(gamma_mode); return false; } return true; } static struct drm_property_blob *i9xx_read_lut_8(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; struct drm_property_blob *blob; struct drm_color_lut *lut; int i; blob = drm_property_create_blob(&dev_priv->drm, sizeof(struct drm_color_lut) * LEGACY_LUT_LENGTH, NULL); if (IS_ERR(blob)) return NULL; lut = blob->data; for (i = 0; i < LEGACY_LUT_LENGTH; i++) { u32 val = intel_de_read(dev_priv, PALETTE(pipe, i)); i9xx_lut_8_pack(&lut[i], val); } return blob; } static void i9xx_read_luts(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); if (!crtc_state->gamma_enable) return; crtc_state->hw.gamma_lut = i9xx_read_lut_8(crtc); } static struct drm_property_blob *i965_read_lut_10p6(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); int i, lut_size = INTEL_INFO(dev_priv)->color.gamma_lut_size; enum pipe pipe = crtc->pipe; struct drm_property_blob *blob; struct drm_color_lut *lut; blob = drm_property_create_blob(&dev_priv->drm, sizeof(struct drm_color_lut) * lut_size, NULL); if (IS_ERR(blob)) return NULL; lut = blob->data; for (i = 0; i < lut_size - 1; i++) { u32 ldw = intel_de_read(dev_priv, PALETTE(pipe, 2 * i + 0)); u32 udw = intel_de_read(dev_priv, PALETTE(pipe, 2 * i + 1)); i965_lut_10p6_pack(&lut[i], ldw, udw); } lut[i].red = i965_lut_11p6_max_pack(intel_de_read(dev_priv, PIPEGCMAX(pipe, 0))); lut[i].green = i965_lut_11p6_max_pack(intel_de_read(dev_priv, PIPEGCMAX(pipe, 1))); lut[i].blue = i965_lut_11p6_max_pack(intel_de_read(dev_priv, PIPEGCMAX(pipe, 2))); return blob; } static void i965_read_luts(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); if (!crtc_state->gamma_enable) return; if (crtc_state->gamma_mode == GAMMA_MODE_MODE_8BIT) crtc_state->hw.gamma_lut = i9xx_read_lut_8(crtc); else crtc_state->hw.gamma_lut = i965_read_lut_10p6(crtc); } static struct drm_property_blob *chv_read_cgm_gamma(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); int i, lut_size = INTEL_INFO(dev_priv)->color.gamma_lut_size; enum pipe pipe = crtc->pipe; struct drm_property_blob *blob; struct drm_color_lut *lut; blob = drm_property_create_blob(&dev_priv->drm, sizeof(struct drm_color_lut) * lut_size, NULL); if (IS_ERR(blob)) return NULL; lut = blob->data; for (i = 0; i < lut_size; i++) { u32 ldw = intel_de_read(dev_priv, CGM_PIPE_GAMMA(pipe, i, 0)); u32 udw = intel_de_read(dev_priv, CGM_PIPE_GAMMA(pipe, i, 1)); chv_cgm_gamma_pack(&lut[i], ldw, udw); } return blob; } static void chv_read_luts(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); if (crtc_state->cgm_mode & CGM_PIPE_MODE_GAMMA) crtc_state->hw.gamma_lut = chv_read_cgm_gamma(crtc); else i965_read_luts(crtc_state); } static struct drm_property_blob *ilk_read_lut_8(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; struct drm_property_blob *blob; struct drm_color_lut *lut; int i; blob = drm_property_create_blob(&dev_priv->drm, sizeof(struct drm_color_lut) * LEGACY_LUT_LENGTH, NULL); if (IS_ERR(blob)) return NULL; lut = blob->data; for (i = 0; i < LEGACY_LUT_LENGTH; i++) { u32 val = intel_de_read(dev_priv, LGC_PALETTE(pipe, i)); i9xx_lut_8_pack(&lut[i], val); } return blob; } static struct drm_property_blob *ilk_read_lut_10(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); int i, lut_size = INTEL_INFO(dev_priv)->color.gamma_lut_size; enum pipe pipe = crtc->pipe; struct drm_property_blob *blob; struct drm_color_lut *lut; blob = drm_property_create_blob(&dev_priv->drm, sizeof(struct drm_color_lut) * lut_size, NULL); if (IS_ERR(blob)) return NULL; lut = blob->data; for (i = 0; i < lut_size; i++) { u32 val = intel_de_read(dev_priv, PREC_PALETTE(pipe, i)); ilk_lut_10_pack(&lut[i], val); } return blob; } static void ilk_read_luts(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); if (!crtc_state->gamma_enable) return; if ((crtc_state->csc_mode & CSC_POSITION_BEFORE_GAMMA) == 0) return; if (crtc_state->gamma_mode == GAMMA_MODE_MODE_8BIT) crtc_state->hw.gamma_lut = ilk_read_lut_8(crtc); else crtc_state->hw.gamma_lut = ilk_read_lut_10(crtc); } static struct drm_property_blob *glk_read_lut_10(struct intel_crtc *crtc, u32 prec_index) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); int i, hw_lut_size = ivb_lut_10_size(prec_index); enum pipe pipe = crtc->pipe; struct drm_property_blob *blob; struct drm_color_lut *lut; blob = drm_property_create_blob(&dev_priv->drm, sizeof(struct drm_color_lut) * hw_lut_size, NULL); if (IS_ERR(blob)) return NULL; lut = blob->data; intel_de_write(dev_priv, PREC_PAL_INDEX(pipe), prec_index | PAL_PREC_AUTO_INCREMENT); for (i = 0; i < hw_lut_size; i++) { u32 val = intel_de_read(dev_priv, PREC_PAL_DATA(pipe)); ilk_lut_10_pack(&lut[i], val); } intel_de_write(dev_priv, PREC_PAL_INDEX(pipe), 0); return blob; } static void glk_read_luts(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); if (!crtc_state->gamma_enable) return; if (crtc_state->gamma_mode == GAMMA_MODE_MODE_8BIT) crtc_state->hw.gamma_lut = ilk_read_lut_8(crtc); else crtc_state->hw.gamma_lut = glk_read_lut_10(crtc, PAL_PREC_INDEX_VALUE(0)); } static struct drm_property_blob * icl_read_lut_multi_segment(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); int i, lut_size = INTEL_INFO(dev_priv)->color.gamma_lut_size; enum pipe pipe = crtc->pipe; struct drm_property_blob *blob; struct drm_color_lut *lut; blob = drm_property_create_blob(&dev_priv->drm, sizeof(struct drm_color_lut) * lut_size, NULL); if (IS_ERR(blob)) return NULL; lut = blob->data; intel_de_write(dev_priv, PREC_PAL_MULTI_SEG_INDEX(pipe), PAL_PREC_AUTO_INCREMENT); for (i = 0; i < 9; i++) { u32 ldw = intel_de_read(dev_priv, PREC_PAL_MULTI_SEG_DATA(pipe)); u32 udw = intel_de_read(dev_priv, PREC_PAL_MULTI_SEG_DATA(pipe)); icl_lut_multi_seg_pack(&lut[i], ldw, udw); } intel_de_write(dev_priv, PREC_PAL_MULTI_SEG_INDEX(pipe), 0); /* * FIXME readouts from PAL_PREC_DATA register aren't giving * correct values in the case of fine and coarse segments. * Restricting readouts only for super fine segment as of now. */ return blob; } static void icl_read_luts(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); if ((crtc_state->gamma_mode & POST_CSC_GAMMA_ENABLE) == 0) return; switch (crtc_state->gamma_mode & GAMMA_MODE_MODE_MASK) { case GAMMA_MODE_MODE_8BIT: crtc_state->hw.gamma_lut = ilk_read_lut_8(crtc); break; case GAMMA_MODE_MODE_12BIT_MULTI_SEGMENTED: crtc_state->hw.gamma_lut = icl_read_lut_multi_segment(crtc); break; default: crtc_state->hw.gamma_lut = glk_read_lut_10(crtc, PAL_PREC_INDEX_VALUE(0)); } } void intel_color_init(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); bool has_ctm = INTEL_INFO(dev_priv)->color.degamma_lut_size != 0; drm_mode_crtc_set_gamma_size(&crtc->base, 256); if (HAS_GMCH(dev_priv)) { if (IS_CHERRYVIEW(dev_priv)) { dev_priv->display.color_check = chv_color_check; dev_priv->display.color_commit = i9xx_color_commit; dev_priv->display.load_luts = chv_load_luts; dev_priv->display.read_luts = chv_read_luts; } else if (INTEL_GEN(dev_priv) >= 4) { dev_priv->display.color_check = i9xx_color_check; dev_priv->display.color_commit = i9xx_color_commit; dev_priv->display.load_luts = i965_load_luts; dev_priv->display.read_luts = i965_read_luts; } else { dev_priv->display.color_check = i9xx_color_check; dev_priv->display.color_commit = i9xx_color_commit; dev_priv->display.load_luts = i9xx_load_luts; dev_priv->display.read_luts = i9xx_read_luts; } } else { if (INTEL_GEN(dev_priv) >= 11) dev_priv->display.color_check = icl_color_check; else if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) dev_priv->display.color_check = glk_color_check; else if (INTEL_GEN(dev_priv) >= 7) dev_priv->display.color_check = ivb_color_check; else dev_priv->display.color_check = ilk_color_check; if (INTEL_GEN(dev_priv) >= 9) dev_priv->display.color_commit = skl_color_commit; else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) dev_priv->display.color_commit = hsw_color_commit; else dev_priv->display.color_commit = ilk_color_commit; if (INTEL_GEN(dev_priv) >= 11) { dev_priv->display.load_luts = icl_load_luts; dev_priv->display.read_luts = icl_read_luts; } else if (IS_CANNONLAKE(dev_priv) || IS_GEMINILAKE(dev_priv)) { dev_priv->display.load_luts = glk_load_luts; dev_priv->display.read_luts = glk_read_luts; } else if (INTEL_GEN(dev_priv) >= 8) { dev_priv->display.load_luts = bdw_load_luts; } else if (INTEL_GEN(dev_priv) >= 7) { dev_priv->display.load_luts = ivb_load_luts; } else { dev_priv->display.load_luts = ilk_load_luts; dev_priv->display.read_luts = ilk_read_luts; } } drm_crtc_enable_color_mgmt(&crtc->base, INTEL_INFO(dev_priv)->color.degamma_lut_size, has_ctm, INTEL_INFO(dev_priv)->color.gamma_lut_size); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1