Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Michal Wajdeczko | 342 | 40.38% | 17 | 43.59% |
Daniele Ceraolo Spurio | 236 | 27.86% | 12 | 30.77% |
Fernando Pacheco | 146 | 17.24% | 1 | 2.56% |
Anusha Srivatsa | 94 | 11.10% | 2 | 5.13% |
Sagar Arun Kamble | 13 | 1.53% | 1 | 2.56% |
Chris Wilson | 8 | 0.94% | 3 | 7.69% |
Yaodong Li | 3 | 0.35% | 1 | 2.56% |
Michał Winiarski | 3 | 0.35% | 1 | 2.56% |
Janusz Krzysztofik | 2 | 0.24% | 1 | 2.56% |
Total | 847 | 39 |
// SPDX-License-Identifier: MIT /* * Copyright © 2016-2019 Intel Corporation */ #include <linux/types.h> #include "gt/intel_gt.h" #include "intel_huc.h" #include "i915_drv.h" /** * DOC: HuC * * The HuC is a dedicated microcontroller for usage in media HEVC (High * Efficiency Video Coding) operations. Userspace can directly use the firmware * capabilities by adding HuC specific commands to batch buffers. * * The kernel driver is only responsible for loading the HuC firmware and * triggering its security authentication, which is performed by the GuC. For * The GuC to correctly perform the authentication, the HuC binary must be * loaded before the GuC one. Loading the HuC is optional; however, not using * the HuC might negatively impact power usage and/or performance of media * workloads, depending on the use-cases. * * See https://github.com/intel/media-driver for the latest details on HuC * functionality. */ /** * DOC: HuC Memory Management * * Similarly to the GuC, the HuC can't do any memory allocations on its own, * with the difference being that the allocations for HuC usage are handled by * the userspace driver instead of the kernel one. The HuC accesses the memory * via the PPGTT belonging to the context loaded on the VCS executing the * HuC-specific commands. */ void intel_huc_init_early(struct intel_huc *huc) { struct drm_i915_private *i915 = huc_to_gt(huc)->i915; intel_uc_fw_init_early(&huc->fw, INTEL_UC_FW_TYPE_HUC); if (INTEL_GEN(i915) >= 11) { huc->status.reg = GEN11_HUC_KERNEL_LOAD_INFO; huc->status.mask = HUC_LOAD_SUCCESSFUL; huc->status.value = HUC_LOAD_SUCCESSFUL; } else { huc->status.reg = HUC_STATUS2; huc->status.mask = HUC_FW_VERIFIED; huc->status.value = HUC_FW_VERIFIED; } } static int intel_huc_rsa_data_create(struct intel_huc *huc) { struct intel_gt *gt = huc_to_gt(huc); struct intel_guc *guc = >->uc.guc; struct i915_vma *vma; size_t copied; void *vaddr; int err; err = i915_inject_probe_error(gt->i915, -ENXIO); if (err) return err; /* * HuC firmware will sit above GUC_GGTT_TOP and will not map * through GTT. Unfortunately, this means GuC cannot perform * the HuC auth. as the rsa offset now falls within the GuC * inaccessible range. We resort to perma-pinning an additional * vma within the accessible range that only contains the rsa * signature. The GuC can use this extra pinning to perform * the authentication since its GGTT offset will be GuC * accessible. */ GEM_BUG_ON(huc->fw.rsa_size > PAGE_SIZE); vma = intel_guc_allocate_vma(guc, PAGE_SIZE); if (IS_ERR(vma)) return PTR_ERR(vma); vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB); if (IS_ERR(vaddr)) { i915_vma_unpin_and_release(&vma, 0); return PTR_ERR(vaddr); } copied = intel_uc_fw_copy_rsa(&huc->fw, vaddr, vma->size); GEM_BUG_ON(copied < huc->fw.rsa_size); i915_gem_object_unpin_map(vma->obj); huc->rsa_data = vma; return 0; } static void intel_huc_rsa_data_destroy(struct intel_huc *huc) { i915_vma_unpin_and_release(&huc->rsa_data, 0); } int intel_huc_init(struct intel_huc *huc) { struct drm_i915_private *i915 = huc_to_gt(huc)->i915; int err; err = intel_uc_fw_init(&huc->fw); if (err) goto out; /* * HuC firmware image is outside GuC accessible range. * Copy the RSA signature out of the image into * a perma-pinned region set aside for it */ err = intel_huc_rsa_data_create(huc); if (err) goto out_fini; intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_LOADABLE); return 0; out_fini: intel_uc_fw_fini(&huc->fw); out: i915_probe_error(i915, "failed with %d\n", err); return err; } void intel_huc_fini(struct intel_huc *huc) { if (!intel_uc_fw_is_loadable(&huc->fw)) return; intel_huc_rsa_data_destroy(huc); intel_uc_fw_fini(&huc->fw); } /** * intel_huc_auth() - Authenticate HuC uCode * @huc: intel_huc structure * * Called after HuC and GuC firmware loading during intel_uc_init_hw(). * * This function invokes the GuC action to authenticate the HuC firmware, * passing the offset of the RSA signature to intel_guc_auth_huc(). It then * waits for up to 50ms for firmware verification ACK. */ int intel_huc_auth(struct intel_huc *huc) { struct intel_gt *gt = huc_to_gt(huc); struct intel_guc *guc = >->uc.guc; int ret; GEM_BUG_ON(intel_huc_is_authenticated(huc)); if (!intel_uc_fw_is_loaded(&huc->fw)) return -ENOEXEC; ret = i915_inject_probe_error(gt->i915, -ENXIO); if (ret) goto fail; ret = intel_guc_auth_huc(guc, intel_guc_ggtt_offset(guc, huc->rsa_data)); if (ret) { DRM_ERROR("HuC: GuC did not ack Auth request %d\n", ret); goto fail; } /* Check authentication status, it should be done by now */ ret = __intel_wait_for_register(gt->uncore, huc->status.reg, huc->status.mask, huc->status.value, 2, 50, NULL); if (ret) { DRM_ERROR("HuC: Firmware not verified %d\n", ret); goto fail; } intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_RUNNING); return 0; fail: i915_probe_error(gt->i915, "HuC: Authentication failed %d\n", ret); intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_FAIL); return ret; } /** * intel_huc_check_status() - check HuC status * @huc: intel_huc structure * * This function reads status register to verify if HuC * firmware was successfully loaded. * * Returns: * * -ENODEV if HuC is not present on this platform, * * -EOPNOTSUPP if HuC firmware is disabled, * * -ENOPKG if HuC firmware was not installed, * * -ENOEXEC if HuC firmware is invalid or mismatched, * * 0 if HuC firmware is not running, * * 1 if HuC firmware is authenticated and running. */ int intel_huc_check_status(struct intel_huc *huc) { struct intel_gt *gt = huc_to_gt(huc); intel_wakeref_t wakeref; u32 status = 0; switch (__intel_uc_fw_status(&huc->fw)) { case INTEL_UC_FIRMWARE_NOT_SUPPORTED: return -ENODEV; case INTEL_UC_FIRMWARE_DISABLED: return -EOPNOTSUPP; case INTEL_UC_FIRMWARE_MISSING: return -ENOPKG; case INTEL_UC_FIRMWARE_ERROR: return -ENOEXEC; default: break; } with_intel_runtime_pm(gt->uncore->rpm, wakeref) status = intel_uncore_read(gt->uncore, huc->status.reg); return (status & huc->status.mask) == huc->status.value; } /** * intel_huc_load_status - dump information about HuC load status * @huc: the HuC * @p: the &drm_printer * * Pretty printer for HuC load status. */ void intel_huc_load_status(struct intel_huc *huc, struct drm_printer *p) { struct intel_gt *gt = huc_to_gt(huc); intel_wakeref_t wakeref; if (!intel_huc_is_supported(huc)) { drm_printf(p, "HuC not supported\n"); return; } if (!intel_huc_is_wanted(huc)) { drm_printf(p, "HuC disabled\n"); return; } intel_uc_fw_dump(&huc->fw, p); with_intel_runtime_pm(gt->uncore->rpm, wakeref) drm_printf(p, "HuC status: 0x%08x\n", intel_uncore_read(gt->uncore, huc->status.reg)); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1