Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Chris Wilson | 1174 | 56.63% | 15 | 39.47% |
Jani Nikula | 618 | 29.81% | 6 | 15.79% |
Jesse Barnes | 72 | 3.47% | 2 | 5.26% |
Ville Syrjälä | 55 | 2.65% | 3 | 7.89% |
Wambui Karuga | 48 | 2.32% | 1 | 2.63% |
Imre Deak | 34 | 1.64% | 1 | 2.63% |
Matt Roper | 14 | 0.68% | 1 | 2.63% |
Pankaj Bharadiya | 12 | 0.58% | 1 | 2.63% |
Shobhit Kumar | 11 | 0.53% | 1 | 2.63% |
Deepak M | 10 | 0.48% | 1 | 2.63% |
Chon Ming Lee | 10 | 0.48% | 2 | 5.26% |
Stanislav Lisovskiy | 7 | 0.34% | 1 | 2.63% |
Daniele Ceraolo Spurio | 4 | 0.19% | 1 | 2.63% |
Deepak S | 2 | 0.10% | 1 | 2.63% |
Rafael J. Wysocki | 2 | 0.10% | 1 | 2.63% |
Total | 2073 | 38 |
/* * Copyright © 2013 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include <asm/iosf_mbi.h> #include "i915_drv.h" #include "intel_sideband.h" /* * IOSF sideband, see VLV2_SidebandMsg_HAS.docx and * VLV_VLV2_PUNIT_HAS_0.8.docx */ /* Standard MMIO read, non-posted */ #define SB_MRD_NP 0x00 /* Standard MMIO write, non-posted */ #define SB_MWR_NP 0x01 /* Private register read, double-word addressing, non-posted */ #define SB_CRRDDA_NP 0x06 /* Private register write, double-word addressing, non-posted */ #define SB_CRWRDA_NP 0x07 static void ping(void *info) { } static void __vlv_punit_get(struct drm_i915_private *i915) { iosf_mbi_punit_acquire(); /* * Prevent the cpu from sleeping while we use this sideband, otherwise * the punit may cause a machine hang. The issue appears to be isolated * with changing the power state of the CPU package while changing * the power state via the punit, and we have only observed it * reliably on 4-core Baytail systems suggesting the issue is in the * power delivery mechanism and likely to be be board/function * specific. Hence we presume the workaround needs only be applied * to the Valleyview P-unit and not all sideband communications. */ if (IS_VALLEYVIEW(i915)) { cpu_latency_qos_update_request(&i915->sb_qos, 0); on_each_cpu(ping, NULL, 1); } } static void __vlv_punit_put(struct drm_i915_private *i915) { if (IS_VALLEYVIEW(i915)) cpu_latency_qos_update_request(&i915->sb_qos, PM_QOS_DEFAULT_VALUE); iosf_mbi_punit_release(); } void vlv_iosf_sb_get(struct drm_i915_private *i915, unsigned long ports) { if (ports & BIT(VLV_IOSF_SB_PUNIT)) __vlv_punit_get(i915); mutex_lock(&i915->sb_lock); } void vlv_iosf_sb_put(struct drm_i915_private *i915, unsigned long ports) { mutex_unlock(&i915->sb_lock); if (ports & BIT(VLV_IOSF_SB_PUNIT)) __vlv_punit_put(i915); } static int vlv_sideband_rw(struct drm_i915_private *i915, u32 devfn, u32 port, u32 opcode, u32 addr, u32 *val) { struct intel_uncore *uncore = &i915->uncore; const bool is_read = (opcode == SB_MRD_NP || opcode == SB_CRRDDA_NP); int err; lockdep_assert_held(&i915->sb_lock); if (port == IOSF_PORT_PUNIT) iosf_mbi_assert_punit_acquired(); /* Flush the previous comms, just in case it failed last time. */ if (intel_wait_for_register(uncore, VLV_IOSF_DOORBELL_REQ, IOSF_SB_BUSY, 0, 5)) { drm_dbg(&i915->drm, "IOSF sideband idle wait (%s) timed out\n", is_read ? "read" : "write"); return -EAGAIN; } preempt_disable(); intel_uncore_write_fw(uncore, VLV_IOSF_ADDR, addr); intel_uncore_write_fw(uncore, VLV_IOSF_DATA, is_read ? 0 : *val); intel_uncore_write_fw(uncore, VLV_IOSF_DOORBELL_REQ, (devfn << IOSF_DEVFN_SHIFT) | (opcode << IOSF_OPCODE_SHIFT) | (port << IOSF_PORT_SHIFT) | (0xf << IOSF_BYTE_ENABLES_SHIFT) | (0 << IOSF_BAR_SHIFT) | IOSF_SB_BUSY); if (__intel_wait_for_register_fw(uncore, VLV_IOSF_DOORBELL_REQ, IOSF_SB_BUSY, 0, 10000, 0, NULL) == 0) { if (is_read) *val = intel_uncore_read_fw(uncore, VLV_IOSF_DATA); err = 0; } else { drm_dbg(&i915->drm, "IOSF sideband finish wait (%s) timed out\n", is_read ? "read" : "write"); err = -ETIMEDOUT; } preempt_enable(); return err; } u32 vlv_punit_read(struct drm_i915_private *i915, u32 addr) { u32 val = 0; vlv_sideband_rw(i915, PCI_DEVFN(0, 0), IOSF_PORT_PUNIT, SB_CRRDDA_NP, addr, &val); return val; } int vlv_punit_write(struct drm_i915_private *i915, u32 addr, u32 val) { return vlv_sideband_rw(i915, PCI_DEVFN(0, 0), IOSF_PORT_PUNIT, SB_CRWRDA_NP, addr, &val); } u32 vlv_bunit_read(struct drm_i915_private *i915, u32 reg) { u32 val = 0; vlv_sideband_rw(i915, PCI_DEVFN(0, 0), IOSF_PORT_BUNIT, SB_CRRDDA_NP, reg, &val); return val; } void vlv_bunit_write(struct drm_i915_private *i915, u32 reg, u32 val) { vlv_sideband_rw(i915, PCI_DEVFN(0, 0), IOSF_PORT_BUNIT, SB_CRWRDA_NP, reg, &val); } u32 vlv_nc_read(struct drm_i915_private *i915, u8 addr) { u32 val = 0; vlv_sideband_rw(i915, PCI_DEVFN(0, 0), IOSF_PORT_NC, SB_CRRDDA_NP, addr, &val); return val; } u32 vlv_iosf_sb_read(struct drm_i915_private *i915, u8 port, u32 reg) { u32 val = 0; vlv_sideband_rw(i915, PCI_DEVFN(0, 0), port, SB_CRRDDA_NP, reg, &val); return val; } void vlv_iosf_sb_write(struct drm_i915_private *i915, u8 port, u32 reg, u32 val) { vlv_sideband_rw(i915, PCI_DEVFN(0, 0), port, SB_CRWRDA_NP, reg, &val); } u32 vlv_cck_read(struct drm_i915_private *i915, u32 reg) { u32 val = 0; vlv_sideband_rw(i915, PCI_DEVFN(0, 0), IOSF_PORT_CCK, SB_CRRDDA_NP, reg, &val); return val; } void vlv_cck_write(struct drm_i915_private *i915, u32 reg, u32 val) { vlv_sideband_rw(i915, PCI_DEVFN(0, 0), IOSF_PORT_CCK, SB_CRWRDA_NP, reg, &val); } u32 vlv_ccu_read(struct drm_i915_private *i915, u32 reg) { u32 val = 0; vlv_sideband_rw(i915, PCI_DEVFN(0, 0), IOSF_PORT_CCU, SB_CRRDDA_NP, reg, &val); return val; } void vlv_ccu_write(struct drm_i915_private *i915, u32 reg, u32 val) { vlv_sideband_rw(i915, PCI_DEVFN(0, 0), IOSF_PORT_CCU, SB_CRWRDA_NP, reg, &val); } u32 vlv_dpio_read(struct drm_i915_private *i915, enum pipe pipe, int reg) { int port = i915->dpio_phy_iosf_port[DPIO_PHY(pipe)]; u32 val = 0; vlv_sideband_rw(i915, DPIO_DEVFN, port, SB_MRD_NP, reg, &val); /* * FIXME: There might be some registers where all 1's is a valid value, * so ideally we should check the register offset instead... */ drm_WARN(&i915->drm, val == 0xffffffff, "DPIO read pipe %c reg 0x%x == 0x%x\n", pipe_name(pipe), reg, val); return val; } void vlv_dpio_write(struct drm_i915_private *i915, enum pipe pipe, int reg, u32 val) { int port = i915->dpio_phy_iosf_port[DPIO_PHY(pipe)]; vlv_sideband_rw(i915, DPIO_DEVFN, port, SB_MWR_NP, reg, &val); } u32 vlv_flisdsi_read(struct drm_i915_private *i915, u32 reg) { u32 val = 0; vlv_sideband_rw(i915, DPIO_DEVFN, IOSF_PORT_FLISDSI, SB_CRRDDA_NP, reg, &val); return val; } void vlv_flisdsi_write(struct drm_i915_private *i915, u32 reg, u32 val) { vlv_sideband_rw(i915, DPIO_DEVFN, IOSF_PORT_FLISDSI, SB_CRWRDA_NP, reg, &val); } /* SBI access */ static int intel_sbi_rw(struct drm_i915_private *i915, u16 reg, enum intel_sbi_destination destination, u32 *val, bool is_read) { struct intel_uncore *uncore = &i915->uncore; u32 cmd; lockdep_assert_held(&i915->sb_lock); if (intel_wait_for_register_fw(uncore, SBI_CTL_STAT, SBI_BUSY, 0, 100)) { drm_err(&i915->drm, "timeout waiting for SBI to become ready\n"); return -EBUSY; } intel_uncore_write_fw(uncore, SBI_ADDR, (u32)reg << 16); intel_uncore_write_fw(uncore, SBI_DATA, is_read ? 0 : *val); if (destination == SBI_ICLK) cmd = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRRD; else cmd = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IORD; if (!is_read) cmd |= BIT(8); intel_uncore_write_fw(uncore, SBI_CTL_STAT, cmd | SBI_BUSY); if (__intel_wait_for_register_fw(uncore, SBI_CTL_STAT, SBI_BUSY, 0, 100, 100, &cmd)) { drm_err(&i915->drm, "timeout waiting for SBI to complete read\n"); return -ETIMEDOUT; } if (cmd & SBI_RESPONSE_FAIL) { drm_err(&i915->drm, "error during SBI read of reg %x\n", reg); return -ENXIO; } if (is_read) *val = intel_uncore_read_fw(uncore, SBI_DATA); return 0; } u32 intel_sbi_read(struct drm_i915_private *i915, u16 reg, enum intel_sbi_destination destination) { u32 result = 0; intel_sbi_rw(i915, reg, destination, &result, true); return result; } void intel_sbi_write(struct drm_i915_private *i915, u16 reg, u32 value, enum intel_sbi_destination destination) { intel_sbi_rw(i915, reg, destination, &value, false); } static int gen6_check_mailbox_status(u32 mbox) { switch (mbox & GEN6_PCODE_ERROR_MASK) { case GEN6_PCODE_SUCCESS: return 0; case GEN6_PCODE_UNIMPLEMENTED_CMD: return -ENODEV; case GEN6_PCODE_ILLEGAL_CMD: return -ENXIO; case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE: case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE: return -EOVERFLOW; case GEN6_PCODE_TIMEOUT: return -ETIMEDOUT; default: MISSING_CASE(mbox & GEN6_PCODE_ERROR_MASK); return 0; } } static int gen7_check_mailbox_status(u32 mbox) { switch (mbox & GEN6_PCODE_ERROR_MASK) { case GEN6_PCODE_SUCCESS: return 0; case GEN6_PCODE_ILLEGAL_CMD: return -ENXIO; case GEN7_PCODE_TIMEOUT: return -ETIMEDOUT; case GEN7_PCODE_ILLEGAL_DATA: return -EINVAL; case GEN11_PCODE_ILLEGAL_SUBCOMMAND: return -ENXIO; case GEN11_PCODE_LOCKED: return -EBUSY; case GEN11_PCODE_REJECTED: return -EACCES; case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE: return -EOVERFLOW; default: MISSING_CASE(mbox & GEN6_PCODE_ERROR_MASK); return 0; } } static int __sandybridge_pcode_rw(struct drm_i915_private *i915, u32 mbox, u32 *val, u32 *val1, int fast_timeout_us, int slow_timeout_ms, bool is_read) { struct intel_uncore *uncore = &i915->uncore; lockdep_assert_held(&i915->sb_lock); /* * GEN6_PCODE_* are outside of the forcewake domain, we can * use te fw I915_READ variants to reduce the amount of work * required when reading/writing. */ if (intel_uncore_read_fw(uncore, GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) return -EAGAIN; intel_uncore_write_fw(uncore, GEN6_PCODE_DATA, *val); intel_uncore_write_fw(uncore, GEN6_PCODE_DATA1, val1 ? *val1 : 0); intel_uncore_write_fw(uncore, GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox); if (__intel_wait_for_register_fw(uncore, GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0, fast_timeout_us, slow_timeout_ms, &mbox)) return -ETIMEDOUT; if (is_read) *val = intel_uncore_read_fw(uncore, GEN6_PCODE_DATA); if (is_read && val1) *val1 = intel_uncore_read_fw(uncore, GEN6_PCODE_DATA1); if (INTEL_GEN(i915) > 6) return gen7_check_mailbox_status(mbox); else return gen6_check_mailbox_status(mbox); } int sandybridge_pcode_read(struct drm_i915_private *i915, u32 mbox, u32 *val, u32 *val1) { int err; mutex_lock(&i915->sb_lock); err = __sandybridge_pcode_rw(i915, mbox, val, val1, 500, 20, true); mutex_unlock(&i915->sb_lock); if (err) { drm_dbg(&i915->drm, "warning: pcode (read from mbox %x) mailbox access failed for %ps: %d\n", mbox, __builtin_return_address(0), err); } return err; } int sandybridge_pcode_write_timeout(struct drm_i915_private *i915, u32 mbox, u32 val, int fast_timeout_us, int slow_timeout_ms) { int err; mutex_lock(&i915->sb_lock); err = __sandybridge_pcode_rw(i915, mbox, &val, NULL, fast_timeout_us, slow_timeout_ms, false); mutex_unlock(&i915->sb_lock); if (err) { drm_dbg(&i915->drm, "warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps: %d\n", val, mbox, __builtin_return_address(0), err); } return err; } static bool skl_pcode_try_request(struct drm_i915_private *i915, u32 mbox, u32 request, u32 reply_mask, u32 reply, u32 *status) { *status = __sandybridge_pcode_rw(i915, mbox, &request, NULL, 500, 0, true); return *status || ((request & reply_mask) == reply); } /** * skl_pcode_request - send PCODE request until acknowledgment * @i915: device private * @mbox: PCODE mailbox ID the request is targeted for * @request: request ID * @reply_mask: mask used to check for request acknowledgment * @reply: value used to check for request acknowledgment * @timeout_base_ms: timeout for polling with preemption enabled * * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE * reports an error or an overall timeout of @timeout_base_ms+50 ms expires. * The request is acknowledged once the PCODE reply dword equals @reply after * applying @reply_mask. Polling is first attempted with preemption enabled * for @timeout_base_ms and if this times out for another 50 ms with * preemption disabled. * * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some * other error as reported by PCODE. */ int skl_pcode_request(struct drm_i915_private *i915, u32 mbox, u32 request, u32 reply_mask, u32 reply, int timeout_base_ms) { u32 status; int ret; mutex_lock(&i915->sb_lock); #define COND \ skl_pcode_try_request(i915, mbox, request, reply_mask, reply, &status) /* * Prime the PCODE by doing a request first. Normally it guarantees * that a subsequent request, at most @timeout_base_ms later, succeeds. * _wait_for() doesn't guarantee when its passed condition is evaluated * first, so send the first request explicitly. */ if (COND) { ret = 0; goto out; } ret = _wait_for(COND, timeout_base_ms * 1000, 10, 10); if (!ret) goto out; /* * The above can time out if the number of requests was low (2 in the * worst case) _and_ PCODE was busy for some reason even after a * (queued) request and @timeout_base_ms delay. As a workaround retry * the poll with preemption disabled to maximize the number of * requests. Increase the timeout from @timeout_base_ms to 50ms to * account for interrupts that could reduce the number of these * requests, and for any quirks of the PCODE firmware that delays * the request completion. */ drm_dbg_kms(&i915->drm, "PCODE timeout, retrying with preemption disabled\n"); drm_WARN_ON_ONCE(&i915->drm, timeout_base_ms > 3); preempt_disable(); ret = wait_for_atomic(COND, 50); preempt_enable(); out: mutex_unlock(&i915->sb_lock); return ret ? ret : status; #undef COND }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1