Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Guenter Roeck | 5482 | 67.64% | 34 | 36.96% |
Jean Delvare | 1014 | 12.51% | 30 | 32.61% |
Wei Ni | 668 | 8.24% | 5 | 5.43% |
Javier Martinez Canillas | 406 | 5.01% | 1 | 1.09% |
Stijn Devriendt | 110 | 1.36% | 1 | 1.09% |
Nate Case | 106 | 1.31% | 2 | 2.17% |
Josh Lehan | 87 | 1.07% | 1 | 1.09% |
Boyang Yu | 86 | 1.06% | 1 | 1.09% |
Ben Hutchings | 68 | 0.84% | 1 | 1.09% |
Rainer Birkenmaier | 25 | 0.31% | 1 | 1.09% |
Mark M. Hoffman | 15 | 0.19% | 3 | 3.26% |
Benjamin Tissoires | 11 | 0.14% | 1 | 1.09% |
Alexey Dobriyan | 5 | 0.06% | 1 | 1.09% |
Ingo Molnar | 4 | 0.05% | 1 | 1.09% |
Yani Ioannou | 4 | 0.05% | 1 | 1.09% |
James Chapman | 4 | 0.05% | 1 | 1.09% |
Wolfram Sang | 3 | 0.04% | 2 | 2.17% |
Julia Lawall | 3 | 0.04% | 1 | 1.09% |
Michael Walle | 1 | 0.01% | 1 | 1.09% |
Axel Lin | 1 | 0.01% | 1 | 1.09% |
Thomas Gleixner | 1 | 0.01% | 1 | 1.09% |
Lucas De Marchi | 1 | 0.01% | 1 | 1.09% |
Total | 8105 | 92 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * lm90.c - Part of lm_sensors, Linux kernel modules for hardware * monitoring * Copyright (C) 2003-2010 Jean Delvare <jdelvare@suse.de> * * Based on the lm83 driver. The LM90 is a sensor chip made by National * Semiconductor. It reports up to two temperatures (its own plus up to * one external one) with a 0.125 deg resolution (1 deg for local * temperature) and a 3-4 deg accuracy. * * This driver also supports the LM89 and LM99, two other sensor chips * made by National Semiconductor. Both have an increased remote * temperature measurement accuracy (1 degree), and the LM99 * additionally shifts remote temperatures (measured and limits) by 16 * degrees, which allows for higher temperatures measurement. * Note that there is no way to differentiate between both chips. * When device is auto-detected, the driver will assume an LM99. * * This driver also supports the LM86, another sensor chip made by * National Semiconductor. It is exactly similar to the LM90 except it * has a higher accuracy. * * This driver also supports the ADM1032, a sensor chip made by Analog * Devices. That chip is similar to the LM90, with a few differences * that are not handled by this driver. Among others, it has a higher * accuracy than the LM90, much like the LM86 does. * * This driver also supports the MAX6657, MAX6658 and MAX6659 sensor * chips made by Maxim. These chips are similar to the LM86. * Note that there is no easy way to differentiate between the three * variants. We use the device address to detect MAX6659, which will result * in a detection as max6657 if it is on address 0x4c. The extra address * and features of the MAX6659 are only supported if the chip is configured * explicitly as max6659, or if its address is not 0x4c. * These chips lack the remote temperature offset feature. * * This driver also supports the MAX6654 chip made by Maxim. This chip can * be at 9 different addresses, similar to MAX6680/MAX6681. The MAX6654 is * otherwise similar to MAX6657/MAX6658/MAX6659. Extended range is available * by setting the configuration register accordingly, and is done during * initialization. Extended precision is only available at conversion rates * of 1 Hz and slower. Note that extended precision is not enabled by * default, as this driver initializes all chips to 2 Hz by design. * * This driver also supports the MAX6646, MAX6647, MAX6648, MAX6649 and * MAX6692 chips made by Maxim. These are again similar to the LM86, * but they use unsigned temperature values and can report temperatures * from 0 to 145 degrees. * * This driver also supports the MAX6680 and MAX6681, two other sensor * chips made by Maxim. These are quite similar to the other Maxim * chips. The MAX6680 and MAX6681 only differ in the pinout so they can * be treated identically. * * This driver also supports the MAX6695 and MAX6696, two other sensor * chips made by Maxim. These are also quite similar to other Maxim * chips, but support three temperature sensors instead of two. MAX6695 * and MAX6696 only differ in the pinout so they can be treated identically. * * This driver also supports ADT7461 and ADT7461A from Analog Devices as well as * NCT1008 from ON Semiconductor. The chips are supported in both compatibility * and extended mode. They are mostly compatible with LM90 except for a data * format difference for the temperature value registers. * * This driver also supports the SA56004 from Philips. This device is * pin-compatible with the LM86, the ED/EDP parts are also address-compatible. * * This driver also supports the G781 from GMT. This device is compatible * with the ADM1032. * * This driver also supports TMP451 from Texas Instruments. This device is * supported in both compatibility and extended mode. It's mostly compatible * with ADT7461 except for local temperature low byte register and max * conversion rate. * * Since the LM90 was the first chipset supported by this driver, most * comments will refer to this chipset, but are actually general and * concern all supported chipsets, unless mentioned otherwise. */ #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/jiffies.h> #include <linux/i2c.h> #include <linux/hwmon.h> #include <linux/err.h> #include <linux/mutex.h> #include <linux/of_device.h> #include <linux/sysfs.h> #include <linux/interrupt.h> #include <linux/regulator/consumer.h> /* * Addresses to scan * Address is fully defined internally and cannot be changed except for * MAX6659, MAX6680 and MAX6681. * LM86, LM89, LM90, LM99, ADM1032, ADM1032-1, ADT7461, ADT7461A, MAX6649, * MAX6657, MAX6658, NCT1008 and W83L771 have address 0x4c. * ADM1032-2, ADT7461-2, ADT7461A-2, LM89-1, LM99-1, MAX6646, and NCT1008D * have address 0x4d. * MAX6647 has address 0x4e. * MAX6659 can have address 0x4c, 0x4d or 0x4e. * MAX6654, MAX6680, and MAX6681 can have address 0x18, 0x19, 0x1a, 0x29, * 0x2a, 0x2b, 0x4c, 0x4d or 0x4e. * SA56004 can have address 0x48 through 0x4F. */ static const unsigned short normal_i2c[] = { 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b, 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, I2C_CLIENT_END }; enum chips { lm90, adm1032, lm99, lm86, max6657, max6659, adt7461, max6680, max6646, w83l771, max6696, sa56004, g781, tmp451, max6654 }; /* * The LM90 registers */ #define LM90_REG_R_MAN_ID 0xFE #define LM90_REG_R_CHIP_ID 0xFF #define LM90_REG_R_CONFIG1 0x03 #define LM90_REG_W_CONFIG1 0x09 #define LM90_REG_R_CONFIG2 0xBF #define LM90_REG_W_CONFIG2 0xBF #define LM90_REG_R_CONVRATE 0x04 #define LM90_REG_W_CONVRATE 0x0A #define LM90_REG_R_STATUS 0x02 #define LM90_REG_R_LOCAL_TEMP 0x00 #define LM90_REG_R_LOCAL_HIGH 0x05 #define LM90_REG_W_LOCAL_HIGH 0x0B #define LM90_REG_R_LOCAL_LOW 0x06 #define LM90_REG_W_LOCAL_LOW 0x0C #define LM90_REG_R_LOCAL_CRIT 0x20 #define LM90_REG_W_LOCAL_CRIT 0x20 #define LM90_REG_R_REMOTE_TEMPH 0x01 #define LM90_REG_R_REMOTE_TEMPL 0x10 #define LM90_REG_R_REMOTE_OFFSH 0x11 #define LM90_REG_W_REMOTE_OFFSH 0x11 #define LM90_REG_R_REMOTE_OFFSL 0x12 #define LM90_REG_W_REMOTE_OFFSL 0x12 #define LM90_REG_R_REMOTE_HIGHH 0x07 #define LM90_REG_W_REMOTE_HIGHH 0x0D #define LM90_REG_R_REMOTE_HIGHL 0x13 #define LM90_REG_W_REMOTE_HIGHL 0x13 #define LM90_REG_R_REMOTE_LOWH 0x08 #define LM90_REG_W_REMOTE_LOWH 0x0E #define LM90_REG_R_REMOTE_LOWL 0x14 #define LM90_REG_W_REMOTE_LOWL 0x14 #define LM90_REG_R_REMOTE_CRIT 0x19 #define LM90_REG_W_REMOTE_CRIT 0x19 #define LM90_REG_R_TCRIT_HYST 0x21 #define LM90_REG_W_TCRIT_HYST 0x21 /* MAX6646/6647/6649/6654/6657/6658/6659/6695/6696 registers */ #define MAX6657_REG_R_LOCAL_TEMPL 0x11 #define MAX6696_REG_R_STATUS2 0x12 #define MAX6659_REG_R_REMOTE_EMERG 0x16 #define MAX6659_REG_W_REMOTE_EMERG 0x16 #define MAX6659_REG_R_LOCAL_EMERG 0x17 #define MAX6659_REG_W_LOCAL_EMERG 0x17 /* SA56004 registers */ #define SA56004_REG_R_LOCAL_TEMPL 0x22 #define LM90_MAX_CONVRATE_MS 16000 /* Maximum conversion rate in ms */ /* TMP451 registers */ #define TMP451_REG_R_LOCAL_TEMPL 0x15 /* * Device flags */ #define LM90_FLAG_ADT7461_EXT (1 << 0) /* ADT7461 extended mode */ /* Device features */ #define LM90_HAVE_OFFSET (1 << 1) /* temperature offset register */ #define LM90_HAVE_REM_LIMIT_EXT (1 << 3) /* extended remote limit */ #define LM90_HAVE_EMERGENCY (1 << 4) /* 3rd upper (emergency) limit */ #define LM90_HAVE_EMERGENCY_ALARM (1 << 5)/* emergency alarm */ #define LM90_HAVE_TEMP3 (1 << 6) /* 3rd temperature sensor */ #define LM90_HAVE_BROKEN_ALERT (1 << 7) /* Broken alert */ #define LM90_PAUSE_FOR_CONFIG (1 << 8) /* Pause conversion for config */ /* LM90 status */ #define LM90_STATUS_LTHRM (1 << 0) /* local THERM limit tripped */ #define LM90_STATUS_RTHRM (1 << 1) /* remote THERM limit tripped */ #define LM90_STATUS_ROPEN (1 << 2) /* remote is an open circuit */ #define LM90_STATUS_RLOW (1 << 3) /* remote low temp limit tripped */ #define LM90_STATUS_RHIGH (1 << 4) /* remote high temp limit tripped */ #define LM90_STATUS_LLOW (1 << 5) /* local low temp limit tripped */ #define LM90_STATUS_LHIGH (1 << 6) /* local high temp limit tripped */ #define MAX6696_STATUS2_R2THRM (1 << 1) /* remote2 THERM limit tripped */ #define MAX6696_STATUS2_R2OPEN (1 << 2) /* remote2 is an open circuit */ #define MAX6696_STATUS2_R2LOW (1 << 3) /* remote2 low temp limit tripped */ #define MAX6696_STATUS2_R2HIGH (1 << 4) /* remote2 high temp limit tripped */ #define MAX6696_STATUS2_ROT2 (1 << 5) /* remote emergency limit tripped */ #define MAX6696_STATUS2_R2OT2 (1 << 6) /* remote2 emergency limit tripped */ #define MAX6696_STATUS2_LOT2 (1 << 7) /* local emergency limit tripped */ /* * Driver data (common to all clients) */ static const struct i2c_device_id lm90_id[] = { { "adm1032", adm1032 }, { "adt7461", adt7461 }, { "adt7461a", adt7461 }, { "g781", g781 }, { "lm90", lm90 }, { "lm86", lm86 }, { "lm89", lm86 }, { "lm99", lm99 }, { "max6646", max6646 }, { "max6647", max6646 }, { "max6649", max6646 }, { "max6654", max6654 }, { "max6657", max6657 }, { "max6658", max6657 }, { "max6659", max6659 }, { "max6680", max6680 }, { "max6681", max6680 }, { "max6695", max6696 }, { "max6696", max6696 }, { "nct1008", adt7461 }, { "w83l771", w83l771 }, { "sa56004", sa56004 }, { "tmp451", tmp451 }, { } }; MODULE_DEVICE_TABLE(i2c, lm90_id); static const struct of_device_id __maybe_unused lm90_of_match[] = { { .compatible = "adi,adm1032", .data = (void *)adm1032 }, { .compatible = "adi,adt7461", .data = (void *)adt7461 }, { .compatible = "adi,adt7461a", .data = (void *)adt7461 }, { .compatible = "gmt,g781", .data = (void *)g781 }, { .compatible = "national,lm90", .data = (void *)lm90 }, { .compatible = "national,lm86", .data = (void *)lm86 }, { .compatible = "national,lm89", .data = (void *)lm86 }, { .compatible = "national,lm99", .data = (void *)lm99 }, { .compatible = "dallas,max6646", .data = (void *)max6646 }, { .compatible = "dallas,max6647", .data = (void *)max6646 }, { .compatible = "dallas,max6649", .data = (void *)max6646 }, { .compatible = "dallas,max6654", .data = (void *)max6654 }, { .compatible = "dallas,max6657", .data = (void *)max6657 }, { .compatible = "dallas,max6658", .data = (void *)max6657 }, { .compatible = "dallas,max6659", .data = (void *)max6659 }, { .compatible = "dallas,max6680", .data = (void *)max6680 }, { .compatible = "dallas,max6681", .data = (void *)max6680 }, { .compatible = "dallas,max6695", .data = (void *)max6696 }, { .compatible = "dallas,max6696", .data = (void *)max6696 }, { .compatible = "onnn,nct1008", .data = (void *)adt7461 }, { .compatible = "winbond,w83l771", .data = (void *)w83l771 }, { .compatible = "nxp,sa56004", .data = (void *)sa56004 }, { .compatible = "ti,tmp451", .data = (void *)tmp451 }, { }, }; MODULE_DEVICE_TABLE(of, lm90_of_match); /* * chip type specific parameters */ struct lm90_params { u32 flags; /* Capabilities */ u16 alert_alarms; /* Which alarm bits trigger ALERT# */ /* Upper 8 bits for max6695/96 */ u8 max_convrate; /* Maximum conversion rate register value */ u8 reg_local_ext; /* Extended local temp register (optional) */ }; static const struct lm90_params lm90_params[] = { [adm1032] = { .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_BROKEN_ALERT, .alert_alarms = 0x7c, .max_convrate = 10, }, [adt7461] = { .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_BROKEN_ALERT, .alert_alarms = 0x7c, .max_convrate = 10, }, [g781] = { .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_BROKEN_ALERT, .alert_alarms = 0x7c, .max_convrate = 8, }, [lm86] = { .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT, .alert_alarms = 0x7b, .max_convrate = 9, }, [lm90] = { .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT, .alert_alarms = 0x7b, .max_convrate = 9, }, [lm99] = { .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT, .alert_alarms = 0x7b, .max_convrate = 9, }, [max6646] = { .alert_alarms = 0x7c, .max_convrate = 6, .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL, }, [max6654] = { .alert_alarms = 0x7c, .max_convrate = 7, .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL, }, [max6657] = { .flags = LM90_PAUSE_FOR_CONFIG, .alert_alarms = 0x7c, .max_convrate = 8, .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL, }, [max6659] = { .flags = LM90_HAVE_EMERGENCY, .alert_alarms = 0x7c, .max_convrate = 8, .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL, }, [max6680] = { .flags = LM90_HAVE_OFFSET, .alert_alarms = 0x7c, .max_convrate = 7, }, [max6696] = { .flags = LM90_HAVE_EMERGENCY | LM90_HAVE_EMERGENCY_ALARM | LM90_HAVE_TEMP3, .alert_alarms = 0x1c7c, .max_convrate = 6, .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL, }, [w83l771] = { .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT, .alert_alarms = 0x7c, .max_convrate = 8, }, [sa56004] = { .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT, .alert_alarms = 0x7b, .max_convrate = 9, .reg_local_ext = SA56004_REG_R_LOCAL_TEMPL, }, [tmp451] = { .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_BROKEN_ALERT, .alert_alarms = 0x7c, .max_convrate = 9, .reg_local_ext = TMP451_REG_R_LOCAL_TEMPL, }, }; /* * TEMP8 register index */ enum lm90_temp8_reg_index { LOCAL_LOW = 0, LOCAL_HIGH, LOCAL_CRIT, REMOTE_CRIT, LOCAL_EMERG, /* max6659 and max6695/96 */ REMOTE_EMERG, /* max6659 and max6695/96 */ REMOTE2_CRIT, /* max6695/96 only */ REMOTE2_EMERG, /* max6695/96 only */ TEMP8_REG_NUM }; /* * TEMP11 register index */ enum lm90_temp11_reg_index { REMOTE_TEMP = 0, REMOTE_LOW, REMOTE_HIGH, REMOTE_OFFSET, /* except max6646, max6657/58/59, and max6695/96 */ LOCAL_TEMP, REMOTE2_TEMP, /* max6695/96 only */ REMOTE2_LOW, /* max6695/96 only */ REMOTE2_HIGH, /* max6695/96 only */ TEMP11_REG_NUM }; /* * Client data (each client gets its own) */ struct lm90_data { struct i2c_client *client; u32 channel_config[4]; struct hwmon_channel_info temp_info; const struct hwmon_channel_info *info[3]; struct hwmon_chip_info chip; struct mutex update_lock; bool valid; /* true if register values are valid */ unsigned long last_updated; /* in jiffies */ int kind; u32 flags; unsigned int update_interval; /* in milliseconds */ u8 config; /* Current configuration register value */ u8 config_orig; /* Original configuration register value */ u8 convrate_orig; /* Original conversion rate register value */ u16 alert_alarms; /* Which alarm bits trigger ALERT# */ /* Upper 8 bits for max6695/96 */ u8 max_convrate; /* Maximum conversion rate */ u8 reg_local_ext; /* local extension register offset */ /* registers values */ s8 temp8[TEMP8_REG_NUM]; s16 temp11[TEMP11_REG_NUM]; u8 temp_hyst; u16 alarms; /* bitvector (upper 8 bits for max6695/96) */ }; /* * Support functions */ /* * The ADM1032 supports PEC but not on write byte transactions, so we need * to explicitly ask for a transaction without PEC. */ static inline s32 adm1032_write_byte(struct i2c_client *client, u8 value) { return i2c_smbus_xfer(client->adapter, client->addr, client->flags & ~I2C_CLIENT_PEC, I2C_SMBUS_WRITE, value, I2C_SMBUS_BYTE, NULL); } /* * It is assumed that client->update_lock is held (unless we are in * detection or initialization steps). This matters when PEC is enabled, * because we don't want the address pointer to change between the write * byte and the read byte transactions. */ static int lm90_read_reg(struct i2c_client *client, u8 reg) { int err; if (client->flags & I2C_CLIENT_PEC) { err = adm1032_write_byte(client, reg); if (err >= 0) err = i2c_smbus_read_byte(client); } else err = i2c_smbus_read_byte_data(client, reg); return err; } static int lm90_read16(struct i2c_client *client, u8 regh, u8 regl) { int oldh, newh, l; /* * There is a trick here. We have to read two registers to have the * sensor temperature, but we have to beware a conversion could occur * between the readings. The datasheet says we should either use * the one-shot conversion register, which we don't want to do * (disables hardware monitoring) or monitor the busy bit, which is * impossible (we can't read the values and monitor that bit at the * exact same time). So the solution used here is to read the high * byte once, then the low byte, then the high byte again. If the new * high byte matches the old one, then we have a valid reading. Else * we have to read the low byte again, and now we believe we have a * correct reading. */ oldh = lm90_read_reg(client, regh); if (oldh < 0) return oldh; l = lm90_read_reg(client, regl); if (l < 0) return l; newh = lm90_read_reg(client, regh); if (newh < 0) return newh; if (oldh != newh) { l = lm90_read_reg(client, regl); if (l < 0) return l; } return (newh << 8) | l; } static int lm90_update_confreg(struct lm90_data *data, u8 config) { if (data->config != config) { int err; err = i2c_smbus_write_byte_data(data->client, LM90_REG_W_CONFIG1, config); if (err) return err; data->config = config; } return 0; } /* * client->update_lock must be held when calling this function (unless we are * in detection or initialization steps), and while a remote channel other * than channel 0 is selected. Also, calling code must make sure to re-select * external channel 0 before releasing the lock. This is necessary because * various registers have different meanings as a result of selecting a * non-default remote channel. */ static int lm90_select_remote_channel(struct lm90_data *data, int channel) { int err = 0; if (data->kind == max6696) { u8 config = data->config & ~0x08; if (channel) config |= 0x08; err = lm90_update_confreg(data, config); } return err; } static int lm90_write_convrate(struct lm90_data *data, int val) { u8 config = data->config; int err; /* Save config and pause conversion */ if (data->flags & LM90_PAUSE_FOR_CONFIG) { err = lm90_update_confreg(data, config | 0x40); if (err < 0) return err; } /* Set conv rate */ err = i2c_smbus_write_byte_data(data->client, LM90_REG_W_CONVRATE, val); /* Revert change to config */ lm90_update_confreg(data, config); return err; } /* * Set conversion rate. * client->update_lock must be held when calling this function (unless we are * in detection or initialization steps). */ static int lm90_set_convrate(struct i2c_client *client, struct lm90_data *data, unsigned int interval) { unsigned int update_interval; int i, err; /* Shift calculations to avoid rounding errors */ interval <<= 6; /* find the nearest update rate */ for (i = 0, update_interval = LM90_MAX_CONVRATE_MS << 6; i < data->max_convrate; i++, update_interval >>= 1) if (interval >= update_interval * 3 / 4) break; err = lm90_write_convrate(data, i); data->update_interval = DIV_ROUND_CLOSEST(update_interval, 64); return err; } static int lm90_update_limits(struct device *dev) { struct lm90_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; int val; val = lm90_read_reg(client, LM90_REG_R_LOCAL_CRIT); if (val < 0) return val; data->temp8[LOCAL_CRIT] = val; val = lm90_read_reg(client, LM90_REG_R_REMOTE_CRIT); if (val < 0) return val; data->temp8[REMOTE_CRIT] = val; val = lm90_read_reg(client, LM90_REG_R_TCRIT_HYST); if (val < 0) return val; data->temp_hyst = val; val = lm90_read_reg(client, LM90_REG_R_REMOTE_LOWH); if (val < 0) return val; data->temp11[REMOTE_LOW] = val << 8; if (data->flags & LM90_HAVE_REM_LIMIT_EXT) { val = lm90_read_reg(client, LM90_REG_R_REMOTE_LOWL); if (val < 0) return val; data->temp11[REMOTE_LOW] |= val; } val = lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHH); if (val < 0) return val; data->temp11[REMOTE_HIGH] = val << 8; if (data->flags & LM90_HAVE_REM_LIMIT_EXT) { val = lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHL); if (val < 0) return val; data->temp11[REMOTE_HIGH] |= val; } if (data->flags & LM90_HAVE_OFFSET) { val = lm90_read16(client, LM90_REG_R_REMOTE_OFFSH, LM90_REG_R_REMOTE_OFFSL); if (val < 0) return val; data->temp11[REMOTE_OFFSET] = val; } if (data->flags & LM90_HAVE_EMERGENCY) { val = lm90_read_reg(client, MAX6659_REG_R_LOCAL_EMERG); if (val < 0) return val; data->temp8[LOCAL_EMERG] = val; val = lm90_read_reg(client, MAX6659_REG_R_REMOTE_EMERG); if (val < 0) return val; data->temp8[REMOTE_EMERG] = val; } if (data->kind == max6696) { val = lm90_select_remote_channel(data, 1); if (val < 0) return val; val = lm90_read_reg(client, LM90_REG_R_REMOTE_CRIT); if (val < 0) return val; data->temp8[REMOTE2_CRIT] = val; val = lm90_read_reg(client, MAX6659_REG_R_REMOTE_EMERG); if (val < 0) return val; data->temp8[REMOTE2_EMERG] = val; val = lm90_read_reg(client, LM90_REG_R_REMOTE_LOWH); if (val < 0) return val; data->temp11[REMOTE2_LOW] = val << 8; val = lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHH); if (val < 0) return val; data->temp11[REMOTE2_HIGH] = val << 8; lm90_select_remote_channel(data, 0); } return 0; } static int lm90_update_device(struct device *dev) { struct lm90_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; unsigned long next_update; int val; if (!data->valid) { val = lm90_update_limits(dev); if (val < 0) return val; } next_update = data->last_updated + msecs_to_jiffies(data->update_interval); if (time_after(jiffies, next_update) || !data->valid) { dev_dbg(&client->dev, "Updating lm90 data.\n"); data->valid = false; val = lm90_read_reg(client, LM90_REG_R_LOCAL_LOW); if (val < 0) return val; data->temp8[LOCAL_LOW] = val; val = lm90_read_reg(client, LM90_REG_R_LOCAL_HIGH); if (val < 0) return val; data->temp8[LOCAL_HIGH] = val; if (data->reg_local_ext) { val = lm90_read16(client, LM90_REG_R_LOCAL_TEMP, data->reg_local_ext); if (val < 0) return val; data->temp11[LOCAL_TEMP] = val; } else { val = lm90_read_reg(client, LM90_REG_R_LOCAL_TEMP); if (val < 0) return val; data->temp11[LOCAL_TEMP] = val << 8; } val = lm90_read16(client, LM90_REG_R_REMOTE_TEMPH, LM90_REG_R_REMOTE_TEMPL); if (val < 0) return val; data->temp11[REMOTE_TEMP] = val; val = lm90_read_reg(client, LM90_REG_R_STATUS); if (val < 0) return val; data->alarms = val; /* lower 8 bit of alarms */ if (data->kind == max6696) { val = lm90_select_remote_channel(data, 1); if (val < 0) return val; val = lm90_read16(client, LM90_REG_R_REMOTE_TEMPH, LM90_REG_R_REMOTE_TEMPL); if (val < 0) { lm90_select_remote_channel(data, 0); return val; } data->temp11[REMOTE2_TEMP] = val; lm90_select_remote_channel(data, 0); val = lm90_read_reg(client, MAX6696_REG_R_STATUS2); if (val < 0) return val; data->alarms |= val << 8; } /* * Re-enable ALERT# output if it was originally enabled and * relevant alarms are all clear */ if (!(data->config_orig & 0x80) && !(data->alarms & data->alert_alarms)) { if (data->config & 0x80) { dev_dbg(&client->dev, "Re-enabling ALERT#\n"); lm90_update_confreg(data, data->config & ~0x80); } } data->last_updated = jiffies; data->valid = true; } return 0; } /* * Conversions * For local temperatures and limits, critical limits and the hysteresis * value, the LM90 uses signed 8-bit values with LSB = 1 degree Celsius. * For remote temperatures and limits, it uses signed 11-bit values with * LSB = 0.125 degree Celsius, left-justified in 16-bit registers. Some * Maxim chips use unsigned values. */ static inline int temp_from_s8(s8 val) { return val * 1000; } static inline int temp_from_u8(u8 val) { return val * 1000; } static inline int temp_from_s16(s16 val) { return val / 32 * 125; } static inline int temp_from_u16(u16 val) { return val / 32 * 125; } static s8 temp_to_s8(long val) { if (val <= -128000) return -128; if (val >= 127000) return 127; if (val < 0) return (val - 500) / 1000; return (val + 500) / 1000; } static u8 temp_to_u8(long val) { if (val <= 0) return 0; if (val >= 255000) return 255; return (val + 500) / 1000; } static s16 temp_to_s16(long val) { if (val <= -128000) return 0x8000; if (val >= 127875) return 0x7FE0; if (val < 0) return (val - 62) / 125 * 32; return (val + 62) / 125 * 32; } static u8 hyst_to_reg(long val) { if (val <= 0) return 0; if (val >= 30500) return 31; return (val + 500) / 1000; } /* * ADT7461 in compatibility mode is almost identical to LM90 except that * attempts to write values that are outside the range 0 < temp < 127 are * treated as the boundary value. * * ADT7461 in "extended mode" operation uses unsigned integers offset by * 64 (e.g., 0 -> -64 degC). The range is restricted to -64..191 degC. */ static inline int temp_from_u8_adt7461(struct lm90_data *data, u8 val) { if (data->flags & LM90_FLAG_ADT7461_EXT) return (val - 64) * 1000; return temp_from_s8(val); } static inline int temp_from_u16_adt7461(struct lm90_data *data, u16 val) { if (data->flags & LM90_FLAG_ADT7461_EXT) return (val - 0x4000) / 64 * 250; return temp_from_s16(val); } static u8 temp_to_u8_adt7461(struct lm90_data *data, long val) { if (data->flags & LM90_FLAG_ADT7461_EXT) { if (val <= -64000) return 0; if (val >= 191000) return 0xFF; return (val + 500 + 64000) / 1000; } if (val <= 0) return 0; if (val >= 127000) return 127; return (val + 500) / 1000; } static u16 temp_to_u16_adt7461(struct lm90_data *data, long val) { if (data->flags & LM90_FLAG_ADT7461_EXT) { if (val <= -64000) return 0; if (val >= 191750) return 0xFFC0; return (val + 64000 + 125) / 250 * 64; } if (val <= 0) return 0; if (val >= 127750) return 0x7FC0; return (val + 125) / 250 * 64; } /* pec used for ADM1032 only */ static ssize_t pec_show(struct device *dev, struct device_attribute *dummy, char *buf) { struct i2c_client *client = to_i2c_client(dev); return sprintf(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC)); } static ssize_t pec_store(struct device *dev, struct device_attribute *dummy, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); long val; int err; err = kstrtol(buf, 10, &val); if (err < 0) return err; switch (val) { case 0: client->flags &= ~I2C_CLIENT_PEC; break; case 1: client->flags |= I2C_CLIENT_PEC; break; default: return -EINVAL; } return count; } static DEVICE_ATTR_RW(pec); static int lm90_get_temp11(struct lm90_data *data, int index) { s16 temp11 = data->temp11[index]; int temp; if (data->kind == adt7461 || data->kind == tmp451) temp = temp_from_u16_adt7461(data, temp11); else if (data->kind == max6646) temp = temp_from_u16(temp11); else temp = temp_from_s16(temp11); /* +16 degrees offset for temp2 for the LM99 */ if (data->kind == lm99 && index <= 2) temp += 16000; return temp; } static int lm90_set_temp11(struct lm90_data *data, int index, long val) { static struct reg { u8 high; u8 low; } reg[] = { [REMOTE_LOW] = { LM90_REG_W_REMOTE_LOWH, LM90_REG_W_REMOTE_LOWL }, [REMOTE_HIGH] = { LM90_REG_W_REMOTE_HIGHH, LM90_REG_W_REMOTE_HIGHL }, [REMOTE_OFFSET] = { LM90_REG_W_REMOTE_OFFSH, LM90_REG_W_REMOTE_OFFSL }, [REMOTE2_LOW] = { LM90_REG_W_REMOTE_LOWH, LM90_REG_W_REMOTE_LOWL }, [REMOTE2_HIGH] = { LM90_REG_W_REMOTE_HIGHH, LM90_REG_W_REMOTE_HIGHL } }; struct i2c_client *client = data->client; struct reg *regp = ®[index]; int err; /* +16 degrees offset for temp2 for the LM99 */ if (data->kind == lm99 && index <= 2) val -= 16000; if (data->kind == adt7461 || data->kind == tmp451) data->temp11[index] = temp_to_u16_adt7461(data, val); else if (data->kind == max6646) data->temp11[index] = temp_to_u8(val) << 8; else if (data->flags & LM90_HAVE_REM_LIMIT_EXT) data->temp11[index] = temp_to_s16(val); else data->temp11[index] = temp_to_s8(val) << 8; lm90_select_remote_channel(data, index >= 3); err = i2c_smbus_write_byte_data(client, regp->high, data->temp11[index] >> 8); if (err < 0) return err; if (data->flags & LM90_HAVE_REM_LIMIT_EXT) err = i2c_smbus_write_byte_data(client, regp->low, data->temp11[index] & 0xff); lm90_select_remote_channel(data, 0); return err; } static int lm90_get_temp8(struct lm90_data *data, int index) { s8 temp8 = data->temp8[index]; int temp; if (data->kind == adt7461 || data->kind == tmp451) temp = temp_from_u8_adt7461(data, temp8); else if (data->kind == max6646) temp = temp_from_u8(temp8); else temp = temp_from_s8(temp8); /* +16 degrees offset for temp2 for the LM99 */ if (data->kind == lm99 && index == 3) temp += 16000; return temp; } static int lm90_set_temp8(struct lm90_data *data, int index, long val) { static const u8 reg[TEMP8_REG_NUM] = { LM90_REG_W_LOCAL_LOW, LM90_REG_W_LOCAL_HIGH, LM90_REG_W_LOCAL_CRIT, LM90_REG_W_REMOTE_CRIT, MAX6659_REG_W_LOCAL_EMERG, MAX6659_REG_W_REMOTE_EMERG, LM90_REG_W_REMOTE_CRIT, MAX6659_REG_W_REMOTE_EMERG, }; struct i2c_client *client = data->client; int err; /* +16 degrees offset for temp2 for the LM99 */ if (data->kind == lm99 && index == 3) val -= 16000; if (data->kind == adt7461 || data->kind == tmp451) data->temp8[index] = temp_to_u8_adt7461(data, val); else if (data->kind == max6646) data->temp8[index] = temp_to_u8(val); else data->temp8[index] = temp_to_s8(val); lm90_select_remote_channel(data, index >= 6); err = i2c_smbus_write_byte_data(client, reg[index], data->temp8[index]); lm90_select_remote_channel(data, 0); return err; } static int lm90_get_temphyst(struct lm90_data *data, int index) { int temp; if (data->kind == adt7461 || data->kind == tmp451) temp = temp_from_u8_adt7461(data, data->temp8[index]); else if (data->kind == max6646) temp = temp_from_u8(data->temp8[index]); else temp = temp_from_s8(data->temp8[index]); /* +16 degrees offset for temp2 for the LM99 */ if (data->kind == lm99 && index == 3) temp += 16000; return temp - temp_from_s8(data->temp_hyst); } static int lm90_set_temphyst(struct lm90_data *data, long val) { struct i2c_client *client = data->client; int temp; int err; if (data->kind == adt7461 || data->kind == tmp451) temp = temp_from_u8_adt7461(data, data->temp8[LOCAL_CRIT]); else if (data->kind == max6646) temp = temp_from_u8(data->temp8[LOCAL_CRIT]); else temp = temp_from_s8(data->temp8[LOCAL_CRIT]); data->temp_hyst = hyst_to_reg(temp - val); err = i2c_smbus_write_byte_data(client, LM90_REG_W_TCRIT_HYST, data->temp_hyst); return err; } static const u8 lm90_temp_index[3] = { LOCAL_TEMP, REMOTE_TEMP, REMOTE2_TEMP }; static const u8 lm90_temp_min_index[3] = { LOCAL_LOW, REMOTE_LOW, REMOTE2_LOW }; static const u8 lm90_temp_max_index[3] = { LOCAL_HIGH, REMOTE_HIGH, REMOTE2_HIGH }; static const u8 lm90_temp_crit_index[3] = { LOCAL_CRIT, REMOTE_CRIT, REMOTE2_CRIT }; static const u8 lm90_temp_emerg_index[3] = { LOCAL_EMERG, REMOTE_EMERG, REMOTE2_EMERG }; static const u8 lm90_min_alarm_bits[3] = { 5, 3, 11 }; static const u8 lm90_max_alarm_bits[3] = { 6, 4, 12 }; static const u8 lm90_crit_alarm_bits[3] = { 0, 1, 9 }; static const u8 lm90_emergency_alarm_bits[3] = { 15, 13, 14 }; static const u8 lm90_fault_bits[3] = { 0, 2, 10 }; static int lm90_temp_read(struct device *dev, u32 attr, int channel, long *val) { struct lm90_data *data = dev_get_drvdata(dev); int err; mutex_lock(&data->update_lock); err = lm90_update_device(dev); mutex_unlock(&data->update_lock); if (err) return err; switch (attr) { case hwmon_temp_input: *val = lm90_get_temp11(data, lm90_temp_index[channel]); break; case hwmon_temp_min_alarm: *val = (data->alarms >> lm90_min_alarm_bits[channel]) & 1; break; case hwmon_temp_max_alarm: *val = (data->alarms >> lm90_max_alarm_bits[channel]) & 1; break; case hwmon_temp_crit_alarm: *val = (data->alarms >> lm90_crit_alarm_bits[channel]) & 1; break; case hwmon_temp_emergency_alarm: *val = (data->alarms >> lm90_emergency_alarm_bits[channel]) & 1; break; case hwmon_temp_fault: *val = (data->alarms >> lm90_fault_bits[channel]) & 1; break; case hwmon_temp_min: if (channel == 0) *val = lm90_get_temp8(data, lm90_temp_min_index[channel]); else *val = lm90_get_temp11(data, lm90_temp_min_index[channel]); break; case hwmon_temp_max: if (channel == 0) *val = lm90_get_temp8(data, lm90_temp_max_index[channel]); else *val = lm90_get_temp11(data, lm90_temp_max_index[channel]); break; case hwmon_temp_crit: *val = lm90_get_temp8(data, lm90_temp_crit_index[channel]); break; case hwmon_temp_crit_hyst: *val = lm90_get_temphyst(data, lm90_temp_crit_index[channel]); break; case hwmon_temp_emergency: *val = lm90_get_temp8(data, lm90_temp_emerg_index[channel]); break; case hwmon_temp_emergency_hyst: *val = lm90_get_temphyst(data, lm90_temp_emerg_index[channel]); break; case hwmon_temp_offset: *val = lm90_get_temp11(data, REMOTE_OFFSET); break; default: return -EOPNOTSUPP; } return 0; } static int lm90_temp_write(struct device *dev, u32 attr, int channel, long val) { struct lm90_data *data = dev_get_drvdata(dev); int err; mutex_lock(&data->update_lock); err = lm90_update_device(dev); if (err) goto error; switch (attr) { case hwmon_temp_min: if (channel == 0) err = lm90_set_temp8(data, lm90_temp_min_index[channel], val); else err = lm90_set_temp11(data, lm90_temp_min_index[channel], val); break; case hwmon_temp_max: if (channel == 0) err = lm90_set_temp8(data, lm90_temp_max_index[channel], val); else err = lm90_set_temp11(data, lm90_temp_max_index[channel], val); break; case hwmon_temp_crit: err = lm90_set_temp8(data, lm90_temp_crit_index[channel], val); break; case hwmon_temp_crit_hyst: err = lm90_set_temphyst(data, val); break; case hwmon_temp_emergency: err = lm90_set_temp8(data, lm90_temp_emerg_index[channel], val); break; case hwmon_temp_offset: err = lm90_set_temp11(data, REMOTE_OFFSET, val); break; default: err = -EOPNOTSUPP; break; } error: mutex_unlock(&data->update_lock); return err; } static umode_t lm90_temp_is_visible(const void *data, u32 attr, int channel) { switch (attr) { case hwmon_temp_input: case hwmon_temp_min_alarm: case hwmon_temp_max_alarm: case hwmon_temp_crit_alarm: case hwmon_temp_emergency_alarm: case hwmon_temp_emergency_hyst: case hwmon_temp_fault: return 0444; case hwmon_temp_min: case hwmon_temp_max: case hwmon_temp_crit: case hwmon_temp_emergency: case hwmon_temp_offset: return 0644; case hwmon_temp_crit_hyst: if (channel == 0) return 0644; return 0444; default: return 0; } } static int lm90_chip_read(struct device *dev, u32 attr, int channel, long *val) { struct lm90_data *data = dev_get_drvdata(dev); int err; mutex_lock(&data->update_lock); err = lm90_update_device(dev); mutex_unlock(&data->update_lock); if (err) return err; switch (attr) { case hwmon_chip_update_interval: *val = data->update_interval; break; case hwmon_chip_alarms: *val = data->alarms; break; default: return -EOPNOTSUPP; } return 0; } static int lm90_chip_write(struct device *dev, u32 attr, int channel, long val) { struct lm90_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; int err; mutex_lock(&data->update_lock); err = lm90_update_device(dev); if (err) goto error; switch (attr) { case hwmon_chip_update_interval: err = lm90_set_convrate(client, data, clamp_val(val, 0, 100000)); break; default: err = -EOPNOTSUPP; break; } error: mutex_unlock(&data->update_lock); return err; } static umode_t lm90_chip_is_visible(const void *data, u32 attr, int channel) { switch (attr) { case hwmon_chip_update_interval: return 0644; case hwmon_chip_alarms: return 0444; default: return 0; } } static int lm90_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long *val) { switch (type) { case hwmon_chip: return lm90_chip_read(dev, attr, channel, val); case hwmon_temp: return lm90_temp_read(dev, attr, channel, val); default: return -EOPNOTSUPP; } } static int lm90_write(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long val) { switch (type) { case hwmon_chip: return lm90_chip_write(dev, attr, channel, val); case hwmon_temp: return lm90_temp_write(dev, attr, channel, val); default: return -EOPNOTSUPP; } } static umode_t lm90_is_visible(const void *data, enum hwmon_sensor_types type, u32 attr, int channel) { switch (type) { case hwmon_chip: return lm90_chip_is_visible(data, attr, channel); case hwmon_temp: return lm90_temp_is_visible(data, attr, channel); default: return 0; } } /* Return 0 if detection is successful, -ENODEV otherwise */ static int lm90_detect(struct i2c_client *client, struct i2c_board_info *info) { struct i2c_adapter *adapter = client->adapter; int address = client->addr; const char *name = NULL; int man_id, chip_id, config1, config2, convrate; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) return -ENODEV; /* detection and identification */ man_id = i2c_smbus_read_byte_data(client, LM90_REG_R_MAN_ID); chip_id = i2c_smbus_read_byte_data(client, LM90_REG_R_CHIP_ID); config1 = i2c_smbus_read_byte_data(client, LM90_REG_R_CONFIG1); convrate = i2c_smbus_read_byte_data(client, LM90_REG_R_CONVRATE); if (man_id < 0 || chip_id < 0 || config1 < 0 || convrate < 0) return -ENODEV; if (man_id == 0x01 || man_id == 0x5C || man_id == 0x41) { config2 = i2c_smbus_read_byte_data(client, LM90_REG_R_CONFIG2); if (config2 < 0) return -ENODEV; } else config2 = 0; /* Make compiler happy */ if ((address == 0x4C || address == 0x4D) && man_id == 0x01) { /* National Semiconductor */ if ((config1 & 0x2A) == 0x00 && (config2 & 0xF8) == 0x00 && convrate <= 0x09) { if (address == 0x4C && (chip_id & 0xF0) == 0x20) { /* LM90 */ name = "lm90"; } else if ((chip_id & 0xF0) == 0x30) { /* LM89/LM99 */ name = "lm99"; dev_info(&adapter->dev, "Assuming LM99 chip at 0x%02x\n", address); dev_info(&adapter->dev, "If it is an LM89, instantiate it " "with the new_device sysfs " "interface\n"); } else if (address == 0x4C && (chip_id & 0xF0) == 0x10) { /* LM86 */ name = "lm86"; } } } else if ((address == 0x4C || address == 0x4D) && man_id == 0x41) { /* Analog Devices */ if ((chip_id & 0xF0) == 0x40 /* ADM1032 */ && (config1 & 0x3F) == 0x00 && convrate <= 0x0A) { name = "adm1032"; /* * The ADM1032 supports PEC, but only if combined * transactions are not used. */ if (i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE)) info->flags |= I2C_CLIENT_PEC; } else if (chip_id == 0x51 /* ADT7461 */ && (config1 & 0x1B) == 0x00 && convrate <= 0x0A) { name = "adt7461"; } else if (chip_id == 0x57 /* ADT7461A, NCT1008 */ && (config1 & 0x1B) == 0x00 && convrate <= 0x0A) { name = "adt7461a"; } } else if (man_id == 0x4D) { /* Maxim */ int emerg, emerg2, status2; /* * We read MAX6659_REG_R_REMOTE_EMERG twice, and re-read * LM90_REG_R_MAN_ID in between. If MAX6659_REG_R_REMOTE_EMERG * exists, both readings will reflect the same value. Otherwise, * the readings will be different. */ emerg = i2c_smbus_read_byte_data(client, MAX6659_REG_R_REMOTE_EMERG); man_id = i2c_smbus_read_byte_data(client, LM90_REG_R_MAN_ID); emerg2 = i2c_smbus_read_byte_data(client, MAX6659_REG_R_REMOTE_EMERG); status2 = i2c_smbus_read_byte_data(client, MAX6696_REG_R_STATUS2); if (emerg < 0 || man_id < 0 || emerg2 < 0 || status2 < 0) return -ENODEV; /* * The MAX6657, MAX6658 and MAX6659 do NOT have a chip_id * register. Reading from that address will return the last * read value, which in our case is those of the man_id * register. Likewise, the config1 register seems to lack a * low nibble, so the value will be those of the previous * read, so in our case those of the man_id register. * MAX6659 has a third set of upper temperature limit registers. * Those registers also return values on MAX6657 and MAX6658, * thus the only way to detect MAX6659 is by its address. * For this reason it will be mis-detected as MAX6657 if its * address is 0x4C. */ if (chip_id == man_id && (address == 0x4C || address == 0x4D || address == 0x4E) && (config1 & 0x1F) == (man_id & 0x0F) && convrate <= 0x09) { if (address == 0x4C) name = "max6657"; else name = "max6659"; } else /* * Even though MAX6695 and MAX6696 do not have a chip ID * register, reading it returns 0x01. Bit 4 of the config1 * register is unused and should return zero when read. Bit 0 of * the status2 register is unused and should return zero when * read. * * MAX6695 and MAX6696 have an additional set of temperature * limit registers. We can detect those chips by checking if * one of those registers exists. */ if (chip_id == 0x01 && (config1 & 0x10) == 0x00 && (status2 & 0x01) == 0x00 && emerg == emerg2 && convrate <= 0x07) { name = "max6696"; } else /* * The chip_id register of the MAX6680 and MAX6681 holds the * revision of the chip. The lowest bit of the config1 register * is unused and should return zero when read, so should the * second to last bit of config1 (software reset). */ if (chip_id == 0x01 && (config1 & 0x03) == 0x00 && convrate <= 0x07) { name = "max6680"; } else /* * The chip_id register of the MAX6646/6647/6649 holds the * revision of the chip. The lowest 6 bits of the config1 * register are unused and should return zero when read. */ if (chip_id == 0x59 && (config1 & 0x3f) == 0x00 && convrate <= 0x07) { name = "max6646"; } else /* * The chip_id of the MAX6654 holds the revision of the chip. * The lowest 3 bits of the config1 register are unused and * should return zero when read. */ if (chip_id == 0x08 && (config1 & 0x07) == 0x00 && convrate <= 0x07) { name = "max6654"; } } else if (address == 0x4C && man_id == 0x5C) { /* Winbond/Nuvoton */ if ((config1 & 0x2A) == 0x00 && (config2 & 0xF8) == 0x00) { if (chip_id == 0x01 /* W83L771W/G */ && convrate <= 0x09) { name = "w83l771"; } else if ((chip_id & 0xFE) == 0x10 /* W83L771AWG/ASG */ && convrate <= 0x08) { name = "w83l771"; } } } else if (address >= 0x48 && address <= 0x4F && man_id == 0xA1) { /* NXP Semiconductor/Philips */ if (chip_id == 0x00 && (config1 & 0x2A) == 0x00 && (config2 & 0xFE) == 0x00 && convrate <= 0x09) { name = "sa56004"; } } else if ((address == 0x4C || address == 0x4D) && man_id == 0x47) { /* GMT */ if (chip_id == 0x01 /* G781 */ && (config1 & 0x3F) == 0x00 && convrate <= 0x08) name = "g781"; } else if (address == 0x4C && man_id == 0x55) { /* Texas Instruments */ int local_ext; local_ext = i2c_smbus_read_byte_data(client, TMP451_REG_R_LOCAL_TEMPL); if (chip_id == 0x00 /* TMP451 */ && (config1 & 0x1B) == 0x00 && convrate <= 0x09 && (local_ext & 0x0F) == 0x00) name = "tmp451"; } if (!name) { /* identification failed */ dev_dbg(&adapter->dev, "Unsupported chip at 0x%02x (man_id=0x%02X, " "chip_id=0x%02X)\n", address, man_id, chip_id); return -ENODEV; } strlcpy(info->type, name, I2C_NAME_SIZE); return 0; } static void lm90_restore_conf(void *_data) { struct lm90_data *data = _data; struct i2c_client *client = data->client; /* Restore initial configuration */ lm90_write_convrate(data, data->convrate_orig); i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1, data->config_orig); } static int lm90_init_client(struct i2c_client *client, struct lm90_data *data) { int config, convrate; convrate = lm90_read_reg(client, LM90_REG_R_CONVRATE); if (convrate < 0) return convrate; data->convrate_orig = convrate; /* * Start the conversions. */ config = lm90_read_reg(client, LM90_REG_R_CONFIG1); if (config < 0) return config; data->config_orig = config; data->config = config; lm90_set_convrate(client, data, 500); /* 500ms; 2Hz conversion rate */ /* Check Temperature Range Select */ if (data->kind == adt7461 || data->kind == tmp451) { if (config & 0x04) data->flags |= LM90_FLAG_ADT7461_EXT; } /* * Put MAX6680/MAX8881 into extended resolution (bit 0x10, * 0.125 degree resolution) and range (0x08, extend range * to -64 degree) mode for the remote temperature sensor. */ if (data->kind == max6680) config |= 0x18; /* * Put MAX6654 into extended range (0x20, extend minimum range from * 0 degrees to -64 degrees). Note that extended resolution is not * possible on the MAX6654 unless conversion rate is set to 1 Hz or * slower, which is intentionally not done by default. */ if (data->kind == max6654) config |= 0x20; /* * Select external channel 0 for max6695/96 */ if (data->kind == max6696) config &= ~0x08; config &= 0xBF; /* run */ lm90_update_confreg(data, config); return devm_add_action_or_reset(&client->dev, lm90_restore_conf, data); } static bool lm90_is_tripped(struct i2c_client *client, u16 *status) { struct lm90_data *data = i2c_get_clientdata(client); int st, st2 = 0; st = lm90_read_reg(client, LM90_REG_R_STATUS); if (st < 0) return false; if (data->kind == max6696) { st2 = lm90_read_reg(client, MAX6696_REG_R_STATUS2); if (st2 < 0) return false; } *status = st | (st2 << 8); if ((st & 0x7f) == 0 && (st2 & 0xfe) == 0) return false; if ((st & (LM90_STATUS_LLOW | LM90_STATUS_LHIGH | LM90_STATUS_LTHRM)) || (st2 & MAX6696_STATUS2_LOT2)) dev_warn(&client->dev, "temp%d out of range, please check!\n", 1); if ((st & (LM90_STATUS_RLOW | LM90_STATUS_RHIGH | LM90_STATUS_RTHRM)) || (st2 & MAX6696_STATUS2_ROT2)) dev_warn(&client->dev, "temp%d out of range, please check!\n", 2); if (st & LM90_STATUS_ROPEN) dev_warn(&client->dev, "temp%d diode open, please check!\n", 2); if (st2 & (MAX6696_STATUS2_R2LOW | MAX6696_STATUS2_R2HIGH | MAX6696_STATUS2_R2THRM | MAX6696_STATUS2_R2OT2)) dev_warn(&client->dev, "temp%d out of range, please check!\n", 3); if (st2 & MAX6696_STATUS2_R2OPEN) dev_warn(&client->dev, "temp%d diode open, please check!\n", 3); return true; } static irqreturn_t lm90_irq_thread(int irq, void *dev_id) { struct i2c_client *client = dev_id; u16 status; if (lm90_is_tripped(client, &status)) return IRQ_HANDLED; else return IRQ_NONE; } static void lm90_remove_pec(void *dev) { device_remove_file(dev, &dev_attr_pec); } static void lm90_regulator_disable(void *regulator) { regulator_disable(regulator); } static const struct hwmon_ops lm90_ops = { .is_visible = lm90_is_visible, .read = lm90_read, .write = lm90_write, }; static int lm90_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct device *dev = &client->dev; struct i2c_adapter *adapter = client->adapter; struct hwmon_channel_info *info; struct regulator *regulator; struct device *hwmon_dev; struct lm90_data *data; int err; regulator = devm_regulator_get(dev, "vcc"); if (IS_ERR(regulator)) return PTR_ERR(regulator); err = regulator_enable(regulator); if (err < 0) { dev_err(dev, "Failed to enable regulator: %d\n", err); return err; } err = devm_add_action_or_reset(dev, lm90_regulator_disable, regulator); if (err) return err; data = devm_kzalloc(dev, sizeof(struct lm90_data), GFP_KERNEL); if (!data) return -ENOMEM; data->client = client; i2c_set_clientdata(client, data); mutex_init(&data->update_lock); /* Set the device type */ if (client->dev.of_node) data->kind = (enum chips)of_device_get_match_data(&client->dev); else data->kind = id->driver_data; if (data->kind == adm1032) { if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE)) client->flags &= ~I2C_CLIENT_PEC; } /* * Different devices have different alarm bits triggering the * ALERT# output */ data->alert_alarms = lm90_params[data->kind].alert_alarms; /* Set chip capabilities */ data->flags = lm90_params[data->kind].flags; data->chip.ops = &lm90_ops; data->chip.info = data->info; data->info[0] = HWMON_CHANNEL_INFO(chip, HWMON_C_REGISTER_TZ | HWMON_C_UPDATE_INTERVAL | HWMON_C_ALARMS); data->info[1] = &data->temp_info; info = &data->temp_info; info->type = hwmon_temp; info->config = data->channel_config; data->channel_config[0] = HWMON_T_INPUT | HWMON_T_MIN | HWMON_T_MAX | HWMON_T_CRIT | HWMON_T_CRIT_HYST | HWMON_T_MIN_ALARM | HWMON_T_MAX_ALARM | HWMON_T_CRIT_ALARM; data->channel_config[1] = HWMON_T_INPUT | HWMON_T_MIN | HWMON_T_MAX | HWMON_T_CRIT | HWMON_T_CRIT_HYST | HWMON_T_MIN_ALARM | HWMON_T_MAX_ALARM | HWMON_T_CRIT_ALARM | HWMON_T_FAULT; if (data->flags & LM90_HAVE_OFFSET) data->channel_config[1] |= HWMON_T_OFFSET; if (data->flags & LM90_HAVE_EMERGENCY) { data->channel_config[0] |= HWMON_T_EMERGENCY | HWMON_T_EMERGENCY_HYST; data->channel_config[1] |= HWMON_T_EMERGENCY | HWMON_T_EMERGENCY_HYST; } if (data->flags & LM90_HAVE_EMERGENCY_ALARM) { data->channel_config[0] |= HWMON_T_EMERGENCY_ALARM; data->channel_config[1] |= HWMON_T_EMERGENCY_ALARM; } if (data->flags & LM90_HAVE_TEMP3) { data->channel_config[2] = HWMON_T_INPUT | HWMON_T_MIN | HWMON_T_MAX | HWMON_T_CRIT | HWMON_T_CRIT_HYST | HWMON_T_EMERGENCY | HWMON_T_EMERGENCY_HYST | HWMON_T_MIN_ALARM | HWMON_T_MAX_ALARM | HWMON_T_CRIT_ALARM | HWMON_T_EMERGENCY_ALARM | HWMON_T_FAULT; } data->reg_local_ext = lm90_params[data->kind].reg_local_ext; /* Set maximum conversion rate */ data->max_convrate = lm90_params[data->kind].max_convrate; /* Initialize the LM90 chip */ err = lm90_init_client(client, data); if (err < 0) { dev_err(dev, "Failed to initialize device\n"); return err; } /* * The 'pec' attribute is attached to the i2c device and thus created * separately. */ if (client->flags & I2C_CLIENT_PEC) { err = device_create_file(dev, &dev_attr_pec); if (err) return err; err = devm_add_action_or_reset(dev, lm90_remove_pec, dev); if (err) return err; } hwmon_dev = devm_hwmon_device_register_with_info(dev, client->name, data, &data->chip, NULL); if (IS_ERR(hwmon_dev)) return PTR_ERR(hwmon_dev); if (client->irq) { dev_dbg(dev, "IRQ: %d\n", client->irq); err = devm_request_threaded_irq(dev, client->irq, NULL, lm90_irq_thread, IRQF_TRIGGER_LOW | IRQF_ONESHOT, "lm90", client); if (err < 0) { dev_err(dev, "cannot request IRQ %d\n", client->irq); return err; } } return 0; } static void lm90_alert(struct i2c_client *client, enum i2c_alert_protocol type, unsigned int flag) { u16 alarms; if (type != I2C_PROTOCOL_SMBUS_ALERT) return; if (lm90_is_tripped(client, &alarms)) { /* * Disable ALERT# output, because these chips don't implement * SMBus alert correctly; they should only hold the alert line * low briefly. */ struct lm90_data *data = i2c_get_clientdata(client); if ((data->flags & LM90_HAVE_BROKEN_ALERT) && (alarms & data->alert_alarms)) { dev_dbg(&client->dev, "Disabling ALERT#\n"); lm90_update_confreg(data, data->config | 0x80); } } else { dev_info(&client->dev, "Everything OK\n"); } } static struct i2c_driver lm90_driver = { .class = I2C_CLASS_HWMON, .driver = { .name = "lm90", .of_match_table = of_match_ptr(lm90_of_match), }, .probe = lm90_probe, .alert = lm90_alert, .id_table = lm90_id, .detect = lm90_detect, .address_list = normal_i2c, }; module_i2c_driver(lm90_driver); MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>"); MODULE_DESCRIPTION("LM90/ADM1032 driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1