Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David Alan Gilbert | 5151 | 48.39% | 4 | 5.88% |
Guenter Roeck | 2622 | 24.63% | 15 | 22.06% |
Jean Delvare | 1543 | 14.50% | 21 | 30.88% |
David Hubbard | 499 | 4.69% | 4 | 5.88% |
Rudolf Marek | 365 | 3.43% | 3 | 4.41% |
Dmitry Artamonow | 113 | 1.06% | 1 | 1.47% |
Gong Jun | 86 | 0.81% | 2 | 2.94% |
Daniel J Blueman | 69 | 0.65% | 1 | 1.47% |
Katsumi Sato | 45 | 0.42% | 1 | 1.47% |
Joe Perches | 28 | 0.26% | 1 | 1.47% |
Chen Zhou | 28 | 0.26% | 1 | 1.47% |
Mark M. Hoffman | 27 | 0.25% | 2 | 2.94% |
Yuan Mu | 24 | 0.23% | 1 | 1.47% |
Harald Judt | 10 | 0.09% | 1 | 1.47% |
Uwe Kleine-König | 7 | 0.07% | 1 | 1.47% |
Jonas Jonsson | 7 | 0.07% | 1 | 1.47% |
Petr Vandrovec | 6 | 0.06% | 1 | 1.47% |
Laurent Riffard | 5 | 0.05% | 1 | 1.47% |
Ingo Molnar | 3 | 0.03% | 1 | 1.47% |
Jingoo Han | 2 | 0.02% | 1 | 1.47% |
Tony Jones | 1 | 0.01% | 1 | 1.47% |
Thomas Gleixner | 1 | 0.01% | 1 | 1.47% |
Hans de Goede | 1 | 0.01% | 1 | 1.47% |
H Hartley Sweeten | 1 | 0.01% | 1 | 1.47% |
Total | 10644 | 68 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * w83627ehf - Driver for the hardware monitoring functionality of * the Winbond W83627EHF Super-I/O chip * Copyright (C) 2005-2012 Jean Delvare <jdelvare@suse.de> * Copyright (C) 2006 Yuan Mu (Winbond), * Rudolf Marek <r.marek@assembler.cz> * David Hubbard <david.c.hubbard@gmail.com> * Daniel J Blueman <daniel.blueman@gmail.com> * Copyright (C) 2010 Sheng-Yuan Huang (Nuvoton) (PS00) * * Shamelessly ripped from the w83627hf driver * Copyright (C) 2003 Mark Studebaker * * Thanks to Leon Moonen, Steve Cliffe and Grant Coady for their help * in testing and debugging this driver. * * This driver also supports the W83627EHG, which is the lead-free * version of the W83627EHF. * * Supports the following chips: * * Chip #vin #fan #pwm #temp chip IDs man ID * w83627ehf 10 5 4 3 0x8850 0x88 0x5ca3 * 0x8860 0xa1 * w83627dhg 9 5 4 3 0xa020 0xc1 0x5ca3 * w83627dhg-p 9 5 4 3 0xb070 0xc1 0x5ca3 * w83627uhg 8 2 2 3 0xa230 0xc1 0x5ca3 * w83667hg 9 5 3 3 0xa510 0xc1 0x5ca3 * w83667hg-b 9 5 3 4 0xb350 0xc1 0x5ca3 */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/jiffies.h> #include <linux/platform_device.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/hwmon-vid.h> #include <linux/err.h> #include <linux/mutex.h> #include <linux/acpi.h> #include <linux/io.h> #include "lm75.h" enum kinds { w83627ehf, w83627dhg, w83627dhg_p, w83627uhg, w83667hg, w83667hg_b, }; /* used to set data->name = w83627ehf_device_names[data->sio_kind] */ static const char * const w83627ehf_device_names[] = { "w83627ehf", "w83627dhg", "w83627dhg", "w83627uhg", "w83667hg", "w83667hg", }; static unsigned short force_id; module_param(force_id, ushort, 0); MODULE_PARM_DESC(force_id, "Override the detected device ID"); #define DRVNAME "w83627ehf" /* * Super-I/O constants and functions */ #define W83627EHF_LD_HWM 0x0b #define W83667HG_LD_VID 0x0d #define SIO_REG_LDSEL 0x07 /* Logical device select */ #define SIO_REG_DEVID 0x20 /* Device ID (2 bytes) */ #define SIO_REG_EN_VRM10 0x2C /* GPIO3, GPIO4 selection */ #define SIO_REG_ENABLE 0x30 /* Logical device enable */ #define SIO_REG_ADDR 0x60 /* Logical device address (2 bytes) */ #define SIO_REG_VID_CTRL 0xF0 /* VID control */ #define SIO_REG_VID_DATA 0xF1 /* VID data */ #define SIO_W83627EHF_ID 0x8850 #define SIO_W83627EHG_ID 0x8860 #define SIO_W83627DHG_ID 0xa020 #define SIO_W83627DHG_P_ID 0xb070 #define SIO_W83627UHG_ID 0xa230 #define SIO_W83667HG_ID 0xa510 #define SIO_W83667HG_B_ID 0xb350 #define SIO_ID_MASK 0xFFF0 static inline void superio_outb(int ioreg, int reg, int val) { outb(reg, ioreg); outb(val, ioreg + 1); } static inline int superio_inb(int ioreg, int reg) { outb(reg, ioreg); return inb(ioreg + 1); } static inline void superio_select(int ioreg, int ld) { outb(SIO_REG_LDSEL, ioreg); outb(ld, ioreg + 1); } static inline int superio_enter(int ioreg) { if (!request_muxed_region(ioreg, 2, DRVNAME)) return -EBUSY; outb(0x87, ioreg); outb(0x87, ioreg); return 0; } static inline void superio_exit(int ioreg) { outb(0xaa, ioreg); outb(0x02, ioreg); outb(0x02, ioreg + 1); release_region(ioreg, 2); } /* * ISA constants */ #define IOREGION_ALIGNMENT (~7) #define IOREGION_OFFSET 5 #define IOREGION_LENGTH 2 #define ADDR_REG_OFFSET 0 #define DATA_REG_OFFSET 1 #define W83627EHF_REG_BANK 0x4E #define W83627EHF_REG_CONFIG 0x40 /* * Not currently used: * REG_MAN_ID has the value 0x5ca3 for all supported chips. * REG_CHIP_ID == 0x88/0xa1/0xc1 depending on chip model. * REG_MAN_ID is at port 0x4f * REG_CHIP_ID is at port 0x58 */ static const u16 W83627EHF_REG_FAN[] = { 0x28, 0x29, 0x2a, 0x3f, 0x553 }; static const u16 W83627EHF_REG_FAN_MIN[] = { 0x3b, 0x3c, 0x3d, 0x3e, 0x55c }; /* The W83627EHF registers for nr=7,8,9 are in bank 5 */ #define W83627EHF_REG_IN_MAX(nr) ((nr < 7) ? (0x2b + (nr) * 2) : \ (0x554 + (((nr) - 7) * 2))) #define W83627EHF_REG_IN_MIN(nr) ((nr < 7) ? (0x2c + (nr) * 2) : \ (0x555 + (((nr) - 7) * 2))) #define W83627EHF_REG_IN(nr) ((nr < 7) ? (0x20 + (nr)) : \ (0x550 + (nr) - 7)) static const u16 W83627EHF_REG_TEMP[] = { 0x27, 0x150, 0x250, 0x7e }; static const u16 W83627EHF_REG_TEMP_HYST[] = { 0x3a, 0x153, 0x253, 0 }; static const u16 W83627EHF_REG_TEMP_OVER[] = { 0x39, 0x155, 0x255, 0 }; static const u16 W83627EHF_REG_TEMP_CONFIG[] = { 0, 0x152, 0x252, 0 }; /* Fan clock dividers are spread over the following five registers */ #define W83627EHF_REG_FANDIV1 0x47 #define W83627EHF_REG_FANDIV2 0x4B #define W83627EHF_REG_VBAT 0x5D #define W83627EHF_REG_DIODE 0x59 #define W83627EHF_REG_SMI_OVT 0x4C #define W83627EHF_REG_ALARM1 0x459 #define W83627EHF_REG_ALARM2 0x45A #define W83627EHF_REG_ALARM3 0x45B #define W83627EHF_REG_CASEOPEN_DET 0x42 /* SMI STATUS #2 */ #define W83627EHF_REG_CASEOPEN_CLR 0x46 /* SMI MASK #3 */ /* SmartFan registers */ #define W83627EHF_REG_FAN_STEPUP_TIME 0x0f #define W83627EHF_REG_FAN_STEPDOWN_TIME 0x0e /* DC or PWM output fan configuration */ static const u8 W83627EHF_REG_PWM_ENABLE[] = { 0x04, /* SYS FAN0 output mode and PWM mode */ 0x04, /* CPU FAN0 output mode and PWM mode */ 0x12, /* AUX FAN mode */ 0x62, /* CPU FAN1 mode */ }; static const u8 W83627EHF_PWM_MODE_SHIFT[] = { 0, 1, 0, 6 }; static const u8 W83627EHF_PWM_ENABLE_SHIFT[] = { 2, 4, 1, 4 }; /* FAN Duty Cycle, be used to control */ static const u16 W83627EHF_REG_PWM[] = { 0x01, 0x03, 0x11, 0x61 }; static const u16 W83627EHF_REG_TARGET[] = { 0x05, 0x06, 0x13, 0x63 }; static const u8 W83627EHF_REG_TOLERANCE[] = { 0x07, 0x07, 0x14, 0x62 }; /* Advanced Fan control, some values are common for all fans */ static const u16 W83627EHF_REG_FAN_START_OUTPUT[] = { 0x0a, 0x0b, 0x16, 0x65 }; static const u16 W83627EHF_REG_FAN_STOP_OUTPUT[] = { 0x08, 0x09, 0x15, 0x64 }; static const u16 W83627EHF_REG_FAN_STOP_TIME[] = { 0x0c, 0x0d, 0x17, 0x66 }; static const u16 W83627EHF_REG_FAN_MAX_OUTPUT_COMMON[] = { 0xff, 0x67, 0xff, 0x69 }; static const u16 W83627EHF_REG_FAN_STEP_OUTPUT_COMMON[] = { 0xff, 0x68, 0xff, 0x6a }; static const u16 W83627EHF_REG_FAN_MAX_OUTPUT_W83667_B[] = { 0x67, 0x69, 0x6b }; static const u16 W83627EHF_REG_FAN_STEP_OUTPUT_W83667_B[] = { 0x68, 0x6a, 0x6c }; static const u16 W83627EHF_REG_TEMP_OFFSET[] = { 0x454, 0x455, 0x456 }; static const char *const w83667hg_b_temp_label[] = { "SYSTIN", "CPUTIN", "AUXTIN", "AMDTSI", "PECI Agent 1", "PECI Agent 2", "PECI Agent 3", "PECI Agent 4" }; #define NUM_REG_TEMP ARRAY_SIZE(W83627EHF_REG_TEMP) static int is_word_sized(u16 reg) { return ((((reg & 0xff00) == 0x100 || (reg & 0xff00) == 0x200) && ((reg & 0x00ff) == 0x50 || (reg & 0x00ff) == 0x53 || (reg & 0x00ff) == 0x55)) || (reg & 0xfff0) == 0x630 || reg == 0x640 || reg == 0x642 || ((reg & 0xfff0) == 0x650 && (reg & 0x000f) >= 0x06) || reg == 0x73 || reg == 0x75 || reg == 0x77 ); } /* * Conversions */ /* 1 is PWM mode, output in ms */ static inline unsigned int step_time_from_reg(u8 reg, u8 mode) { return mode ? 100 * reg : 400 * reg; } static inline u8 step_time_to_reg(unsigned int msec, u8 mode) { return clamp_val((mode ? (msec + 50) / 100 : (msec + 200) / 400), 1, 255); } static unsigned int fan_from_reg8(u16 reg, unsigned int divreg) { if (reg == 0 || reg == 255) return 0; return 1350000U / (reg << divreg); } static inline unsigned int div_from_reg(u8 reg) { return 1 << reg; } /* * Some of the voltage inputs have internal scaling, the tables below * contain 8 (the ADC LSB in mV) * scaling factor * 100 */ static const u16 scale_in_common[10] = { 800, 800, 1600, 1600, 800, 800, 800, 1600, 1600, 800 }; static const u16 scale_in_w83627uhg[9] = { 800, 800, 3328, 3424, 800, 800, 0, 3328, 3400 }; static inline long in_from_reg(u8 reg, u8 nr, const u16 *scale_in) { return DIV_ROUND_CLOSEST(reg * scale_in[nr], 100); } static inline u8 in_to_reg(u32 val, u8 nr, const u16 *scale_in) { return clamp_val(DIV_ROUND_CLOSEST(val * 100, scale_in[nr]), 0, 255); } /* * Data structures and manipulation thereof */ struct w83627ehf_data { int addr; /* IO base of hw monitor block */ const char *name; struct mutex lock; u16 reg_temp[NUM_REG_TEMP]; u16 reg_temp_over[NUM_REG_TEMP]; u16 reg_temp_hyst[NUM_REG_TEMP]; u16 reg_temp_config[NUM_REG_TEMP]; u8 temp_src[NUM_REG_TEMP]; const char * const *temp_label; const u16 *REG_FAN_MAX_OUTPUT; const u16 *REG_FAN_STEP_OUTPUT; const u16 *scale_in; struct mutex update_lock; char valid; /* !=0 if following fields are valid */ unsigned long last_updated; /* In jiffies */ /* Register values */ u8 bank; /* current register bank */ u8 in_num; /* number of in inputs we have */ u8 in[10]; /* Register value */ u8 in_max[10]; /* Register value */ u8 in_min[10]; /* Register value */ unsigned int rpm[5]; u16 fan_min[5]; u8 fan_div[5]; u8 has_fan; /* some fan inputs can be disabled */ u8 has_fan_min; /* some fans don't have min register */ u8 temp_type[3]; s8 temp_offset[3]; s16 temp[9]; s16 temp_max[9]; s16 temp_max_hyst[9]; u32 alarms; u8 caseopen; u8 pwm_mode[4]; /* 0->DC variable voltage, 1->PWM variable duty cycle */ u8 pwm_enable[4]; /* 1->manual * 2->thermal cruise mode (also called SmartFan I) * 3->fan speed cruise mode * 4->variable thermal cruise (also called * SmartFan III) * 5->enhanced variable thermal cruise (also called * SmartFan IV) */ u8 pwm_enable_orig[4]; /* original value of pwm_enable */ u8 pwm_num; /* number of pwm */ u8 pwm[4]; u8 target_temp[4]; u8 tolerance[4]; u8 fan_start_output[4]; /* minimum fan speed when spinning up */ u8 fan_stop_output[4]; /* minimum fan speed when spinning down */ u8 fan_stop_time[4]; /* time at minimum before disabling fan */ u8 fan_max_output[4]; /* maximum fan speed */ u8 fan_step_output[4]; /* rate of change output value */ u8 vid; u8 vrm; u16 have_temp; u16 have_temp_offset; u8 in6_skip:1; u8 temp3_val_only:1; u8 have_vid:1; #ifdef CONFIG_PM /* Remember extra register values over suspend/resume */ u8 vbat; u8 fandiv1; u8 fandiv2; #endif }; struct w83627ehf_sio_data { int sioreg; enum kinds kind; }; /* * On older chips, only registers 0x50-0x5f are banked. * On more recent chips, all registers are banked. * Assume that is the case and set the bank number for each access. * Cache the bank number so it only needs to be set if it changes. */ static inline void w83627ehf_set_bank(struct w83627ehf_data *data, u16 reg) { u8 bank = reg >> 8; if (data->bank != bank) { outb_p(W83627EHF_REG_BANK, data->addr + ADDR_REG_OFFSET); outb_p(bank, data->addr + DATA_REG_OFFSET); data->bank = bank; } } static u16 w83627ehf_read_value(struct w83627ehf_data *data, u16 reg) { int res, word_sized = is_word_sized(reg); mutex_lock(&data->lock); w83627ehf_set_bank(data, reg); outb_p(reg & 0xff, data->addr + ADDR_REG_OFFSET); res = inb_p(data->addr + DATA_REG_OFFSET); if (word_sized) { outb_p((reg & 0xff) + 1, data->addr + ADDR_REG_OFFSET); res = (res << 8) + inb_p(data->addr + DATA_REG_OFFSET); } mutex_unlock(&data->lock); return res; } static int w83627ehf_write_value(struct w83627ehf_data *data, u16 reg, u16 value) { int word_sized = is_word_sized(reg); mutex_lock(&data->lock); w83627ehf_set_bank(data, reg); outb_p(reg & 0xff, data->addr + ADDR_REG_OFFSET); if (word_sized) { outb_p(value >> 8, data->addr + DATA_REG_OFFSET); outb_p((reg & 0xff) + 1, data->addr + ADDR_REG_OFFSET); } outb_p(value & 0xff, data->addr + DATA_REG_OFFSET); mutex_unlock(&data->lock); return 0; } /* We left-align 8-bit temperature values to make the code simpler */ static u16 w83627ehf_read_temp(struct w83627ehf_data *data, u16 reg) { u16 res; res = w83627ehf_read_value(data, reg); if (!is_word_sized(reg)) res <<= 8; return res; } static int w83627ehf_write_temp(struct w83627ehf_data *data, u16 reg, u16 value) { if (!is_word_sized(reg)) value >>= 8; return w83627ehf_write_value(data, reg, value); } /* This function assumes that the caller holds data->update_lock */ static void w83627ehf_write_fan_div(struct w83627ehf_data *data, int nr) { u8 reg; switch (nr) { case 0: reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV1) & 0xcf) | ((data->fan_div[0] & 0x03) << 4); /* fan5 input control bit is write only, compute the value */ reg |= (data->has_fan & (1 << 4)) ? 1 : 0; w83627ehf_write_value(data, W83627EHF_REG_FANDIV1, reg); reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0xdf) | ((data->fan_div[0] & 0x04) << 3); w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg); break; case 1: reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV1) & 0x3f) | ((data->fan_div[1] & 0x03) << 6); /* fan5 input control bit is write only, compute the value */ reg |= (data->has_fan & (1 << 4)) ? 1 : 0; w83627ehf_write_value(data, W83627EHF_REG_FANDIV1, reg); reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0xbf) | ((data->fan_div[1] & 0x04) << 4); w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg); break; case 2: reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV2) & 0x3f) | ((data->fan_div[2] & 0x03) << 6); w83627ehf_write_value(data, W83627EHF_REG_FANDIV2, reg); reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0x7f) | ((data->fan_div[2] & 0x04) << 5); w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg); break; case 3: reg = (w83627ehf_read_value(data, W83627EHF_REG_DIODE) & 0xfc) | (data->fan_div[3] & 0x03); w83627ehf_write_value(data, W83627EHF_REG_DIODE, reg); reg = (w83627ehf_read_value(data, W83627EHF_REG_SMI_OVT) & 0x7f) | ((data->fan_div[3] & 0x04) << 5); w83627ehf_write_value(data, W83627EHF_REG_SMI_OVT, reg); break; case 4: reg = (w83627ehf_read_value(data, W83627EHF_REG_DIODE) & 0x73) | ((data->fan_div[4] & 0x03) << 2) | ((data->fan_div[4] & 0x04) << 5); w83627ehf_write_value(data, W83627EHF_REG_DIODE, reg); break; } } static void w83627ehf_update_fan_div(struct w83627ehf_data *data) { int i; i = w83627ehf_read_value(data, W83627EHF_REG_FANDIV1); data->fan_div[0] = (i >> 4) & 0x03; data->fan_div[1] = (i >> 6) & 0x03; i = w83627ehf_read_value(data, W83627EHF_REG_FANDIV2); data->fan_div[2] = (i >> 6) & 0x03; i = w83627ehf_read_value(data, W83627EHF_REG_VBAT); data->fan_div[0] |= (i >> 3) & 0x04; data->fan_div[1] |= (i >> 4) & 0x04; data->fan_div[2] |= (i >> 5) & 0x04; if (data->has_fan & ((1 << 3) | (1 << 4))) { i = w83627ehf_read_value(data, W83627EHF_REG_DIODE); data->fan_div[3] = i & 0x03; data->fan_div[4] = ((i >> 2) & 0x03) | ((i >> 5) & 0x04); } if (data->has_fan & (1 << 3)) { i = w83627ehf_read_value(data, W83627EHF_REG_SMI_OVT); data->fan_div[3] |= (i >> 5) & 0x04; } } static void w83627ehf_update_pwm(struct w83627ehf_data *data) { int i; int pwmcfg = 0, tolerance = 0; /* shut up the compiler */ for (i = 0; i < data->pwm_num; i++) { if (!(data->has_fan & (1 << i))) continue; /* pwmcfg, tolerance mapped for i=0, i=1 to same reg */ if (i != 1) { pwmcfg = w83627ehf_read_value(data, W83627EHF_REG_PWM_ENABLE[i]); tolerance = w83627ehf_read_value(data, W83627EHF_REG_TOLERANCE[i]); } data->pwm_mode[i] = ((pwmcfg >> W83627EHF_PWM_MODE_SHIFT[i]) & 1) ? 0 : 1; data->pwm_enable[i] = ((pwmcfg >> W83627EHF_PWM_ENABLE_SHIFT[i]) & 3) + 1; data->pwm[i] = w83627ehf_read_value(data, W83627EHF_REG_PWM[i]); data->tolerance[i] = (tolerance >> (i == 1 ? 4 : 0)) & 0x0f; } } static struct w83627ehf_data *w83627ehf_update_device(struct device *dev) { struct w83627ehf_data *data = dev_get_drvdata(dev); int i; mutex_lock(&data->update_lock); if (time_after(jiffies, data->last_updated + HZ + HZ/2) || !data->valid) { /* Fan clock dividers */ w83627ehf_update_fan_div(data); /* Measured voltages and limits */ for (i = 0; i < data->in_num; i++) { if ((i == 6) && data->in6_skip) continue; data->in[i] = w83627ehf_read_value(data, W83627EHF_REG_IN(i)); data->in_min[i] = w83627ehf_read_value(data, W83627EHF_REG_IN_MIN(i)); data->in_max[i] = w83627ehf_read_value(data, W83627EHF_REG_IN_MAX(i)); } /* Measured fan speeds and limits */ for (i = 0; i < 5; i++) { u16 reg; if (!(data->has_fan & (1 << i))) continue; reg = w83627ehf_read_value(data, W83627EHF_REG_FAN[i]); data->rpm[i] = fan_from_reg8(reg, data->fan_div[i]); if (data->has_fan_min & (1 << i)) data->fan_min[i] = w83627ehf_read_value(data, W83627EHF_REG_FAN_MIN[i]); /* * If we failed to measure the fan speed and clock * divider can be increased, let's try that for next * time */ if (reg >= 0xff && data->fan_div[i] < 0x07) { dev_dbg(dev, "Increasing fan%d clock divider from %u to %u\n", i + 1, div_from_reg(data->fan_div[i]), div_from_reg(data->fan_div[i] + 1)); data->fan_div[i]++; w83627ehf_write_fan_div(data, i); /* Preserve min limit if possible */ if ((data->has_fan_min & (1 << i)) && data->fan_min[i] >= 2 && data->fan_min[i] != 255) w83627ehf_write_value(data, W83627EHF_REG_FAN_MIN[i], (data->fan_min[i] /= 2)); } } w83627ehf_update_pwm(data); for (i = 0; i < data->pwm_num; i++) { if (!(data->has_fan & (1 << i))) continue; data->fan_start_output[i] = w83627ehf_read_value(data, W83627EHF_REG_FAN_START_OUTPUT[i]); data->fan_stop_output[i] = w83627ehf_read_value(data, W83627EHF_REG_FAN_STOP_OUTPUT[i]); data->fan_stop_time[i] = w83627ehf_read_value(data, W83627EHF_REG_FAN_STOP_TIME[i]); if (data->REG_FAN_MAX_OUTPUT && data->REG_FAN_MAX_OUTPUT[i] != 0xff) data->fan_max_output[i] = w83627ehf_read_value(data, data->REG_FAN_MAX_OUTPUT[i]); if (data->REG_FAN_STEP_OUTPUT && data->REG_FAN_STEP_OUTPUT[i] != 0xff) data->fan_step_output[i] = w83627ehf_read_value(data, data->REG_FAN_STEP_OUTPUT[i]); data->target_temp[i] = w83627ehf_read_value(data, W83627EHF_REG_TARGET[i]) & (data->pwm_mode[i] == 1 ? 0x7f : 0xff); } /* Measured temperatures and limits */ for (i = 0; i < NUM_REG_TEMP; i++) { if (!(data->have_temp & (1 << i))) continue; data->temp[i] = w83627ehf_read_temp(data, data->reg_temp[i]); if (data->reg_temp_over[i]) data->temp_max[i] = w83627ehf_read_temp(data, data->reg_temp_over[i]); if (data->reg_temp_hyst[i]) data->temp_max_hyst[i] = w83627ehf_read_temp(data, data->reg_temp_hyst[i]); if (i > 2) continue; if (data->have_temp_offset & (1 << i)) data->temp_offset[i] = w83627ehf_read_value(data, W83627EHF_REG_TEMP_OFFSET[i]); } data->alarms = w83627ehf_read_value(data, W83627EHF_REG_ALARM1) | (w83627ehf_read_value(data, W83627EHF_REG_ALARM2) << 8) | (w83627ehf_read_value(data, W83627EHF_REG_ALARM3) << 16); data->caseopen = w83627ehf_read_value(data, W83627EHF_REG_CASEOPEN_DET); data->last_updated = jiffies; data->valid = 1; } mutex_unlock(&data->update_lock); return data; } #define store_in_reg(REG, reg) \ static int \ store_in_##reg(struct device *dev, struct w83627ehf_data *data, int channel, \ long val) \ { \ if (val < 0) \ return -EINVAL; \ mutex_lock(&data->update_lock); \ data->in_##reg[channel] = in_to_reg(val, channel, data->scale_in); \ w83627ehf_write_value(data, W83627EHF_REG_IN_##REG(channel), \ data->in_##reg[channel]); \ mutex_unlock(&data->update_lock); \ return 0; \ } store_in_reg(MIN, min) store_in_reg(MAX, max) static int store_fan_min(struct device *dev, struct w83627ehf_data *data, int channel, long val) { unsigned int reg; u8 new_div; if (val < 0) return -EINVAL; mutex_lock(&data->update_lock); if (!val) { /* No min limit, alarm disabled */ data->fan_min[channel] = 255; new_div = data->fan_div[channel]; /* No change */ dev_info(dev, "fan%u low limit and alarm disabled\n", channel + 1); } else if ((reg = 1350000U / val) >= 128 * 255) { /* * Speed below this value cannot possibly be represented, * even with the highest divider (128) */ data->fan_min[channel] = 254; new_div = 7; /* 128 == (1 << 7) */ dev_warn(dev, "fan%u low limit %lu below minimum %u, set to minimum\n", channel + 1, val, fan_from_reg8(254, 7)); } else if (!reg) { /* * Speed above this value cannot possibly be represented, * even with the lowest divider (1) */ data->fan_min[channel] = 1; new_div = 0; /* 1 == (1 << 0) */ dev_warn(dev, "fan%u low limit %lu above maximum %u, set to maximum\n", channel + 1, val, fan_from_reg8(1, 0)); } else { /* * Automatically pick the best divider, i.e. the one such * that the min limit will correspond to a register value * in the 96..192 range */ new_div = 0; while (reg > 192 && new_div < 7) { reg >>= 1; new_div++; } data->fan_min[channel] = reg; } /* * Write both the fan clock divider (if it changed) and the new * fan min (unconditionally) */ if (new_div != data->fan_div[channel]) { dev_dbg(dev, "fan%u clock divider changed from %u to %u\n", channel + 1, div_from_reg(data->fan_div[channel]), div_from_reg(new_div)); data->fan_div[channel] = new_div; w83627ehf_write_fan_div(data, channel); /* Give the chip time to sample a new speed value */ data->last_updated = jiffies; } w83627ehf_write_value(data, W83627EHF_REG_FAN_MIN[channel], data->fan_min[channel]); mutex_unlock(&data->update_lock); return 0; } #define store_temp_reg(addr, reg) \ static int \ store_##reg(struct device *dev, struct w83627ehf_data *data, int channel, \ long val) \ { \ mutex_lock(&data->update_lock); \ data->reg[channel] = LM75_TEMP_TO_REG(val); \ w83627ehf_write_temp(data, data->addr[channel], data->reg[channel]); \ mutex_unlock(&data->update_lock); \ return 0; \ } store_temp_reg(reg_temp_over, temp_max); store_temp_reg(reg_temp_hyst, temp_max_hyst); static int store_temp_offset(struct device *dev, struct w83627ehf_data *data, int channel, long val) { val = clamp_val(DIV_ROUND_CLOSEST(val, 1000), -128, 127); mutex_lock(&data->update_lock); data->temp_offset[channel] = val; w83627ehf_write_value(data, W83627EHF_REG_TEMP_OFFSET[channel], val); mutex_unlock(&data->update_lock); return 0; } static int store_pwm_mode(struct device *dev, struct w83627ehf_data *data, int channel, long val) { u16 reg; if (val < 0 || val > 1) return -EINVAL; mutex_lock(&data->update_lock); reg = w83627ehf_read_value(data, W83627EHF_REG_PWM_ENABLE[channel]); data->pwm_mode[channel] = val; reg &= ~(1 << W83627EHF_PWM_MODE_SHIFT[channel]); if (!val) reg |= 1 << W83627EHF_PWM_MODE_SHIFT[channel]; w83627ehf_write_value(data, W83627EHF_REG_PWM_ENABLE[channel], reg); mutex_unlock(&data->update_lock); return 0; } static int store_pwm(struct device *dev, struct w83627ehf_data *data, int channel, long val) { val = clamp_val(val, 0, 255); mutex_lock(&data->update_lock); data->pwm[channel] = val; w83627ehf_write_value(data, W83627EHF_REG_PWM[channel], val); mutex_unlock(&data->update_lock); return 0; } static int store_pwm_enable(struct device *dev, struct w83627ehf_data *data, int channel, long val) { u16 reg; if (!val || val < 0 || (val > 4 && val != data->pwm_enable_orig[channel])) return -EINVAL; mutex_lock(&data->update_lock); data->pwm_enable[channel] = val; reg = w83627ehf_read_value(data, W83627EHF_REG_PWM_ENABLE[channel]); reg &= ~(0x03 << W83627EHF_PWM_ENABLE_SHIFT[channel]); reg |= (val - 1) << W83627EHF_PWM_ENABLE_SHIFT[channel]; w83627ehf_write_value(data, W83627EHF_REG_PWM_ENABLE[channel], reg); mutex_unlock(&data->update_lock); return 0; } #define show_tol_temp(reg) \ static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \ char *buf) \ { \ struct w83627ehf_data *data = w83627ehf_update_device(dev->parent); \ struct sensor_device_attribute *sensor_attr = \ to_sensor_dev_attr(attr); \ int nr = sensor_attr->index; \ return sprintf(buf, "%d\n", data->reg[nr] * 1000); \ } show_tol_temp(tolerance) show_tol_temp(target_temp) static ssize_t store_target_temp(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct w83627ehf_data *data = dev_get_drvdata(dev); struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; long val; int err; err = kstrtol(buf, 10, &val); if (err < 0) return err; val = clamp_val(DIV_ROUND_CLOSEST(val, 1000), 0, 127); mutex_lock(&data->update_lock); data->target_temp[nr] = val; w83627ehf_write_value(data, W83627EHF_REG_TARGET[nr], val); mutex_unlock(&data->update_lock); return count; } static ssize_t store_tolerance(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct w83627ehf_data *data = dev_get_drvdata(dev); struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; u16 reg; long val; int err; err = kstrtol(buf, 10, &val); if (err < 0) return err; /* Limit the temp to 0C - 15C */ val = clamp_val(DIV_ROUND_CLOSEST(val, 1000), 0, 15); mutex_lock(&data->update_lock); reg = w83627ehf_read_value(data, W83627EHF_REG_TOLERANCE[nr]); if (nr == 1) reg = (reg & 0x0f) | (val << 4); else reg = (reg & 0xf0) | val; w83627ehf_write_value(data, W83627EHF_REG_TOLERANCE[nr], reg); data->tolerance[nr] = val; mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR(pwm1_target, 0644, show_target_temp, store_target_temp, 0); static SENSOR_DEVICE_ATTR(pwm2_target, 0644, show_target_temp, store_target_temp, 1); static SENSOR_DEVICE_ATTR(pwm3_target, 0644, show_target_temp, store_target_temp, 2); static SENSOR_DEVICE_ATTR(pwm4_target, 0644, show_target_temp, store_target_temp, 3); static SENSOR_DEVICE_ATTR(pwm1_tolerance, 0644, show_tolerance, store_tolerance, 0); static SENSOR_DEVICE_ATTR(pwm2_tolerance, 0644, show_tolerance, store_tolerance, 1); static SENSOR_DEVICE_ATTR(pwm3_tolerance, 0644, show_tolerance, store_tolerance, 2); static SENSOR_DEVICE_ATTR(pwm4_tolerance, 0644, show_tolerance, store_tolerance, 3); /* Smart Fan registers */ #define fan_functions(reg, REG) \ static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \ char *buf) \ { \ struct w83627ehf_data *data = w83627ehf_update_device(dev->parent); \ struct sensor_device_attribute *sensor_attr = \ to_sensor_dev_attr(attr); \ int nr = sensor_attr->index; \ return sprintf(buf, "%d\n", data->reg[nr]); \ } \ static ssize_t \ store_##reg(struct device *dev, struct device_attribute *attr, \ const char *buf, size_t count) \ { \ struct w83627ehf_data *data = dev_get_drvdata(dev); \ struct sensor_device_attribute *sensor_attr = \ to_sensor_dev_attr(attr); \ int nr = sensor_attr->index; \ unsigned long val; \ int err; \ err = kstrtoul(buf, 10, &val); \ if (err < 0) \ return err; \ val = clamp_val(val, 1, 255); \ mutex_lock(&data->update_lock); \ data->reg[nr] = val; \ w83627ehf_write_value(data, REG[nr], val); \ mutex_unlock(&data->update_lock); \ return count; \ } fan_functions(fan_start_output, W83627EHF_REG_FAN_START_OUTPUT) fan_functions(fan_stop_output, W83627EHF_REG_FAN_STOP_OUTPUT) fan_functions(fan_max_output, data->REG_FAN_MAX_OUTPUT) fan_functions(fan_step_output, data->REG_FAN_STEP_OUTPUT) #define fan_time_functions(reg, REG) \ static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \ char *buf) \ { \ struct w83627ehf_data *data = w83627ehf_update_device(dev->parent); \ struct sensor_device_attribute *sensor_attr = \ to_sensor_dev_attr(attr); \ int nr = sensor_attr->index; \ return sprintf(buf, "%d\n", \ step_time_from_reg(data->reg[nr], \ data->pwm_mode[nr])); \ } \ \ static ssize_t \ store_##reg(struct device *dev, struct device_attribute *attr, \ const char *buf, size_t count) \ { \ struct w83627ehf_data *data = dev_get_drvdata(dev); \ struct sensor_device_attribute *sensor_attr = \ to_sensor_dev_attr(attr); \ int nr = sensor_attr->index; \ unsigned long val; \ int err; \ err = kstrtoul(buf, 10, &val); \ if (err < 0) \ return err; \ val = step_time_to_reg(val, data->pwm_mode[nr]); \ mutex_lock(&data->update_lock); \ data->reg[nr] = val; \ w83627ehf_write_value(data, REG[nr], val); \ mutex_unlock(&data->update_lock); \ return count; \ } \ fan_time_functions(fan_stop_time, W83627EHF_REG_FAN_STOP_TIME) static SENSOR_DEVICE_ATTR(pwm4_stop_time, 0644, show_fan_stop_time, store_fan_stop_time, 3); static SENSOR_DEVICE_ATTR(pwm4_start_output, 0644, show_fan_start_output, store_fan_start_output, 3); static SENSOR_DEVICE_ATTR(pwm4_stop_output, 0644, show_fan_stop_output, store_fan_stop_output, 3); static SENSOR_DEVICE_ATTR(pwm4_max_output, 0644, show_fan_max_output, store_fan_max_output, 3); static SENSOR_DEVICE_ATTR(pwm4_step_output, 0644, show_fan_step_output, store_fan_step_output, 3); static SENSOR_DEVICE_ATTR(pwm3_stop_time, 0644, show_fan_stop_time, store_fan_stop_time, 2); static SENSOR_DEVICE_ATTR(pwm3_start_output, 0644, show_fan_start_output, store_fan_start_output, 2); static SENSOR_DEVICE_ATTR(pwm3_stop_output, 0644, show_fan_stop_output, store_fan_stop_output, 2); static SENSOR_DEVICE_ATTR(pwm1_stop_time, 0644, show_fan_stop_time, store_fan_stop_time, 0); static SENSOR_DEVICE_ATTR(pwm2_stop_time, 0644, show_fan_stop_time, store_fan_stop_time, 1); static SENSOR_DEVICE_ATTR(pwm1_start_output, 0644, show_fan_start_output, store_fan_start_output, 0); static SENSOR_DEVICE_ATTR(pwm2_start_output, 0644, show_fan_start_output, store_fan_start_output, 1); static SENSOR_DEVICE_ATTR(pwm1_stop_output, 0644, show_fan_stop_output, store_fan_stop_output, 0); static SENSOR_DEVICE_ATTR(pwm2_stop_output, 0644, show_fan_stop_output, store_fan_stop_output, 1); /* * pwm1 and pwm3 don't support max and step settings on all chips. * Need to check support while generating/removing attribute files. */ static SENSOR_DEVICE_ATTR(pwm1_max_output, 0644, show_fan_max_output, store_fan_max_output, 0); static SENSOR_DEVICE_ATTR(pwm1_step_output, 0644, show_fan_step_output, store_fan_step_output, 0); static SENSOR_DEVICE_ATTR(pwm2_max_output, 0644, show_fan_max_output, store_fan_max_output, 1); static SENSOR_DEVICE_ATTR(pwm2_step_output, 0644, show_fan_step_output, store_fan_step_output, 1); static SENSOR_DEVICE_ATTR(pwm3_max_output, 0644, show_fan_max_output, store_fan_max_output, 2); static SENSOR_DEVICE_ATTR(pwm3_step_output, 0644, show_fan_step_output, store_fan_step_output, 2); static ssize_t cpu0_vid_show(struct device *dev, struct device_attribute *attr, char *buf) { struct w83627ehf_data *data = dev_get_drvdata(dev); return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm)); } DEVICE_ATTR_RO(cpu0_vid); /* Case open detection */ static int clear_caseopen(struct device *dev, struct w83627ehf_data *data, int channel, long val) { const u16 mask = 0x80; u16 reg; if (val != 0 || channel != 0) return -EINVAL; mutex_lock(&data->update_lock); reg = w83627ehf_read_value(data, W83627EHF_REG_CASEOPEN_CLR); w83627ehf_write_value(data, W83627EHF_REG_CASEOPEN_CLR, reg | mask); w83627ehf_write_value(data, W83627EHF_REG_CASEOPEN_CLR, reg & ~mask); data->valid = 0; /* Force cache refresh */ mutex_unlock(&data->update_lock); return 0; } static umode_t w83627ehf_attrs_visible(struct kobject *kobj, struct attribute *a, int n) { struct device *dev = container_of(kobj, struct device, kobj); struct w83627ehf_data *data = dev_get_drvdata(dev); struct device_attribute *devattr; struct sensor_device_attribute *sda; devattr = container_of(a, struct device_attribute, attr); /* Not sensor */ if (devattr->show == cpu0_vid_show && data->have_vid) return a->mode; sda = (struct sensor_device_attribute *)devattr; if (sda->index < 2 && (devattr->show == show_fan_stop_time || devattr->show == show_fan_start_output || devattr->show == show_fan_stop_output)) return a->mode; if (sda->index < 3 && (devattr->show == show_fan_max_output || devattr->show == show_fan_step_output) && data->REG_FAN_STEP_OUTPUT && data->REG_FAN_STEP_OUTPUT[sda->index] != 0xff) return a->mode; /* if fan3 and fan4 are enabled create the files for them */ if (sda->index == 2 && (data->has_fan & (1 << 2)) && data->pwm_num >= 3 && (devattr->show == show_fan_stop_time || devattr->show == show_fan_start_output || devattr->show == show_fan_stop_output)) return a->mode; if (sda->index == 3 && (data->has_fan & (1 << 3)) && data->pwm_num >= 4 && (devattr->show == show_fan_stop_time || devattr->show == show_fan_start_output || devattr->show == show_fan_stop_output || devattr->show == show_fan_max_output || devattr->show == show_fan_step_output)) return a->mode; if ((devattr->show == show_target_temp || devattr->show == show_tolerance) && (data->has_fan & (1 << sda->index)) && sda->index < data->pwm_num) return a->mode; return 0; } /* These groups handle non-standard attributes used in this device */ static struct attribute *w83627ehf_attrs[] = { &sensor_dev_attr_pwm1_stop_time.dev_attr.attr, &sensor_dev_attr_pwm1_start_output.dev_attr.attr, &sensor_dev_attr_pwm1_stop_output.dev_attr.attr, &sensor_dev_attr_pwm1_max_output.dev_attr.attr, &sensor_dev_attr_pwm1_step_output.dev_attr.attr, &sensor_dev_attr_pwm1_target.dev_attr.attr, &sensor_dev_attr_pwm1_tolerance.dev_attr.attr, &sensor_dev_attr_pwm2_stop_time.dev_attr.attr, &sensor_dev_attr_pwm2_start_output.dev_attr.attr, &sensor_dev_attr_pwm2_stop_output.dev_attr.attr, &sensor_dev_attr_pwm2_max_output.dev_attr.attr, &sensor_dev_attr_pwm2_step_output.dev_attr.attr, &sensor_dev_attr_pwm2_target.dev_attr.attr, &sensor_dev_attr_pwm2_tolerance.dev_attr.attr, &sensor_dev_attr_pwm3_stop_time.dev_attr.attr, &sensor_dev_attr_pwm3_start_output.dev_attr.attr, &sensor_dev_attr_pwm3_stop_output.dev_attr.attr, &sensor_dev_attr_pwm3_max_output.dev_attr.attr, &sensor_dev_attr_pwm3_step_output.dev_attr.attr, &sensor_dev_attr_pwm3_target.dev_attr.attr, &sensor_dev_attr_pwm3_tolerance.dev_attr.attr, &sensor_dev_attr_pwm4_stop_time.dev_attr.attr, &sensor_dev_attr_pwm4_start_output.dev_attr.attr, &sensor_dev_attr_pwm4_stop_output.dev_attr.attr, &sensor_dev_attr_pwm4_max_output.dev_attr.attr, &sensor_dev_attr_pwm4_step_output.dev_attr.attr, &sensor_dev_attr_pwm4_target.dev_attr.attr, &sensor_dev_attr_pwm4_tolerance.dev_attr.attr, &dev_attr_cpu0_vid.attr, NULL }; static const struct attribute_group w83627ehf_group = { .attrs = w83627ehf_attrs, .is_visible = w83627ehf_attrs_visible, }; static const struct attribute_group *w83627ehf_groups[] = { &w83627ehf_group, NULL }; /* * Driver and device management */ /* Get the monitoring functions started */ static inline void w83627ehf_init_device(struct w83627ehf_data *data, enum kinds kind) { int i; u8 tmp, diode; /* Start monitoring is needed */ tmp = w83627ehf_read_value(data, W83627EHF_REG_CONFIG); if (!(tmp & 0x01)) w83627ehf_write_value(data, W83627EHF_REG_CONFIG, tmp | 0x01); /* Enable temperature sensors if needed */ for (i = 0; i < NUM_REG_TEMP; i++) { if (!(data->have_temp & (1 << i))) continue; if (!data->reg_temp_config[i]) continue; tmp = w83627ehf_read_value(data, data->reg_temp_config[i]); if (tmp & 0x01) w83627ehf_write_value(data, data->reg_temp_config[i], tmp & 0xfe); } /* Enable VBAT monitoring if needed */ tmp = w83627ehf_read_value(data, W83627EHF_REG_VBAT); if (!(tmp & 0x01)) w83627ehf_write_value(data, W83627EHF_REG_VBAT, tmp | 0x01); /* Get thermal sensor types */ switch (kind) { case w83627ehf: diode = w83627ehf_read_value(data, W83627EHF_REG_DIODE); break; case w83627uhg: diode = 0x00; break; default: diode = 0x70; } for (i = 0; i < 3; i++) { const char *label = NULL; if (data->temp_label) label = data->temp_label[data->temp_src[i]]; /* Digital source overrides analog type */ if (label && strncmp(label, "PECI", 4) == 0) data->temp_type[i] = 6; else if (label && strncmp(label, "AMD", 3) == 0) data->temp_type[i] = 5; else if ((tmp & (0x02 << i))) data->temp_type[i] = (diode & (0x10 << i)) ? 1 : 3; else data->temp_type[i] = 4; /* thermistor */ } } static void w83627ehf_set_temp_reg_ehf(struct w83627ehf_data *data, int n_temp) { int i; for (i = 0; i < n_temp; i++) { data->reg_temp[i] = W83627EHF_REG_TEMP[i]; data->reg_temp_over[i] = W83627EHF_REG_TEMP_OVER[i]; data->reg_temp_hyst[i] = W83627EHF_REG_TEMP_HYST[i]; data->reg_temp_config[i] = W83627EHF_REG_TEMP_CONFIG[i]; } } static void w83627ehf_check_fan_inputs(const struct w83627ehf_sio_data *sio_data, struct w83627ehf_data *data) { int fan3pin, fan4pin, fan5pin, regval; /* The W83627UHG is simple, only two fan inputs, no config */ if (sio_data->kind == w83627uhg) { data->has_fan = 0x03; /* fan1 and fan2 */ data->has_fan_min = 0x03; return; } /* fan4 and fan5 share some pins with the GPIO and serial flash */ if (sio_data->kind == w83667hg || sio_data->kind == w83667hg_b) { fan3pin = 1; fan4pin = superio_inb(sio_data->sioreg, 0x27) & 0x40; fan5pin = superio_inb(sio_data->sioreg, 0x27) & 0x20; } else { fan3pin = 1; fan4pin = !(superio_inb(sio_data->sioreg, 0x29) & 0x06); fan5pin = !(superio_inb(sio_data->sioreg, 0x24) & 0x02); } data->has_fan = data->has_fan_min = 0x03; /* fan1 and fan2 */ data->has_fan |= (fan3pin << 2); data->has_fan_min |= (fan3pin << 2); /* * It looks like fan4 and fan5 pins can be alternatively used * as fan on/off switches, but fan5 control is write only :/ * We assume that if the serial interface is disabled, designers * connected fan5 as input unless they are emitting log 1, which * is not the default. */ regval = w83627ehf_read_value(data, W83627EHF_REG_FANDIV1); if ((regval & (1 << 2)) && fan4pin) { data->has_fan |= (1 << 3); data->has_fan_min |= (1 << 3); } if (!(regval & (1 << 1)) && fan5pin) { data->has_fan |= (1 << 4); data->has_fan_min |= (1 << 4); } } static umode_t w83627ehf_is_visible(const void *drvdata, enum hwmon_sensor_types type, u32 attr, int channel) { const struct w83627ehf_data *data = drvdata; switch (type) { case hwmon_temp: /* channel 0.., name 1.. */ if (!(data->have_temp & (1 << channel))) return 0; if (attr == hwmon_temp_input) return 0444; if (attr == hwmon_temp_label) { if (data->temp_label) return 0444; return 0; } if (channel == 2 && data->temp3_val_only) return 0; if (attr == hwmon_temp_max) { if (data->reg_temp_over[channel]) return 0644; else return 0; } if (attr == hwmon_temp_max_hyst) { if (data->reg_temp_hyst[channel]) return 0644; else return 0; } if (channel > 2) return 0; if (attr == hwmon_temp_alarm || attr == hwmon_temp_type) return 0444; if (attr == hwmon_temp_offset) { if (data->have_temp_offset & (1 << channel)) return 0644; else return 0; } break; case hwmon_fan: /* channel 0.., name 1.. */ if (!(data->has_fan & (1 << channel))) return 0; if (attr == hwmon_fan_input || attr == hwmon_fan_alarm) return 0444; if (attr == hwmon_fan_div) { return 0444; } if (attr == hwmon_fan_min) { if (data->has_fan_min & (1 << channel)) return 0644; else return 0; } break; case hwmon_in: /* channel 0.., name 0.. */ if (channel >= data->in_num) return 0; if (channel == 6 && data->in6_skip) return 0; if (attr == hwmon_in_alarm || attr == hwmon_in_input) return 0444; if (attr == hwmon_in_min || attr == hwmon_in_max) return 0644; break; case hwmon_pwm: /* channel 0.., name 1.. */ if (!(data->has_fan & (1 << channel)) || channel >= data->pwm_num) return 0; if (attr == hwmon_pwm_mode || attr == hwmon_pwm_enable || attr == hwmon_pwm_input) return 0644; break; case hwmon_intrusion: return 0644; default: /* Shouldn't happen */ return 0; } return 0; /* Shouldn't happen */ } static int w83627ehf_do_read_temp(struct w83627ehf_data *data, u32 attr, int channel, long *val) { switch (attr) { case hwmon_temp_input: *val = LM75_TEMP_FROM_REG(data->temp[channel]); return 0; case hwmon_temp_max: *val = LM75_TEMP_FROM_REG(data->temp_max[channel]); return 0; case hwmon_temp_max_hyst: *val = LM75_TEMP_FROM_REG(data->temp_max_hyst[channel]); return 0; case hwmon_temp_offset: *val = data->temp_offset[channel] * 1000; return 0; case hwmon_temp_type: *val = (int)data->temp_type[channel]; return 0; case hwmon_temp_alarm: if (channel < 3) { int bit[] = { 4, 5, 13 }; *val = (data->alarms >> bit[channel]) & 1; return 0; } break; default: break; } return -EOPNOTSUPP; } static int w83627ehf_do_read_in(struct w83627ehf_data *data, u32 attr, int channel, long *val) { switch (attr) { case hwmon_in_input: *val = in_from_reg(data->in[channel], channel, data->scale_in); return 0; case hwmon_in_min: *val = in_from_reg(data->in_min[channel], channel, data->scale_in); return 0; case hwmon_in_max: *val = in_from_reg(data->in_max[channel], channel, data->scale_in); return 0; case hwmon_in_alarm: if (channel < 10) { int bit[] = { 0, 1, 2, 3, 8, 21, 20, 16, 17, 19 }; *val = (data->alarms >> bit[channel]) & 1; return 0; } break; default: break; } return -EOPNOTSUPP; } static int w83627ehf_do_read_fan(struct w83627ehf_data *data, u32 attr, int channel, long *val) { switch (attr) { case hwmon_fan_input: *val = data->rpm[channel]; return 0; case hwmon_fan_min: *val = fan_from_reg8(data->fan_min[channel], data->fan_div[channel]); return 0; case hwmon_fan_div: *val = div_from_reg(data->fan_div[channel]); return 0; case hwmon_fan_alarm: if (channel < 5) { int bit[] = { 6, 7, 11, 10, 23 }; *val = (data->alarms >> bit[channel]) & 1; return 0; } break; default: break; } return -EOPNOTSUPP; } static int w83627ehf_do_read_pwm(struct w83627ehf_data *data, u32 attr, int channel, long *val) { switch (attr) { case hwmon_pwm_input: *val = data->pwm[channel]; return 0; case hwmon_pwm_enable: *val = data->pwm_enable[channel]; return 0; case hwmon_pwm_mode: *val = data->pwm_enable[channel]; return 0; default: break; } return -EOPNOTSUPP; } static int w83627ehf_do_read_intrusion(struct w83627ehf_data *data, u32 attr, int channel, long *val) { if (attr != hwmon_intrusion_alarm || channel != 0) return -EOPNOTSUPP; /* shouldn't happen */ *val = !!(data->caseopen & 0x10); return 0; } static int w83627ehf_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long *val) { struct w83627ehf_data *data = w83627ehf_update_device(dev->parent); switch (type) { case hwmon_fan: return w83627ehf_do_read_fan(data, attr, channel, val); case hwmon_in: return w83627ehf_do_read_in(data, attr, channel, val); case hwmon_pwm: return w83627ehf_do_read_pwm(data, attr, channel, val); case hwmon_temp: return w83627ehf_do_read_temp(data, attr, channel, val); case hwmon_intrusion: return w83627ehf_do_read_intrusion(data, attr, channel, val); default: break; } return -EOPNOTSUPP; } static int w83627ehf_read_string(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, const char **str) { struct w83627ehf_data *data = dev_get_drvdata(dev); switch (type) { case hwmon_temp: if (attr == hwmon_temp_label) { *str = data->temp_label[data->temp_src[channel]]; return 0; } break; default: break; } /* Nothing else should be read as a string */ return -EOPNOTSUPP; } static int w83627ehf_write(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long val) { struct w83627ehf_data *data = dev_get_drvdata(dev); if (type == hwmon_in && attr == hwmon_in_min) return store_in_min(dev, data, channel, val); if (type == hwmon_in && attr == hwmon_in_max) return store_in_max(dev, data, channel, val); if (type == hwmon_fan && attr == hwmon_fan_min) return store_fan_min(dev, data, channel, val); if (type == hwmon_temp && attr == hwmon_temp_max) return store_temp_max(dev, data, channel, val); if (type == hwmon_temp && attr == hwmon_temp_max_hyst) return store_temp_max_hyst(dev, data, channel, val); if (type == hwmon_temp && attr == hwmon_temp_offset) return store_temp_offset(dev, data, channel, val); if (type == hwmon_pwm && attr == hwmon_pwm_mode) return store_pwm_mode(dev, data, channel, val); if (type == hwmon_pwm && attr == hwmon_pwm_enable) return store_pwm_enable(dev, data, channel, val); if (type == hwmon_pwm && attr == hwmon_pwm_input) return store_pwm(dev, data, channel, val); if (type == hwmon_intrusion && attr == hwmon_intrusion_alarm) return clear_caseopen(dev, data, channel, val); return -EOPNOTSUPP; } static const struct hwmon_ops w83627ehf_ops = { .is_visible = w83627ehf_is_visible, .read = w83627ehf_read, .read_string = w83627ehf_read_string, .write = w83627ehf_write, }; static const struct hwmon_channel_info *w83627ehf_info[] = { HWMON_CHANNEL_INFO(fan, HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN, HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN, HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN, HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN, HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN), HWMON_CHANNEL_INFO(in, HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN, HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN, HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN, HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN, HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN, HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN, HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN, HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN, HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN, HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN), HWMON_CHANNEL_INFO(pwm, HWMON_PWM_ENABLE | HWMON_PWM_INPUT | HWMON_PWM_MODE, HWMON_PWM_ENABLE | HWMON_PWM_INPUT | HWMON_PWM_MODE, HWMON_PWM_ENABLE | HWMON_PWM_INPUT | HWMON_PWM_MODE, HWMON_PWM_ENABLE | HWMON_PWM_INPUT | HWMON_PWM_MODE), HWMON_CHANNEL_INFO(temp, HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX | HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE, HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX | HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE, HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX | HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE, HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX | HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE, HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX | HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE, HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX | HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE, HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX | HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE, HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX | HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE, HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX | HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE), HWMON_CHANNEL_INFO(intrusion, HWMON_INTRUSION_ALARM), NULL }; static const struct hwmon_chip_info w83627ehf_chip_info = { .ops = &w83627ehf_ops, .info = w83627ehf_info, }; static int w83627ehf_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct w83627ehf_sio_data *sio_data = dev_get_platdata(dev); struct w83627ehf_data *data; struct resource *res; u8 en_vrm10; int i, err = 0; struct device *hwmon_dev; res = platform_get_resource(pdev, IORESOURCE_IO, 0); if (!request_region(res->start, IOREGION_LENGTH, DRVNAME)) { err = -EBUSY; dev_err(dev, "Failed to request region 0x%lx-0x%lx\n", (unsigned long)res->start, (unsigned long)res->start + IOREGION_LENGTH - 1); goto exit; } data = devm_kzalloc(&pdev->dev, sizeof(struct w83627ehf_data), GFP_KERNEL); if (!data) { err = -ENOMEM; goto exit_release; } data->addr = res->start; mutex_init(&data->lock); mutex_init(&data->update_lock); data->name = w83627ehf_device_names[sio_data->kind]; data->bank = 0xff; /* Force initial bank selection */ platform_set_drvdata(pdev, data); /* 627EHG and 627EHF have 10 voltage inputs; 627DHG and 667HG have 9 */ data->in_num = (sio_data->kind == w83627ehf) ? 10 : 9; /* 667HG has 3 pwms, and 627UHG has only 2 */ switch (sio_data->kind) { default: data->pwm_num = 4; break; case w83667hg: case w83667hg_b: data->pwm_num = 3; break; case w83627uhg: data->pwm_num = 2; break; } /* Default to 3 temperature inputs, code below will adjust as needed */ data->have_temp = 0x07; /* Deal with temperature register setup first. */ if (sio_data->kind == w83667hg_b) { u8 reg; w83627ehf_set_temp_reg_ehf(data, 4); /* * Temperature sources are selected with bank 0, registers 0x49 * and 0x4a. */ reg = w83627ehf_read_value(data, 0x4a); data->temp_src[0] = reg >> 5; reg = w83627ehf_read_value(data, 0x49); data->temp_src[1] = reg & 0x07; data->temp_src[2] = (reg >> 4) & 0x07; /* * W83667HG-B has another temperature register at 0x7e. * The temperature source is selected with register 0x7d. * Support it if the source differs from already reported * sources. */ reg = w83627ehf_read_value(data, 0x7d); reg &= 0x07; if (reg != data->temp_src[0] && reg != data->temp_src[1] && reg != data->temp_src[2]) { data->temp_src[3] = reg; data->have_temp |= 1 << 3; } /* * Chip supports either AUXTIN or VIN3. Try to find out which * one. */ reg = w83627ehf_read_value(data, W83627EHF_REG_TEMP_CONFIG[2]); if (data->temp_src[2] == 2 && (reg & 0x01)) data->have_temp &= ~(1 << 2); if ((data->temp_src[2] == 2 && (data->have_temp & (1 << 2))) || (data->temp_src[3] == 2 && (data->have_temp & (1 << 3)))) data->in6_skip = 1; data->temp_label = w83667hg_b_temp_label; data->have_temp_offset = data->have_temp & 0x07; for (i = 0; i < 3; i++) { if (data->temp_src[i] > 2) data->have_temp_offset &= ~(1 << i); } } else if (sio_data->kind == w83627uhg) { u8 reg; w83627ehf_set_temp_reg_ehf(data, 3); /* * Temperature sources for temp2 and temp3 are selected with * bank 0, registers 0x49 and 0x4a. */ data->temp_src[0] = 0; /* SYSTIN */ reg = w83627ehf_read_value(data, 0x49) & 0x07; /* Adjust to have the same mapping as other source registers */ if (reg == 0) data->temp_src[1] = 1; else if (reg >= 2 && reg <= 5) data->temp_src[1] = reg + 2; else /* should never happen */ data->have_temp &= ~(1 << 1); reg = w83627ehf_read_value(data, 0x4a); data->temp_src[2] = reg >> 5; /* * Skip temp3 if source is invalid or the same as temp1 * or temp2. */ if (data->temp_src[2] == 2 || data->temp_src[2] == 3 || data->temp_src[2] == data->temp_src[0] || ((data->have_temp & (1 << 1)) && data->temp_src[2] == data->temp_src[1])) data->have_temp &= ~(1 << 2); else data->temp3_val_only = 1; /* No limit regs */ data->in6_skip = 1; /* No VIN3 */ data->temp_label = w83667hg_b_temp_label; data->have_temp_offset = data->have_temp & 0x03; for (i = 0; i < 3; i++) { if (data->temp_src[i] > 1) data->have_temp_offset &= ~(1 << i); } } else { w83627ehf_set_temp_reg_ehf(data, 3); /* Temperature sources are fixed */ if (sio_data->kind == w83667hg) { u8 reg; /* * Chip supports either AUXTIN or VIN3. Try to find * out which one. */ reg = w83627ehf_read_value(data, W83627EHF_REG_TEMP_CONFIG[2]); if (reg & 0x01) data->have_temp &= ~(1 << 2); else data->in6_skip = 1; } data->have_temp_offset = data->have_temp & 0x07; } if (sio_data->kind == w83667hg_b) { data->REG_FAN_MAX_OUTPUT = W83627EHF_REG_FAN_MAX_OUTPUT_W83667_B; data->REG_FAN_STEP_OUTPUT = W83627EHF_REG_FAN_STEP_OUTPUT_W83667_B; } else { data->REG_FAN_MAX_OUTPUT = W83627EHF_REG_FAN_MAX_OUTPUT_COMMON; data->REG_FAN_STEP_OUTPUT = W83627EHF_REG_FAN_STEP_OUTPUT_COMMON; } /* Setup input voltage scaling factors */ if (sio_data->kind == w83627uhg) data->scale_in = scale_in_w83627uhg; else data->scale_in = scale_in_common; /* Initialize the chip */ w83627ehf_init_device(data, sio_data->kind); data->vrm = vid_which_vrm(); err = superio_enter(sio_data->sioreg); if (err) goto exit_release; /* Read VID value */ if (sio_data->kind == w83667hg || sio_data->kind == w83667hg_b) { /* * W83667HG has different pins for VID input and output, so * we can get the VID input values directly at logical device D * 0xe3. */ superio_select(sio_data->sioreg, W83667HG_LD_VID); data->vid = superio_inb(sio_data->sioreg, 0xe3); data->have_vid = true; } else if (sio_data->kind != w83627uhg) { superio_select(sio_data->sioreg, W83627EHF_LD_HWM); if (superio_inb(sio_data->sioreg, SIO_REG_VID_CTRL) & 0x80) { /* * Set VID input sensibility if needed. In theory the * BIOS should have set it, but in practice it's not * always the case. We only do it for the W83627EHF/EHG * because the W83627DHG is more complex in this * respect. */ if (sio_data->kind == w83627ehf) { en_vrm10 = superio_inb(sio_data->sioreg, SIO_REG_EN_VRM10); if ((en_vrm10 & 0x08) && data->vrm == 90) { dev_warn(dev, "Setting VID input voltage to TTL\n"); superio_outb(sio_data->sioreg, SIO_REG_EN_VRM10, en_vrm10 & ~0x08); } else if (!(en_vrm10 & 0x08) && data->vrm == 100) { dev_warn(dev, "Setting VID input voltage to VRM10\n"); superio_outb(sio_data->sioreg, SIO_REG_EN_VRM10, en_vrm10 | 0x08); } } data->vid = superio_inb(sio_data->sioreg, SIO_REG_VID_DATA); if (sio_data->kind == w83627ehf) /* 6 VID pins only */ data->vid &= 0x3f; data->have_vid = true; } else { dev_info(dev, "VID pins in output mode, CPU VID not available\n"); } } w83627ehf_check_fan_inputs(sio_data, data); superio_exit(sio_data->sioreg); /* Read fan clock dividers immediately */ w83627ehf_update_fan_div(data); /* Read pwm data to save original values */ w83627ehf_update_pwm(data); for (i = 0; i < data->pwm_num; i++) data->pwm_enable_orig[i] = data->pwm_enable[i]; hwmon_dev = devm_hwmon_device_register_with_info(&pdev->dev, data->name, data, &w83627ehf_chip_info, w83627ehf_groups); return PTR_ERR_OR_ZERO(hwmon_dev); exit_release: release_region(res->start, IOREGION_LENGTH); exit: return err; } static int w83627ehf_remove(struct platform_device *pdev) { struct w83627ehf_data *data = platform_get_drvdata(pdev); release_region(data->addr, IOREGION_LENGTH); return 0; } #ifdef CONFIG_PM static int w83627ehf_suspend(struct device *dev) { struct w83627ehf_data *data = w83627ehf_update_device(dev); mutex_lock(&data->update_lock); data->vbat = w83627ehf_read_value(data, W83627EHF_REG_VBAT); mutex_unlock(&data->update_lock); return 0; } static int w83627ehf_resume(struct device *dev) { struct w83627ehf_data *data = dev_get_drvdata(dev); int i; mutex_lock(&data->update_lock); data->bank = 0xff; /* Force initial bank selection */ /* Restore limits */ for (i = 0; i < data->in_num; i++) { if ((i == 6) && data->in6_skip) continue; w83627ehf_write_value(data, W83627EHF_REG_IN_MIN(i), data->in_min[i]); w83627ehf_write_value(data, W83627EHF_REG_IN_MAX(i), data->in_max[i]); } for (i = 0; i < 5; i++) { if (!(data->has_fan_min & (1 << i))) continue; w83627ehf_write_value(data, W83627EHF_REG_FAN_MIN[i], data->fan_min[i]); } for (i = 0; i < NUM_REG_TEMP; i++) { if (!(data->have_temp & (1 << i))) continue; if (data->reg_temp_over[i]) w83627ehf_write_temp(data, data->reg_temp_over[i], data->temp_max[i]); if (data->reg_temp_hyst[i]) w83627ehf_write_temp(data, data->reg_temp_hyst[i], data->temp_max_hyst[i]); if (i > 2) continue; if (data->have_temp_offset & (1 << i)) w83627ehf_write_value(data, W83627EHF_REG_TEMP_OFFSET[i], data->temp_offset[i]); } /* Restore other settings */ w83627ehf_write_value(data, W83627EHF_REG_VBAT, data->vbat); /* Force re-reading all values */ data->valid = 0; mutex_unlock(&data->update_lock); return 0; } static const struct dev_pm_ops w83627ehf_dev_pm_ops = { .suspend = w83627ehf_suspend, .resume = w83627ehf_resume, .freeze = w83627ehf_suspend, .restore = w83627ehf_resume, }; #define W83627EHF_DEV_PM_OPS (&w83627ehf_dev_pm_ops) #else #define W83627EHF_DEV_PM_OPS NULL #endif /* CONFIG_PM */ static struct platform_driver w83627ehf_driver = { .driver = { .name = DRVNAME, .pm = W83627EHF_DEV_PM_OPS, }, .probe = w83627ehf_probe, .remove = w83627ehf_remove, }; /* w83627ehf_find() looks for a '627 in the Super-I/O config space */ static int __init w83627ehf_find(int sioaddr, unsigned short *addr, struct w83627ehf_sio_data *sio_data) { static const char sio_name_W83627EHF[] __initconst = "W83627EHF"; static const char sio_name_W83627EHG[] __initconst = "W83627EHG"; static const char sio_name_W83627DHG[] __initconst = "W83627DHG"; static const char sio_name_W83627DHG_P[] __initconst = "W83627DHG-P"; static const char sio_name_W83627UHG[] __initconst = "W83627UHG"; static const char sio_name_W83667HG[] __initconst = "W83667HG"; static const char sio_name_W83667HG_B[] __initconst = "W83667HG-B"; u16 val; const char *sio_name; int err; err = superio_enter(sioaddr); if (err) return err; if (force_id) val = force_id; else val = (superio_inb(sioaddr, SIO_REG_DEVID) << 8) | superio_inb(sioaddr, SIO_REG_DEVID + 1); switch (val & SIO_ID_MASK) { case SIO_W83627EHF_ID: sio_data->kind = w83627ehf; sio_name = sio_name_W83627EHF; break; case SIO_W83627EHG_ID: sio_data->kind = w83627ehf; sio_name = sio_name_W83627EHG; break; case SIO_W83627DHG_ID: sio_data->kind = w83627dhg; sio_name = sio_name_W83627DHG; break; case SIO_W83627DHG_P_ID: sio_data->kind = w83627dhg_p; sio_name = sio_name_W83627DHG_P; break; case SIO_W83627UHG_ID: sio_data->kind = w83627uhg; sio_name = sio_name_W83627UHG; break; case SIO_W83667HG_ID: sio_data->kind = w83667hg; sio_name = sio_name_W83667HG; break; case SIO_W83667HG_B_ID: sio_data->kind = w83667hg_b; sio_name = sio_name_W83667HG_B; break; default: if (val != 0xffff) pr_debug("unsupported chip ID: 0x%04x\n", val); superio_exit(sioaddr); return -ENODEV; } /* We have a known chip, find the HWM I/O address */ superio_select(sioaddr, W83627EHF_LD_HWM); val = (superio_inb(sioaddr, SIO_REG_ADDR) << 8) | superio_inb(sioaddr, SIO_REG_ADDR + 1); *addr = val & IOREGION_ALIGNMENT; if (*addr == 0) { pr_err("Refusing to enable a Super-I/O device with a base I/O port 0\n"); superio_exit(sioaddr); return -ENODEV; } /* Activate logical device if needed */ val = superio_inb(sioaddr, SIO_REG_ENABLE); if (!(val & 0x01)) { pr_warn("Forcibly enabling Super-I/O. Sensor is probably unusable.\n"); superio_outb(sioaddr, SIO_REG_ENABLE, val | 0x01); } superio_exit(sioaddr); pr_info("Found %s chip at %#x\n", sio_name, *addr); sio_data->sioreg = sioaddr; return 0; } /* * when Super-I/O functions move to a separate file, the Super-I/O * bus will manage the lifetime of the device and this module will only keep * track of the w83627ehf driver. But since we platform_device_alloc(), we * must keep track of the device */ static struct platform_device *pdev; static int __init sensors_w83627ehf_init(void) { int err; unsigned short address; struct resource res; struct w83627ehf_sio_data sio_data; /* * initialize sio_data->kind and sio_data->sioreg. * * when Super-I/O functions move to a separate file, the Super-I/O * driver will probe 0x2e and 0x4e and auto-detect the presence of a * w83627ehf hardware monitor, and call probe() */ if (w83627ehf_find(0x2e, &address, &sio_data) && w83627ehf_find(0x4e, &address, &sio_data)) return -ENODEV; err = platform_driver_register(&w83627ehf_driver); if (err) goto exit; pdev = platform_device_alloc(DRVNAME, address); if (!pdev) { err = -ENOMEM; pr_err("Device allocation failed\n"); goto exit_unregister; } err = platform_device_add_data(pdev, &sio_data, sizeof(struct w83627ehf_sio_data)); if (err) { pr_err("Platform data allocation failed\n"); goto exit_device_put; } memset(&res, 0, sizeof(res)); res.name = DRVNAME; res.start = address + IOREGION_OFFSET; res.end = address + IOREGION_OFFSET + IOREGION_LENGTH - 1; res.flags = IORESOURCE_IO; err = acpi_check_resource_conflict(&res); if (err) goto exit_device_put; err = platform_device_add_resources(pdev, &res, 1); if (err) { pr_err("Device resource addition failed (%d)\n", err); goto exit_device_put; } /* platform_device_add calls probe() */ err = platform_device_add(pdev); if (err) { pr_err("Device addition failed (%d)\n", err); goto exit_device_put; } return 0; exit_device_put: platform_device_put(pdev); exit_unregister: platform_driver_unregister(&w83627ehf_driver); exit: return err; } static void __exit sensors_w83627ehf_exit(void) { platform_device_unregister(pdev); platform_driver_unregister(&w83627ehf_driver); } MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>"); MODULE_DESCRIPTION("W83627EHF driver"); MODULE_LICENSE("GPL"); module_init(sensors_w83627ehf_init); module_exit(sensors_w83627ehf_exit);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1