Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Steve Wise | 3295 | 66.46% | 10 | 20.41% |
Vipul Pandya | 827 | 16.68% | 4 | 8.16% |
Hariprasad Shenai | 366 | 7.38% | 9 | 18.37% |
Sagi Grimberg | 257 | 5.18% | 2 | 4.08% |
Greg Kroah-Hartman | 43 | 0.87% | 1 | 2.04% |
Matthew Wilcox | 27 | 0.54% | 1 | 2.04% |
Shani Michaelli | 17 | 0.34% | 1 | 2.04% |
Pramod Kumar | 17 | 0.34% | 1 | 2.04% |
Shiraz Saleem | 15 | 0.30% | 2 | 4.08% |
Joe Perches | 11 | 0.22% | 1 | 2.04% |
Bharat Potnuri | 11 | 0.22% | 1 | 2.04% |
Anish Bhatt | 10 | 0.20% | 1 | 2.04% |
Matan Barak | 8 | 0.16% | 1 | 2.04% |
Leon Romanovsky | 6 | 0.12% | 1 | 2.04% |
Christophe Jaillet | 6 | 0.12% | 1 | 2.04% |
Christoph Hellwig | 6 | 0.12% | 1 | 2.04% |
Yishai Hadas | 6 | 0.12% | 1 | 2.04% |
Shaobo He | 5 | 0.10% | 1 | 2.04% |
shamir rabinovitch | 5 | 0.10% | 1 | 2.04% |
Paul Bolle | 5 | 0.10% | 1 | 2.04% |
Arnd Bergmann | 4 | 0.08% | 1 | 2.04% |
Moni Shoua | 3 | 0.06% | 1 | 2.04% |
Ganesh Goudar | 3 | 0.06% | 1 | 2.04% |
yuan linyu | 2 | 0.04% | 1 | 2.04% |
Rashika Kheria | 1 | 0.02% | 1 | 2.04% |
Arun Sharma | 1 | 0.02% | 1 | 2.04% |
Bart Van Assche | 1 | 0.02% | 1 | 2.04% |
Total | 4958 | 49 |
/* * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <linux/module.h> #include <linux/moduleparam.h> #include <rdma/ib_umem.h> #include <linux/atomic.h> #include <rdma/ib_user_verbs.h> #include "iw_cxgb4.h" int use_dsgl = 1; module_param(use_dsgl, int, 0644); MODULE_PARM_DESC(use_dsgl, "Use DSGL for PBL/FastReg (default=1) (DEPRECATED)"); #define T4_ULPTX_MIN_IO 32 #define C4IW_MAX_INLINE_SIZE 96 #define T4_ULPTX_MAX_DMA 1024 #define C4IW_INLINE_THRESHOLD 128 static int inline_threshold = C4IW_INLINE_THRESHOLD; module_param(inline_threshold, int, 0644); MODULE_PARM_DESC(inline_threshold, "inline vs dsgl threshold (default=128)"); static int mr_exceeds_hw_limits(struct c4iw_dev *dev, u64 length) { return (is_t4(dev->rdev.lldi.adapter_type) || is_t5(dev->rdev.lldi.adapter_type)) && length >= 8*1024*1024*1024ULL; } static int _c4iw_write_mem_dma_aligned(struct c4iw_rdev *rdev, u32 addr, u32 len, dma_addr_t data, struct sk_buff *skb, struct c4iw_wr_wait *wr_waitp) { struct ulp_mem_io *req; struct ulptx_sgl *sgl; u8 wr_len; int ret = 0; addr &= 0x7FFFFFF; if (wr_waitp) c4iw_init_wr_wait(wr_waitp); wr_len = roundup(sizeof(*req) + sizeof(*sgl), 16); if (!skb) { skb = alloc_skb(wr_len, GFP_KERNEL | __GFP_NOFAIL); if (!skb) return -ENOMEM; } set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0); req = __skb_put_zero(skb, wr_len); INIT_ULPTX_WR(req, wr_len, 0, 0); req->wr.wr_hi = cpu_to_be32(FW_WR_OP_V(FW_ULPTX_WR) | (wr_waitp ? FW_WR_COMPL_F : 0)); req->wr.wr_lo = wr_waitp ? (__force __be64)(unsigned long)wr_waitp : 0L; req->wr.wr_mid = cpu_to_be32(FW_WR_LEN16_V(DIV_ROUND_UP(wr_len, 16))); req->cmd = cpu_to_be32(ULPTX_CMD_V(ULP_TX_MEM_WRITE) | T5_ULP_MEMIO_ORDER_V(1) | T5_ULP_MEMIO_FID_V(rdev->lldi.rxq_ids[0])); req->dlen = cpu_to_be32(ULP_MEMIO_DATA_LEN_V(len>>5)); req->len16 = cpu_to_be32(DIV_ROUND_UP(wr_len-sizeof(req->wr), 16)); req->lock_addr = cpu_to_be32(ULP_MEMIO_ADDR_V(addr)); sgl = (struct ulptx_sgl *)(req + 1); sgl->cmd_nsge = cpu_to_be32(ULPTX_CMD_V(ULP_TX_SC_DSGL) | ULPTX_NSGE_V(1)); sgl->len0 = cpu_to_be32(len); sgl->addr0 = cpu_to_be64(data); if (wr_waitp) ret = c4iw_ref_send_wait(rdev, skb, wr_waitp, 0, 0, __func__); else ret = c4iw_ofld_send(rdev, skb); return ret; } static int _c4iw_write_mem_inline(struct c4iw_rdev *rdev, u32 addr, u32 len, void *data, struct sk_buff *skb, struct c4iw_wr_wait *wr_waitp) { struct ulp_mem_io *req; struct ulptx_idata *sc; u8 wr_len, *to_dp, *from_dp; int copy_len, num_wqe, i, ret = 0; __be32 cmd = cpu_to_be32(ULPTX_CMD_V(ULP_TX_MEM_WRITE)); if (is_t4(rdev->lldi.adapter_type)) cmd |= cpu_to_be32(ULP_MEMIO_ORDER_F); else cmd |= cpu_to_be32(T5_ULP_MEMIO_IMM_F); addr &= 0x7FFFFFF; pr_debug("addr 0x%x len %u\n", addr, len); num_wqe = DIV_ROUND_UP(len, C4IW_MAX_INLINE_SIZE); c4iw_init_wr_wait(wr_waitp); for (i = 0; i < num_wqe; i++) { copy_len = len > C4IW_MAX_INLINE_SIZE ? C4IW_MAX_INLINE_SIZE : len; wr_len = roundup(sizeof(*req) + sizeof(*sc) + roundup(copy_len, T4_ULPTX_MIN_IO), 16); if (!skb) { skb = alloc_skb(wr_len, GFP_KERNEL | __GFP_NOFAIL); if (!skb) return -ENOMEM; } set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0); req = __skb_put_zero(skb, wr_len); INIT_ULPTX_WR(req, wr_len, 0, 0); if (i == (num_wqe-1)) { req->wr.wr_hi = cpu_to_be32(FW_WR_OP_V(FW_ULPTX_WR) | FW_WR_COMPL_F); req->wr.wr_lo = (__force __be64)(unsigned long)wr_waitp; } else req->wr.wr_hi = cpu_to_be32(FW_WR_OP_V(FW_ULPTX_WR)); req->wr.wr_mid = cpu_to_be32( FW_WR_LEN16_V(DIV_ROUND_UP(wr_len, 16))); req->cmd = cmd; req->dlen = cpu_to_be32(ULP_MEMIO_DATA_LEN_V( DIV_ROUND_UP(copy_len, T4_ULPTX_MIN_IO))); req->len16 = cpu_to_be32(DIV_ROUND_UP(wr_len-sizeof(req->wr), 16)); req->lock_addr = cpu_to_be32(ULP_MEMIO_ADDR_V(addr + i * 3)); sc = (struct ulptx_idata *)(req + 1); sc->cmd_more = cpu_to_be32(ULPTX_CMD_V(ULP_TX_SC_IMM)); sc->len = cpu_to_be32(roundup(copy_len, T4_ULPTX_MIN_IO)); to_dp = (u8 *)(sc + 1); from_dp = (u8 *)data + i * C4IW_MAX_INLINE_SIZE; if (data) memcpy(to_dp, from_dp, copy_len); else memset(to_dp, 0, copy_len); if (copy_len % T4_ULPTX_MIN_IO) memset(to_dp + copy_len, 0, T4_ULPTX_MIN_IO - (copy_len % T4_ULPTX_MIN_IO)); if (i == (num_wqe-1)) ret = c4iw_ref_send_wait(rdev, skb, wr_waitp, 0, 0, __func__); else ret = c4iw_ofld_send(rdev, skb); if (ret) break; skb = NULL; len -= C4IW_MAX_INLINE_SIZE; } return ret; } static int _c4iw_write_mem_dma(struct c4iw_rdev *rdev, u32 addr, u32 len, void *data, struct sk_buff *skb, struct c4iw_wr_wait *wr_waitp) { u32 remain = len; u32 dmalen; int ret = 0; dma_addr_t daddr; dma_addr_t save; daddr = dma_map_single(&rdev->lldi.pdev->dev, data, len, DMA_TO_DEVICE); if (dma_mapping_error(&rdev->lldi.pdev->dev, daddr)) return -1; save = daddr; while (remain > inline_threshold) { if (remain < T4_ULPTX_MAX_DMA) { if (remain & ~T4_ULPTX_MIN_IO) dmalen = remain & ~(T4_ULPTX_MIN_IO-1); else dmalen = remain; } else dmalen = T4_ULPTX_MAX_DMA; remain -= dmalen; ret = _c4iw_write_mem_dma_aligned(rdev, addr, dmalen, daddr, skb, remain ? NULL : wr_waitp); if (ret) goto out; addr += dmalen >> 5; data += dmalen; daddr += dmalen; } if (remain) ret = _c4iw_write_mem_inline(rdev, addr, remain, data, skb, wr_waitp); out: dma_unmap_single(&rdev->lldi.pdev->dev, save, len, DMA_TO_DEVICE); return ret; } /* * write len bytes of data into addr (32B aligned address) * If data is NULL, clear len byte of memory to zero. */ static int write_adapter_mem(struct c4iw_rdev *rdev, u32 addr, u32 len, void *data, struct sk_buff *skb, struct c4iw_wr_wait *wr_waitp) { int ret; if (!rdev->lldi.ulptx_memwrite_dsgl || !use_dsgl) { ret = _c4iw_write_mem_inline(rdev, addr, len, data, skb, wr_waitp); goto out; } if (len <= inline_threshold) { ret = _c4iw_write_mem_inline(rdev, addr, len, data, skb, wr_waitp); goto out; } ret = _c4iw_write_mem_dma(rdev, addr, len, data, skb, wr_waitp); if (ret) { pr_warn_ratelimited("%s: dma map failure (non fatal)\n", pci_name(rdev->lldi.pdev)); ret = _c4iw_write_mem_inline(rdev, addr, len, data, skb, wr_waitp); } out: return ret; } /* * Build and write a TPT entry. * IN: stag key, pdid, perm, bind_enabled, zbva, to, len, page_size, * pbl_size and pbl_addr * OUT: stag index */ static int write_tpt_entry(struct c4iw_rdev *rdev, u32 reset_tpt_entry, u32 *stag, u8 stag_state, u32 pdid, enum fw_ri_stag_type type, enum fw_ri_mem_perms perm, int bind_enabled, u32 zbva, u64 to, u64 len, u8 page_size, u32 pbl_size, u32 pbl_addr, struct sk_buff *skb, struct c4iw_wr_wait *wr_waitp) { int err; struct fw_ri_tpte *tpt; u32 stag_idx; static atomic_t key; if (c4iw_fatal_error(rdev)) return -EIO; tpt = kmalloc(sizeof(*tpt), GFP_KERNEL); if (!tpt) return -ENOMEM; stag_state = stag_state > 0; stag_idx = (*stag) >> 8; if ((!reset_tpt_entry) && (*stag == T4_STAG_UNSET)) { stag_idx = c4iw_get_resource(&rdev->resource.tpt_table); if (!stag_idx) { mutex_lock(&rdev->stats.lock); rdev->stats.stag.fail++; mutex_unlock(&rdev->stats.lock); kfree(tpt); return -ENOMEM; } mutex_lock(&rdev->stats.lock); rdev->stats.stag.cur += 32; if (rdev->stats.stag.cur > rdev->stats.stag.max) rdev->stats.stag.max = rdev->stats.stag.cur; mutex_unlock(&rdev->stats.lock); *stag = (stag_idx << 8) | (atomic_inc_return(&key) & 0xff); } pr_debug("stag_state 0x%0x type 0x%0x pdid 0x%0x, stag_idx 0x%x\n", stag_state, type, pdid, stag_idx); /* write TPT entry */ if (reset_tpt_entry) memset(tpt, 0, sizeof(*tpt)); else { tpt->valid_to_pdid = cpu_to_be32(FW_RI_TPTE_VALID_F | FW_RI_TPTE_STAGKEY_V((*stag & FW_RI_TPTE_STAGKEY_M)) | FW_RI_TPTE_STAGSTATE_V(stag_state) | FW_RI_TPTE_STAGTYPE_V(type) | FW_RI_TPTE_PDID_V(pdid)); tpt->locread_to_qpid = cpu_to_be32(FW_RI_TPTE_PERM_V(perm) | (bind_enabled ? FW_RI_TPTE_MWBINDEN_F : 0) | FW_RI_TPTE_ADDRTYPE_V((zbva ? FW_RI_ZERO_BASED_TO : FW_RI_VA_BASED_TO))| FW_RI_TPTE_PS_V(page_size)); tpt->nosnoop_pbladdr = !pbl_size ? 0 : cpu_to_be32( FW_RI_TPTE_PBLADDR_V(PBL_OFF(rdev, pbl_addr)>>3)); tpt->len_lo = cpu_to_be32((u32)(len & 0xffffffffUL)); tpt->va_hi = cpu_to_be32((u32)(to >> 32)); tpt->va_lo_fbo = cpu_to_be32((u32)(to & 0xffffffffUL)); tpt->dca_mwbcnt_pstag = cpu_to_be32(0); tpt->len_hi = cpu_to_be32((u32)(len >> 32)); } err = write_adapter_mem(rdev, stag_idx + (rdev->lldi.vr->stag.start >> 5), sizeof(*tpt), tpt, skb, wr_waitp); if (reset_tpt_entry) { c4iw_put_resource(&rdev->resource.tpt_table, stag_idx); mutex_lock(&rdev->stats.lock); rdev->stats.stag.cur -= 32; mutex_unlock(&rdev->stats.lock); } kfree(tpt); return err; } static int write_pbl(struct c4iw_rdev *rdev, __be64 *pbl, u32 pbl_addr, u32 pbl_size, struct c4iw_wr_wait *wr_waitp) { int err; pr_debug("*pdb_addr 0x%x, pbl_base 0x%x, pbl_size %d\n", pbl_addr, rdev->lldi.vr->pbl.start, pbl_size); err = write_adapter_mem(rdev, pbl_addr >> 5, pbl_size << 3, pbl, NULL, wr_waitp); return err; } static int dereg_mem(struct c4iw_rdev *rdev, u32 stag, u32 pbl_size, u32 pbl_addr, struct sk_buff *skb, struct c4iw_wr_wait *wr_waitp) { return write_tpt_entry(rdev, 1, &stag, 0, 0, 0, 0, 0, 0, 0UL, 0, 0, pbl_size, pbl_addr, skb, wr_waitp); } static int allocate_window(struct c4iw_rdev *rdev, u32 *stag, u32 pdid, struct c4iw_wr_wait *wr_waitp) { *stag = T4_STAG_UNSET; return write_tpt_entry(rdev, 0, stag, 0, pdid, FW_RI_STAG_MW, 0, 0, 0, 0UL, 0, 0, 0, 0, NULL, wr_waitp); } static int deallocate_window(struct c4iw_rdev *rdev, u32 stag, struct sk_buff *skb, struct c4iw_wr_wait *wr_waitp) { return write_tpt_entry(rdev, 1, &stag, 0, 0, 0, 0, 0, 0, 0UL, 0, 0, 0, 0, skb, wr_waitp); } static int allocate_stag(struct c4iw_rdev *rdev, u32 *stag, u32 pdid, u32 pbl_size, u32 pbl_addr, struct c4iw_wr_wait *wr_waitp) { *stag = T4_STAG_UNSET; return write_tpt_entry(rdev, 0, stag, 0, pdid, FW_RI_STAG_NSMR, 0, 0, 0, 0UL, 0, 0, pbl_size, pbl_addr, NULL, wr_waitp); } static int finish_mem_reg(struct c4iw_mr *mhp, u32 stag) { u32 mmid; mhp->attr.state = 1; mhp->attr.stag = stag; mmid = stag >> 8; mhp->ibmr.rkey = mhp->ibmr.lkey = stag; mhp->ibmr.length = mhp->attr.len; mhp->ibmr.page_size = 1U << (mhp->attr.page_size + 12); pr_debug("mmid 0x%x mhp %p\n", mmid, mhp); return xa_insert_irq(&mhp->rhp->mrs, mmid, mhp, GFP_KERNEL); } static int register_mem(struct c4iw_dev *rhp, struct c4iw_pd *php, struct c4iw_mr *mhp, int shift) { u32 stag = T4_STAG_UNSET; int ret; ret = write_tpt_entry(&rhp->rdev, 0, &stag, 1, mhp->attr.pdid, FW_RI_STAG_NSMR, mhp->attr.len ? mhp->attr.perms : 0, mhp->attr.mw_bind_enable, mhp->attr.zbva, mhp->attr.va_fbo, mhp->attr.len ? mhp->attr.len : -1, shift - 12, mhp->attr.pbl_size, mhp->attr.pbl_addr, NULL, mhp->wr_waitp); if (ret) return ret; ret = finish_mem_reg(mhp, stag); if (ret) { dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size, mhp->attr.pbl_addr, mhp->dereg_skb, mhp->wr_waitp); mhp->dereg_skb = NULL; } return ret; } static int alloc_pbl(struct c4iw_mr *mhp, int npages) { mhp->attr.pbl_addr = c4iw_pblpool_alloc(&mhp->rhp->rdev, npages << 3); if (!mhp->attr.pbl_addr) return -ENOMEM; mhp->attr.pbl_size = npages; return 0; } struct ib_mr *c4iw_get_dma_mr(struct ib_pd *pd, int acc) { struct c4iw_dev *rhp; struct c4iw_pd *php; struct c4iw_mr *mhp; int ret; u32 stag = T4_STAG_UNSET; pr_debug("ib_pd %p\n", pd); php = to_c4iw_pd(pd); rhp = php->rhp; mhp = kzalloc(sizeof(*mhp), GFP_KERNEL); if (!mhp) return ERR_PTR(-ENOMEM); mhp->wr_waitp = c4iw_alloc_wr_wait(GFP_KERNEL); if (!mhp->wr_waitp) { ret = -ENOMEM; goto err_free_mhp; } c4iw_init_wr_wait(mhp->wr_waitp); mhp->dereg_skb = alloc_skb(SGE_MAX_WR_LEN, GFP_KERNEL); if (!mhp->dereg_skb) { ret = -ENOMEM; goto err_free_wr_wait; } mhp->rhp = rhp; mhp->attr.pdid = php->pdid; mhp->attr.perms = c4iw_ib_to_tpt_access(acc); mhp->attr.mw_bind_enable = (acc&IB_ACCESS_MW_BIND) == IB_ACCESS_MW_BIND; mhp->attr.zbva = 0; mhp->attr.va_fbo = 0; mhp->attr.page_size = 0; mhp->attr.len = ~0ULL; mhp->attr.pbl_size = 0; ret = write_tpt_entry(&rhp->rdev, 0, &stag, 1, php->pdid, FW_RI_STAG_NSMR, mhp->attr.perms, mhp->attr.mw_bind_enable, 0, 0, ~0ULL, 0, 0, 0, NULL, mhp->wr_waitp); if (ret) goto err_free_skb; ret = finish_mem_reg(mhp, stag); if (ret) goto err_dereg_mem; return &mhp->ibmr; err_dereg_mem: dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size, mhp->attr.pbl_addr, mhp->dereg_skb, mhp->wr_waitp); err_free_skb: kfree_skb(mhp->dereg_skb); err_free_wr_wait: c4iw_put_wr_wait(mhp->wr_waitp); err_free_mhp: kfree(mhp); return ERR_PTR(ret); } struct ib_mr *c4iw_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, u64 virt, int acc, struct ib_udata *udata) { __be64 *pages; int shift, n, i; int err = -ENOMEM; struct sg_dma_page_iter sg_iter; struct c4iw_dev *rhp; struct c4iw_pd *php; struct c4iw_mr *mhp; pr_debug("ib_pd %p\n", pd); if (length == ~0ULL) return ERR_PTR(-EINVAL); if ((length + start) < start) return ERR_PTR(-EINVAL); php = to_c4iw_pd(pd); rhp = php->rhp; if (mr_exceeds_hw_limits(rhp, length)) return ERR_PTR(-EINVAL); mhp = kzalloc(sizeof(*mhp), GFP_KERNEL); if (!mhp) return ERR_PTR(-ENOMEM); mhp->wr_waitp = c4iw_alloc_wr_wait(GFP_KERNEL); if (!mhp->wr_waitp) goto err_free_mhp; mhp->dereg_skb = alloc_skb(SGE_MAX_WR_LEN, GFP_KERNEL); if (!mhp->dereg_skb) goto err_free_wr_wait; mhp->rhp = rhp; mhp->umem = ib_umem_get(pd->device, start, length, acc); if (IS_ERR(mhp->umem)) goto err_free_skb; shift = PAGE_SHIFT; n = ib_umem_num_pages(mhp->umem); err = alloc_pbl(mhp, n); if (err) goto err_umem_release; pages = (__be64 *) __get_free_page(GFP_KERNEL); if (!pages) { err = -ENOMEM; goto err_pbl_free; } i = n = 0; for_each_sg_dma_page(mhp->umem->sg_head.sgl, &sg_iter, mhp->umem->nmap, 0) { pages[i++] = cpu_to_be64(sg_page_iter_dma_address(&sg_iter)); if (i == PAGE_SIZE / sizeof(*pages)) { err = write_pbl(&mhp->rhp->rdev, pages, mhp->attr.pbl_addr + (n << 3), i, mhp->wr_waitp); if (err) goto pbl_done; n += i; i = 0; } } if (i) err = write_pbl(&mhp->rhp->rdev, pages, mhp->attr.pbl_addr + (n << 3), i, mhp->wr_waitp); pbl_done: free_page((unsigned long) pages); if (err) goto err_pbl_free; mhp->attr.pdid = php->pdid; mhp->attr.zbva = 0; mhp->attr.perms = c4iw_ib_to_tpt_access(acc); mhp->attr.va_fbo = virt; mhp->attr.page_size = shift - 12; mhp->attr.len = length; err = register_mem(rhp, php, mhp, shift); if (err) goto err_pbl_free; return &mhp->ibmr; err_pbl_free: c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr, mhp->attr.pbl_size << 3); err_umem_release: ib_umem_release(mhp->umem); err_free_skb: kfree_skb(mhp->dereg_skb); err_free_wr_wait: c4iw_put_wr_wait(mhp->wr_waitp); err_free_mhp: kfree(mhp); return ERR_PTR(err); } struct ib_mw *c4iw_alloc_mw(struct ib_pd *pd, enum ib_mw_type type, struct ib_udata *udata) { struct c4iw_dev *rhp; struct c4iw_pd *php; struct c4iw_mw *mhp; u32 mmid; u32 stag = 0; int ret; if (type != IB_MW_TYPE_1) return ERR_PTR(-EINVAL); php = to_c4iw_pd(pd); rhp = php->rhp; mhp = kzalloc(sizeof(*mhp), GFP_KERNEL); if (!mhp) return ERR_PTR(-ENOMEM); mhp->wr_waitp = c4iw_alloc_wr_wait(GFP_KERNEL); if (!mhp->wr_waitp) { ret = -ENOMEM; goto free_mhp; } mhp->dereg_skb = alloc_skb(SGE_MAX_WR_LEN, GFP_KERNEL); if (!mhp->dereg_skb) { ret = -ENOMEM; goto free_wr_wait; } ret = allocate_window(&rhp->rdev, &stag, php->pdid, mhp->wr_waitp); if (ret) goto free_skb; mhp->rhp = rhp; mhp->attr.pdid = php->pdid; mhp->attr.type = FW_RI_STAG_MW; mhp->attr.stag = stag; mmid = (stag) >> 8; mhp->ibmw.rkey = stag; if (xa_insert_irq(&rhp->mrs, mmid, mhp, GFP_KERNEL)) { ret = -ENOMEM; goto dealloc_win; } pr_debug("mmid 0x%x mhp %p stag 0x%x\n", mmid, mhp, stag); return &(mhp->ibmw); dealloc_win: deallocate_window(&rhp->rdev, mhp->attr.stag, mhp->dereg_skb, mhp->wr_waitp); free_skb: kfree_skb(mhp->dereg_skb); free_wr_wait: c4iw_put_wr_wait(mhp->wr_waitp); free_mhp: kfree(mhp); return ERR_PTR(ret); } int c4iw_dealloc_mw(struct ib_mw *mw) { struct c4iw_dev *rhp; struct c4iw_mw *mhp; u32 mmid; mhp = to_c4iw_mw(mw); rhp = mhp->rhp; mmid = (mw->rkey) >> 8; xa_erase_irq(&rhp->mrs, mmid); deallocate_window(&rhp->rdev, mhp->attr.stag, mhp->dereg_skb, mhp->wr_waitp); kfree_skb(mhp->dereg_skb); c4iw_put_wr_wait(mhp->wr_waitp); pr_debug("ib_mw %p mmid 0x%x ptr %p\n", mw, mmid, mhp); kfree(mhp); return 0; } struct ib_mr *c4iw_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, u32 max_num_sg) { struct c4iw_dev *rhp; struct c4iw_pd *php; struct c4iw_mr *mhp; u32 mmid; u32 stag = 0; int ret = 0; int length = roundup(max_num_sg * sizeof(u64), 32); php = to_c4iw_pd(pd); rhp = php->rhp; if (mr_type != IB_MR_TYPE_MEM_REG || max_num_sg > t4_max_fr_depth(rhp->rdev.lldi.ulptx_memwrite_dsgl && use_dsgl)) return ERR_PTR(-EINVAL); mhp = kzalloc(sizeof(*mhp), GFP_KERNEL); if (!mhp) { ret = -ENOMEM; goto err; } mhp->wr_waitp = c4iw_alloc_wr_wait(GFP_KERNEL); if (!mhp->wr_waitp) { ret = -ENOMEM; goto err_free_mhp; } c4iw_init_wr_wait(mhp->wr_waitp); mhp->mpl = dma_alloc_coherent(&rhp->rdev.lldi.pdev->dev, length, &mhp->mpl_addr, GFP_KERNEL); if (!mhp->mpl) { ret = -ENOMEM; goto err_free_wr_wait; } mhp->max_mpl_len = length; mhp->rhp = rhp; ret = alloc_pbl(mhp, max_num_sg); if (ret) goto err_free_dma; mhp->attr.pbl_size = max_num_sg; ret = allocate_stag(&rhp->rdev, &stag, php->pdid, mhp->attr.pbl_size, mhp->attr.pbl_addr, mhp->wr_waitp); if (ret) goto err_free_pbl; mhp->attr.pdid = php->pdid; mhp->attr.type = FW_RI_STAG_NSMR; mhp->attr.stag = stag; mhp->attr.state = 0; mmid = (stag) >> 8; mhp->ibmr.rkey = mhp->ibmr.lkey = stag; if (xa_insert_irq(&rhp->mrs, mmid, mhp, GFP_KERNEL)) { ret = -ENOMEM; goto err_dereg; } pr_debug("mmid 0x%x mhp %p stag 0x%x\n", mmid, mhp, stag); return &(mhp->ibmr); err_dereg: dereg_mem(&rhp->rdev, stag, mhp->attr.pbl_size, mhp->attr.pbl_addr, mhp->dereg_skb, mhp->wr_waitp); err_free_pbl: c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr, mhp->attr.pbl_size << 3); err_free_dma: dma_free_coherent(&mhp->rhp->rdev.lldi.pdev->dev, mhp->max_mpl_len, mhp->mpl, mhp->mpl_addr); err_free_wr_wait: c4iw_put_wr_wait(mhp->wr_waitp); err_free_mhp: kfree(mhp); err: return ERR_PTR(ret); } static int c4iw_set_page(struct ib_mr *ibmr, u64 addr) { struct c4iw_mr *mhp = to_c4iw_mr(ibmr); if (unlikely(mhp->mpl_len == mhp->attr.pbl_size)) return -ENOMEM; mhp->mpl[mhp->mpl_len++] = addr; return 0; } int c4iw_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents, unsigned int *sg_offset) { struct c4iw_mr *mhp = to_c4iw_mr(ibmr); mhp->mpl_len = 0; return ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, c4iw_set_page); } int c4iw_dereg_mr(struct ib_mr *ib_mr, struct ib_udata *udata) { struct c4iw_dev *rhp; struct c4iw_mr *mhp; u32 mmid; pr_debug("ib_mr %p\n", ib_mr); mhp = to_c4iw_mr(ib_mr); rhp = mhp->rhp; mmid = mhp->attr.stag >> 8; xa_erase_irq(&rhp->mrs, mmid); if (mhp->mpl) dma_free_coherent(&mhp->rhp->rdev.lldi.pdev->dev, mhp->max_mpl_len, mhp->mpl, mhp->mpl_addr); dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size, mhp->attr.pbl_addr, mhp->dereg_skb, mhp->wr_waitp); if (mhp->attr.pbl_size) c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr, mhp->attr.pbl_size << 3); if (mhp->kva) kfree((void *) (unsigned long) mhp->kva); ib_umem_release(mhp->umem); pr_debug("mmid 0x%x ptr %p\n", mmid, mhp); c4iw_put_wr_wait(mhp->wr_waitp); kfree(mhp); return 0; } void c4iw_invalidate_mr(struct c4iw_dev *rhp, u32 rkey) { struct c4iw_mr *mhp; unsigned long flags; xa_lock_irqsave(&rhp->mrs, flags); mhp = xa_load(&rhp->mrs, rkey >> 8); if (mhp) mhp->attr.state = 0; xa_unlock_irqrestore(&rhp->mrs, flags); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1