Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Oded Gabbay | 3330 | 61.85% | 15 | 50.00% |
Omer Shpigelman | 1323 | 24.57% | 4 | 13.33% |
Ofir Bitton | 379 | 7.04% | 8 | 26.67% |
Tomer Tayar | 350 | 6.50% | 2 | 6.67% |
Ben Segal | 2 | 0.04% | 1 | 3.33% |
Total | 5384 | 30 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2016-2019 HabanaLabs, Ltd. * All Rights Reserved. */ #include <uapi/misc/habanalabs.h> #include "habanalabs.h" #include <linux/uaccess.h> #include <linux/slab.h> #define HL_CS_FLAGS_SIG_WAIT (HL_CS_FLAGS_SIGNAL | HL_CS_FLAGS_WAIT) static void job_wq_completion(struct work_struct *work); static long _hl_cs_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, u64 timeout_us, u64 seq); static void cs_do_release(struct kref *ref); static void hl_sob_reset(struct kref *ref) { struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob, kref); struct hl_device *hdev = hw_sob->hdev; hdev->asic_funcs->reset_sob(hdev, hw_sob); } void hl_sob_reset_error(struct kref *ref) { struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob, kref); struct hl_device *hdev = hw_sob->hdev; dev_crit(hdev->dev, "SOB release shouldn't be called here, q_idx: %d, sob_id: %d\n", hw_sob->q_idx, hw_sob->sob_id); } static const char *hl_fence_get_driver_name(struct dma_fence *fence) { return "HabanaLabs"; } static const char *hl_fence_get_timeline_name(struct dma_fence *fence) { struct hl_cs_compl *hl_cs_compl = container_of(fence, struct hl_cs_compl, base_fence); return dev_name(hl_cs_compl->hdev->dev); } static bool hl_fence_enable_signaling(struct dma_fence *fence) { return true; } static void hl_fence_release(struct dma_fence *fence) { struct hl_cs_compl *hl_cs_cmpl = container_of(fence, struct hl_cs_compl, base_fence); struct hl_device *hdev = hl_cs_cmpl->hdev; /* EBUSY means the CS was never submitted and hence we don't have * an attached hw_sob object that we should handle here */ if (fence->error == -EBUSY) goto free; if ((hl_cs_cmpl->type == CS_TYPE_SIGNAL) || (hl_cs_cmpl->type == CS_TYPE_WAIT)) { dev_dbg(hdev->dev, "CS 0x%llx type %d finished, sob_id: %d, sob_val: 0x%x\n", hl_cs_cmpl->cs_seq, hl_cs_cmpl->type, hl_cs_cmpl->hw_sob->sob_id, hl_cs_cmpl->sob_val); /* * A signal CS can get completion while the corresponding wait * for signal CS is on its way to the PQ. The wait for signal CS * will get stuck if the signal CS incremented the SOB to its * max value and there are no pending (submitted) waits on this * SOB. * We do the following to void this situation: * 1. The wait for signal CS must get a ref for the signal CS as * soon as possible in cs_ioctl_signal_wait() and put it * before being submitted to the PQ but after it incremented * the SOB refcnt in init_signal_wait_cs(). * 2. Signal/Wait for signal CS will decrement the SOB refcnt * here. * These two measures guarantee that the wait for signal CS will * reset the SOB upon completion rather than the signal CS and * hence the above scenario is avoided. */ kref_put(&hl_cs_cmpl->hw_sob->kref, hl_sob_reset); } free: kfree_rcu(hl_cs_cmpl, base_fence.rcu); } static const struct dma_fence_ops hl_fence_ops = { .get_driver_name = hl_fence_get_driver_name, .get_timeline_name = hl_fence_get_timeline_name, .enable_signaling = hl_fence_enable_signaling, .release = hl_fence_release }; static void cs_get(struct hl_cs *cs) { kref_get(&cs->refcount); } static int cs_get_unless_zero(struct hl_cs *cs) { return kref_get_unless_zero(&cs->refcount); } static void cs_put(struct hl_cs *cs) { kref_put(&cs->refcount, cs_do_release); } static bool is_cb_patched(struct hl_device *hdev, struct hl_cs_job *job) { /* * Patched CB is created for external queues jobs, and for H/W queues * jobs if the user CB was allocated by driver and MMU is disabled. */ return (job->queue_type == QUEUE_TYPE_EXT || (job->queue_type == QUEUE_TYPE_HW && job->is_kernel_allocated_cb && !hdev->mmu_enable)); } /* * cs_parser - parse the user command submission * * @hpriv : pointer to the private data of the fd * @job : pointer to the job that holds the command submission info * * The function parses the command submission of the user. It calls the * ASIC specific parser, which returns a list of memory blocks to send * to the device as different command buffers * */ static int cs_parser(struct hl_fpriv *hpriv, struct hl_cs_job *job) { struct hl_device *hdev = hpriv->hdev; struct hl_cs_parser parser; int rc; parser.ctx_id = job->cs->ctx->asid; parser.cs_sequence = job->cs->sequence; parser.job_id = job->id; parser.hw_queue_id = job->hw_queue_id; parser.job_userptr_list = &job->userptr_list; parser.patched_cb = NULL; parser.user_cb = job->user_cb; parser.user_cb_size = job->user_cb_size; parser.queue_type = job->queue_type; parser.is_kernel_allocated_cb = job->is_kernel_allocated_cb; job->patched_cb = NULL; rc = hdev->asic_funcs->cs_parser(hdev, &parser); if (is_cb_patched(hdev, job)) { if (!rc) { job->patched_cb = parser.patched_cb; job->job_cb_size = parser.patched_cb_size; job->contains_dma_pkt = parser.contains_dma_pkt; spin_lock(&job->patched_cb->lock); job->patched_cb->cs_cnt++; spin_unlock(&job->patched_cb->lock); } /* * Whether the parsing worked or not, we don't need the * original CB anymore because it was already parsed and * won't be accessed again for this CS */ spin_lock(&job->user_cb->lock); job->user_cb->cs_cnt--; spin_unlock(&job->user_cb->lock); hl_cb_put(job->user_cb); job->user_cb = NULL; } else if (!rc) { job->job_cb_size = job->user_cb_size; } return rc; } static void free_job(struct hl_device *hdev, struct hl_cs_job *job) { struct hl_cs *cs = job->cs; if (is_cb_patched(hdev, job)) { hl_userptr_delete_list(hdev, &job->userptr_list); /* * We might arrive here from rollback and patched CB wasn't * created, so we need to check it's not NULL */ if (job->patched_cb) { spin_lock(&job->patched_cb->lock); job->patched_cb->cs_cnt--; spin_unlock(&job->patched_cb->lock); hl_cb_put(job->patched_cb); } } /* For H/W queue jobs, if a user CB was allocated by driver and MMU is * enabled, the user CB isn't released in cs_parser() and thus should be * released here. */ if (job->queue_type == QUEUE_TYPE_HW && job->is_kernel_allocated_cb && hdev->mmu_enable) { spin_lock(&job->user_cb->lock); job->user_cb->cs_cnt--; spin_unlock(&job->user_cb->lock); hl_cb_put(job->user_cb); } /* * This is the only place where there can be multiple threads * modifying the list at the same time */ spin_lock(&cs->job_lock); list_del(&job->cs_node); spin_unlock(&cs->job_lock); hl_debugfs_remove_job(hdev, job); if (job->queue_type == QUEUE_TYPE_EXT || job->queue_type == QUEUE_TYPE_HW) cs_put(cs); kfree(job); } static void cs_counters_aggregate(struct hl_device *hdev, struct hl_ctx *ctx) { hdev->aggregated_cs_counters.device_in_reset_drop_cnt += ctx->cs_counters.device_in_reset_drop_cnt; hdev->aggregated_cs_counters.out_of_mem_drop_cnt += ctx->cs_counters.out_of_mem_drop_cnt; hdev->aggregated_cs_counters.parsing_drop_cnt += ctx->cs_counters.parsing_drop_cnt; hdev->aggregated_cs_counters.queue_full_drop_cnt += ctx->cs_counters.queue_full_drop_cnt; } static void cs_do_release(struct kref *ref) { struct hl_cs *cs = container_of(ref, struct hl_cs, refcount); struct hl_device *hdev = cs->ctx->hdev; struct hl_cs_job *job, *tmp; cs->completed = true; /* * Although if we reached here it means that all external jobs have * finished, because each one of them took refcnt to CS, we still * need to go over the internal jobs and free them. Otherwise, we * will have leaked memory and what's worse, the CS object (and * potentially the CTX object) could be released, while the JOB * still holds a pointer to them (but no reference). */ list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node) free_job(hdev, job); /* We also need to update CI for internal queues */ if (cs->submitted) { hdev->asic_funcs->hw_queues_lock(hdev); hdev->cs_active_cnt--; if (!hdev->cs_active_cnt) { struct hl_device_idle_busy_ts *ts; ts = &hdev->idle_busy_ts_arr[hdev->idle_busy_ts_idx++]; ts->busy_to_idle_ts = ktime_get(); if (hdev->idle_busy_ts_idx == HL_IDLE_BUSY_TS_ARR_SIZE) hdev->idle_busy_ts_idx = 0; } else if (hdev->cs_active_cnt < 0) { dev_crit(hdev->dev, "CS active cnt %d is negative\n", hdev->cs_active_cnt); } hdev->asic_funcs->hw_queues_unlock(hdev); hl_int_hw_queue_update_ci(cs); spin_lock(&hdev->hw_queues_mirror_lock); /* remove CS from hw_queues mirror list */ list_del_init(&cs->mirror_node); spin_unlock(&hdev->hw_queues_mirror_lock); /* * Don't cancel TDR in case this CS was timedout because we * might be running from the TDR context */ if ((!cs->timedout) && (hdev->timeout_jiffies != MAX_SCHEDULE_TIMEOUT)) { struct hl_cs *next; if (cs->tdr_active) cancel_delayed_work_sync(&cs->work_tdr); spin_lock(&hdev->hw_queues_mirror_lock); /* queue TDR for next CS */ next = list_first_entry_or_null( &hdev->hw_queues_mirror_list, struct hl_cs, mirror_node); if ((next) && (!next->tdr_active)) { next->tdr_active = true; schedule_delayed_work(&next->work_tdr, hdev->timeout_jiffies); } spin_unlock(&hdev->hw_queues_mirror_lock); } } else if (cs->type == CS_TYPE_WAIT) { /* * In case the wait for signal CS was submitted, the put occurs * in init_signal_wait_cs() right before hanging on the PQ. */ dma_fence_put(cs->signal_fence); } /* * Must be called before hl_ctx_put because inside we use ctx to get * the device */ hl_debugfs_remove_cs(cs); hl_ctx_put(cs->ctx); /* We need to mark an error for not submitted because in that case * the dma fence release flow is different. Mainly, we don't need * to handle hw_sob for signal/wait */ if (cs->timedout) dma_fence_set_error(cs->fence, -ETIMEDOUT); else if (cs->aborted) dma_fence_set_error(cs->fence, -EIO); else if (!cs->submitted) dma_fence_set_error(cs->fence, -EBUSY); dma_fence_signal(cs->fence); dma_fence_put(cs->fence); cs_counters_aggregate(hdev, cs->ctx); kfree(cs->jobs_in_queue_cnt); kfree(cs); } static void cs_timedout(struct work_struct *work) { struct hl_device *hdev; int rc; struct hl_cs *cs = container_of(work, struct hl_cs, work_tdr.work); rc = cs_get_unless_zero(cs); if (!rc) return; if ((!cs->submitted) || (cs->completed)) { cs_put(cs); return; } /* Mark the CS is timed out so we won't try to cancel its TDR */ cs->timedout = true; hdev = cs->ctx->hdev; dev_err(hdev->dev, "Command submission %llu has not finished in time!\n", cs->sequence); cs_put(cs); if (hdev->reset_on_lockup) hl_device_reset(hdev, false, false); } static int allocate_cs(struct hl_device *hdev, struct hl_ctx *ctx, enum hl_cs_type cs_type, struct hl_cs **cs_new) { struct hl_cs_compl *cs_cmpl; struct dma_fence *other = NULL; struct hl_cs *cs; int rc; cs = kzalloc(sizeof(*cs), GFP_ATOMIC); if (!cs) return -ENOMEM; cs->ctx = ctx; cs->submitted = false; cs->completed = false; cs->type = cs_type; INIT_LIST_HEAD(&cs->job_list); INIT_DELAYED_WORK(&cs->work_tdr, cs_timedout); kref_init(&cs->refcount); spin_lock_init(&cs->job_lock); cs_cmpl = kmalloc(sizeof(*cs_cmpl), GFP_ATOMIC); if (!cs_cmpl) { rc = -ENOMEM; goto free_cs; } cs_cmpl->hdev = hdev; cs_cmpl->type = cs->type; spin_lock_init(&cs_cmpl->lock); cs->fence = &cs_cmpl->base_fence; spin_lock(&ctx->cs_lock); cs_cmpl->cs_seq = ctx->cs_sequence; other = ctx->cs_pending[cs_cmpl->cs_seq & (hdev->asic_prop.max_pending_cs - 1)]; if ((other) && (!dma_fence_is_signaled(other))) { dev_dbg(hdev->dev, "Rejecting CS because of too many in-flights CS\n"); rc = -EAGAIN; goto free_fence; } cs->jobs_in_queue_cnt = kcalloc(hdev->asic_prop.max_queues, sizeof(*cs->jobs_in_queue_cnt), GFP_ATOMIC); if (!cs->jobs_in_queue_cnt) { rc = -ENOMEM; goto free_fence; } dma_fence_init(&cs_cmpl->base_fence, &hl_fence_ops, &cs_cmpl->lock, ctx->asid, ctx->cs_sequence); cs->sequence = cs_cmpl->cs_seq; ctx->cs_pending[cs_cmpl->cs_seq & (hdev->asic_prop.max_pending_cs - 1)] = &cs_cmpl->base_fence; ctx->cs_sequence++; dma_fence_get(&cs_cmpl->base_fence); dma_fence_put(other); spin_unlock(&ctx->cs_lock); *cs_new = cs; return 0; free_fence: spin_unlock(&ctx->cs_lock); kfree(cs_cmpl); free_cs: kfree(cs); return rc; } static void cs_rollback(struct hl_device *hdev, struct hl_cs *cs) { struct hl_cs_job *job, *tmp; list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node) free_job(hdev, job); } void hl_cs_rollback_all(struct hl_device *hdev) { int i; struct hl_cs *cs, *tmp; /* flush all completions */ for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) flush_workqueue(hdev->cq_wq[i]); /* Make sure we don't have leftovers in the H/W queues mirror list */ list_for_each_entry_safe(cs, tmp, &hdev->hw_queues_mirror_list, mirror_node) { cs_get(cs); cs->aborted = true; dev_warn_ratelimited(hdev->dev, "Killing CS %d.%llu\n", cs->ctx->asid, cs->sequence); cs_rollback(hdev, cs); cs_put(cs); } } static void job_wq_completion(struct work_struct *work) { struct hl_cs_job *job = container_of(work, struct hl_cs_job, finish_work); struct hl_cs *cs = job->cs; struct hl_device *hdev = cs->ctx->hdev; /* job is no longer needed */ free_job(hdev, job); } static int validate_queue_index(struct hl_device *hdev, struct hl_cs_chunk *chunk, enum hl_queue_type *queue_type, bool *is_kernel_allocated_cb) { struct asic_fixed_properties *asic = &hdev->asic_prop; struct hw_queue_properties *hw_queue_prop; /* This must be checked here to prevent out-of-bounds access to * hw_queues_props array */ if (chunk->queue_index >= asic->max_queues) { dev_err(hdev->dev, "Queue index %d is invalid\n", chunk->queue_index); return -EINVAL; } hw_queue_prop = &asic->hw_queues_props[chunk->queue_index]; if (hw_queue_prop->type == QUEUE_TYPE_NA) { dev_err(hdev->dev, "Queue index %d is invalid\n", chunk->queue_index); return -EINVAL; } if (hw_queue_prop->driver_only) { dev_err(hdev->dev, "Queue index %d is restricted for the kernel driver\n", chunk->queue_index); return -EINVAL; } *queue_type = hw_queue_prop->type; *is_kernel_allocated_cb = !!hw_queue_prop->requires_kernel_cb; return 0; } static struct hl_cb *get_cb_from_cs_chunk(struct hl_device *hdev, struct hl_cb_mgr *cb_mgr, struct hl_cs_chunk *chunk) { struct hl_cb *cb; u32 cb_handle; cb_handle = (u32) (chunk->cb_handle >> PAGE_SHIFT); cb = hl_cb_get(hdev, cb_mgr, cb_handle); if (!cb) { dev_err(hdev->dev, "CB handle 0x%x invalid\n", cb_handle); return NULL; } if ((chunk->cb_size < 8) || (chunk->cb_size > cb->size)) { dev_err(hdev->dev, "CB size %u invalid\n", chunk->cb_size); goto release_cb; } spin_lock(&cb->lock); cb->cs_cnt++; spin_unlock(&cb->lock); return cb; release_cb: hl_cb_put(cb); return NULL; } struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev, enum hl_queue_type queue_type, bool is_kernel_allocated_cb) { struct hl_cs_job *job; job = kzalloc(sizeof(*job), GFP_ATOMIC); if (!job) return NULL; job->queue_type = queue_type; job->is_kernel_allocated_cb = is_kernel_allocated_cb; if (is_cb_patched(hdev, job)) INIT_LIST_HEAD(&job->userptr_list); if (job->queue_type == QUEUE_TYPE_EXT) INIT_WORK(&job->finish_work, job_wq_completion); return job; } static int cs_ioctl_default(struct hl_fpriv *hpriv, void __user *chunks, u32 num_chunks, u64 *cs_seq) { struct hl_device *hdev = hpriv->hdev; struct hl_cs_chunk *cs_chunk_array; struct hl_cs_job *job; struct hl_cs *cs; struct hl_cb *cb; bool int_queues_only = true; u32 size_to_copy; int rc, i; *cs_seq = ULLONG_MAX; if (num_chunks > HL_MAX_JOBS_PER_CS) { dev_err(hdev->dev, "Number of chunks can NOT be larger than %d\n", HL_MAX_JOBS_PER_CS); rc = -EINVAL; goto out; } cs_chunk_array = kmalloc_array(num_chunks, sizeof(*cs_chunk_array), GFP_ATOMIC); if (!cs_chunk_array) { rc = -ENOMEM; goto out; } size_to_copy = num_chunks * sizeof(struct hl_cs_chunk); if (copy_from_user(cs_chunk_array, chunks, size_to_copy)) { dev_err(hdev->dev, "Failed to copy cs chunk array from user\n"); rc = -EFAULT; goto free_cs_chunk_array; } /* increment refcnt for context */ hl_ctx_get(hdev, hpriv->ctx); rc = allocate_cs(hdev, hpriv->ctx, CS_TYPE_DEFAULT, &cs); if (rc) { hl_ctx_put(hpriv->ctx); goto free_cs_chunk_array; } *cs_seq = cs->sequence; hl_debugfs_add_cs(cs); /* Validate ALL the CS chunks before submitting the CS */ for (i = 0 ; i < num_chunks ; i++) { struct hl_cs_chunk *chunk = &cs_chunk_array[i]; enum hl_queue_type queue_type; bool is_kernel_allocated_cb; rc = validate_queue_index(hdev, chunk, &queue_type, &is_kernel_allocated_cb); if (rc) { hpriv->ctx->cs_counters.parsing_drop_cnt++; goto free_cs_object; } if (is_kernel_allocated_cb) { cb = get_cb_from_cs_chunk(hdev, &hpriv->cb_mgr, chunk); if (!cb) { hpriv->ctx->cs_counters.parsing_drop_cnt++; rc = -EINVAL; goto free_cs_object; } } else { cb = (struct hl_cb *) (uintptr_t) chunk->cb_handle; } if (queue_type == QUEUE_TYPE_EXT || queue_type == QUEUE_TYPE_HW) int_queues_only = false; job = hl_cs_allocate_job(hdev, queue_type, is_kernel_allocated_cb); if (!job) { hpriv->ctx->cs_counters.out_of_mem_drop_cnt++; dev_err(hdev->dev, "Failed to allocate a new job\n"); rc = -ENOMEM; if (is_kernel_allocated_cb) goto release_cb; else goto free_cs_object; } job->id = i + 1; job->cs = cs; job->user_cb = cb; job->user_cb_size = chunk->cb_size; job->hw_queue_id = chunk->queue_index; cs->jobs_in_queue_cnt[job->hw_queue_id]++; list_add_tail(&job->cs_node, &cs->job_list); /* * Increment CS reference. When CS reference is 0, CS is * done and can be signaled to user and free all its resources * Only increment for JOB on external or H/W queues, because * only for those JOBs we get completion */ if (job->queue_type == QUEUE_TYPE_EXT || job->queue_type == QUEUE_TYPE_HW) cs_get(cs); hl_debugfs_add_job(hdev, job); rc = cs_parser(hpriv, job); if (rc) { hpriv->ctx->cs_counters.parsing_drop_cnt++; dev_err(hdev->dev, "Failed to parse JOB %d.%llu.%d, err %d, rejecting the CS\n", cs->ctx->asid, cs->sequence, job->id, rc); goto free_cs_object; } } if (int_queues_only) { hpriv->ctx->cs_counters.parsing_drop_cnt++; dev_err(hdev->dev, "Reject CS %d.%llu because only internal queues jobs are present\n", cs->ctx->asid, cs->sequence); rc = -EINVAL; goto free_cs_object; } rc = hl_hw_queue_schedule_cs(cs); if (rc) { if (rc != -EAGAIN) dev_err(hdev->dev, "Failed to submit CS %d.%llu to H/W queues, error %d\n", cs->ctx->asid, cs->sequence, rc); goto free_cs_object; } rc = HL_CS_STATUS_SUCCESS; goto put_cs; release_cb: spin_lock(&cb->lock); cb->cs_cnt--; spin_unlock(&cb->lock); hl_cb_put(cb); free_cs_object: cs_rollback(hdev, cs); *cs_seq = ULLONG_MAX; /* The path below is both for good and erroneous exits */ put_cs: /* We finished with the CS in this function, so put the ref */ cs_put(cs); free_cs_chunk_array: kfree(cs_chunk_array); out: return rc; } static int cs_ioctl_signal_wait(struct hl_fpriv *hpriv, enum hl_cs_type cs_type, void __user *chunks, u32 num_chunks, u64 *cs_seq) { struct hl_device *hdev = hpriv->hdev; struct hl_ctx *ctx = hpriv->ctx; struct hl_cs_chunk *cs_chunk_array, *chunk; struct hw_queue_properties *hw_queue_prop; struct dma_fence *sig_fence = NULL; struct hl_cs_job *job; struct hl_cs *cs; struct hl_cb *cb; enum hl_queue_type q_type; u64 *signal_seq_arr = NULL, signal_seq; u32 size_to_copy, q_idx, signal_seq_arr_len, cb_size; int rc; *cs_seq = ULLONG_MAX; if (num_chunks > HL_MAX_JOBS_PER_CS) { dev_err(hdev->dev, "Number of chunks can NOT be larger than %d\n", HL_MAX_JOBS_PER_CS); rc = -EINVAL; goto out; } cs_chunk_array = kmalloc_array(num_chunks, sizeof(*cs_chunk_array), GFP_ATOMIC); if (!cs_chunk_array) { rc = -ENOMEM; goto out; } size_to_copy = num_chunks * sizeof(struct hl_cs_chunk); if (copy_from_user(cs_chunk_array, chunks, size_to_copy)) { dev_err(hdev->dev, "Failed to copy cs chunk array from user\n"); rc = -EFAULT; goto free_cs_chunk_array; } /* currently it is guaranteed to have only one chunk */ chunk = &cs_chunk_array[0]; if (chunk->queue_index >= hdev->asic_prop.max_queues) { dev_err(hdev->dev, "Queue index %d is invalid\n", chunk->queue_index); rc = -EINVAL; goto free_cs_chunk_array; } q_idx = chunk->queue_index; hw_queue_prop = &hdev->asic_prop.hw_queues_props[q_idx]; q_type = hw_queue_prop->type; if ((q_idx >= hdev->asic_prop.max_queues) || (!hw_queue_prop->supports_sync_stream)) { dev_err(hdev->dev, "Queue index %d is invalid\n", q_idx); rc = -EINVAL; goto free_cs_chunk_array; } if (cs_type == CS_TYPE_WAIT) { struct hl_cs_compl *sig_waitcs_cmpl; signal_seq_arr_len = chunk->num_signal_seq_arr; /* currently only one signal seq is supported */ if (signal_seq_arr_len != 1) { dev_err(hdev->dev, "Wait for signal CS supports only one signal CS seq\n"); rc = -EINVAL; goto free_cs_chunk_array; } signal_seq_arr = kmalloc_array(signal_seq_arr_len, sizeof(*signal_seq_arr), GFP_ATOMIC); if (!signal_seq_arr) { rc = -ENOMEM; goto free_cs_chunk_array; } size_to_copy = chunk->num_signal_seq_arr * sizeof(*signal_seq_arr); if (copy_from_user(signal_seq_arr, u64_to_user_ptr(chunk->signal_seq_arr), size_to_copy)) { dev_err(hdev->dev, "Failed to copy signal seq array from user\n"); rc = -EFAULT; goto free_signal_seq_array; } /* currently it is guaranteed to have only one signal seq */ signal_seq = signal_seq_arr[0]; sig_fence = hl_ctx_get_fence(ctx, signal_seq); if (IS_ERR(sig_fence)) { dev_err(hdev->dev, "Failed to get signal CS with seq 0x%llx\n", signal_seq); rc = PTR_ERR(sig_fence); goto free_signal_seq_array; } if (!sig_fence) { /* signal CS already finished */ rc = 0; goto free_signal_seq_array; } sig_waitcs_cmpl = container_of(sig_fence, struct hl_cs_compl, base_fence); if (sig_waitcs_cmpl->type != CS_TYPE_SIGNAL) { dev_err(hdev->dev, "CS seq 0x%llx is not of a signal CS\n", signal_seq); dma_fence_put(sig_fence); rc = -EINVAL; goto free_signal_seq_array; } if (dma_fence_is_signaled(sig_fence)) { /* signal CS already finished */ dma_fence_put(sig_fence); rc = 0; goto free_signal_seq_array; } } /* increment refcnt for context */ hl_ctx_get(hdev, ctx); rc = allocate_cs(hdev, ctx, cs_type, &cs); if (rc) { if (cs_type == CS_TYPE_WAIT) dma_fence_put(sig_fence); hl_ctx_put(ctx); goto free_signal_seq_array; } /* * Save the signal CS fence for later initialization right before * hanging the wait CS on the queue. */ if (cs->type == CS_TYPE_WAIT) cs->signal_fence = sig_fence; hl_debugfs_add_cs(cs); *cs_seq = cs->sequence; job = hl_cs_allocate_job(hdev, q_type, true); if (!job) { ctx->cs_counters.out_of_mem_drop_cnt++; dev_err(hdev->dev, "Failed to allocate a new job\n"); rc = -ENOMEM; goto put_cs; } if (cs->type == CS_TYPE_WAIT) cb_size = hdev->asic_funcs->get_wait_cb_size(hdev); else cb_size = hdev->asic_funcs->get_signal_cb_size(hdev); cb = hl_cb_kernel_create(hdev, cb_size, q_type == QUEUE_TYPE_HW && hdev->mmu_enable); if (!cb) { ctx->cs_counters.out_of_mem_drop_cnt++; kfree(job); rc = -EFAULT; goto put_cs; } job->id = 0; job->cs = cs; job->user_cb = cb; job->user_cb->cs_cnt++; job->user_cb_size = cb_size; job->hw_queue_id = q_idx; /* * No need in parsing, user CB is the patched CB. * We call hl_cb_destroy() out of two reasons - we don't need the CB in * the CB idr anymore and to decrement its refcount as it was * incremented inside hl_cb_kernel_create(). */ job->patched_cb = job->user_cb; job->job_cb_size = job->user_cb_size; hl_cb_destroy(hdev, &hdev->kernel_cb_mgr, cb->id << PAGE_SHIFT); cs->jobs_in_queue_cnt[job->hw_queue_id]++; list_add_tail(&job->cs_node, &cs->job_list); /* increment refcount as for external queues we get completion */ cs_get(cs); hl_debugfs_add_job(hdev, job); rc = hl_hw_queue_schedule_cs(cs); if (rc) { if (rc != -EAGAIN) dev_err(hdev->dev, "Failed to submit CS %d.%llu to H/W queues, error %d\n", ctx->asid, cs->sequence, rc); goto free_cs_object; } rc = HL_CS_STATUS_SUCCESS; goto put_cs; free_cs_object: cs_rollback(hdev, cs); *cs_seq = ULLONG_MAX; /* The path below is both for good and erroneous exits */ put_cs: /* We finished with the CS in this function, so put the ref */ cs_put(cs); free_signal_seq_array: if (cs_type == CS_TYPE_WAIT) kfree(signal_seq_arr); free_cs_chunk_array: kfree(cs_chunk_array); out: return rc; } int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data) { struct hl_device *hdev = hpriv->hdev; union hl_cs_args *args = data; struct hl_ctx *ctx = hpriv->ctx; void __user *chunks_execute, *chunks_restore; enum hl_cs_type cs_type; u32 num_chunks_execute, num_chunks_restore, sig_wait_flags; u64 cs_seq = ULONG_MAX; int rc, do_ctx_switch; bool need_soft_reset = false; if (hl_device_disabled_or_in_reset(hdev)) { dev_warn_ratelimited(hdev->dev, "Device is %s. Can't submit new CS\n", atomic_read(&hdev->in_reset) ? "in_reset" : "disabled"); rc = -EBUSY; goto out; } sig_wait_flags = args->in.cs_flags & HL_CS_FLAGS_SIG_WAIT; if (unlikely(sig_wait_flags == HL_CS_FLAGS_SIG_WAIT)) { dev_err(hdev->dev, "Signal and wait CS flags are mutually exclusive, context %d\n", ctx->asid); rc = -EINVAL; goto out; } if (unlikely((sig_wait_flags & HL_CS_FLAGS_SIG_WAIT) && (!hdev->supports_sync_stream))) { dev_err(hdev->dev, "Sync stream CS is not supported\n"); rc = -EINVAL; goto out; } if (args->in.cs_flags & HL_CS_FLAGS_SIGNAL) cs_type = CS_TYPE_SIGNAL; else if (args->in.cs_flags & HL_CS_FLAGS_WAIT) cs_type = CS_TYPE_WAIT; else cs_type = CS_TYPE_DEFAULT; chunks_execute = (void __user *) (uintptr_t) args->in.chunks_execute; num_chunks_execute = args->in.num_chunks_execute; if (cs_type == CS_TYPE_DEFAULT) { if (!num_chunks_execute) { dev_err(hdev->dev, "Got execute CS with 0 chunks, context %d\n", ctx->asid); rc = -EINVAL; goto out; } } else if (num_chunks_execute != 1) { dev_err(hdev->dev, "Sync stream CS mandates one chunk only, context %d\n", ctx->asid); rc = -EINVAL; goto out; } do_ctx_switch = atomic_cmpxchg(&ctx->thread_ctx_switch_token, 1, 0); if (do_ctx_switch || (args->in.cs_flags & HL_CS_FLAGS_FORCE_RESTORE)) { long ret; chunks_restore = (void __user *) (uintptr_t) args->in.chunks_restore; num_chunks_restore = args->in.num_chunks_restore; mutex_lock(&hpriv->restore_phase_mutex); if (do_ctx_switch) { rc = hdev->asic_funcs->context_switch(hdev, ctx->asid); if (rc) { dev_err_ratelimited(hdev->dev, "Failed to switch to context %d, rejecting CS! %d\n", ctx->asid, rc); /* * If we timedout, or if the device is not IDLE * while we want to do context-switch (-EBUSY), * we need to soft-reset because QMAN is * probably stuck. However, we can't call to * reset here directly because of deadlock, so * need to do it at the very end of this * function */ if ((rc == -ETIMEDOUT) || (rc == -EBUSY)) need_soft_reset = true; mutex_unlock(&hpriv->restore_phase_mutex); goto out; } } hdev->asic_funcs->restore_phase_topology(hdev); if (!num_chunks_restore) { dev_dbg(hdev->dev, "Need to run restore phase but restore CS is empty\n"); rc = 0; } else { rc = cs_ioctl_default(hpriv, chunks_restore, num_chunks_restore, &cs_seq); } mutex_unlock(&hpriv->restore_phase_mutex); if (rc) { dev_err(hdev->dev, "Failed to submit restore CS for context %d (%d)\n", ctx->asid, rc); goto out; } /* Need to wait for restore completion before execution phase */ if (num_chunks_restore) { ret = _hl_cs_wait_ioctl(hdev, ctx, jiffies_to_usecs(hdev->timeout_jiffies), cs_seq); if (ret <= 0) { dev_err(hdev->dev, "Restore CS for context %d failed to complete %ld\n", ctx->asid, ret); rc = -ENOEXEC; goto out; } } ctx->thread_ctx_switch_wait_token = 1; } else if (!ctx->thread_ctx_switch_wait_token) { u32 tmp; rc = hl_poll_timeout_memory(hdev, &ctx->thread_ctx_switch_wait_token, tmp, (tmp == 1), 100, jiffies_to_usecs(hdev->timeout_jiffies), false); if (rc == -ETIMEDOUT) { dev_err(hdev->dev, "context switch phase timeout (%d)\n", tmp); goto out; } } if (cs_type == CS_TYPE_DEFAULT) rc = cs_ioctl_default(hpriv, chunks_execute, num_chunks_execute, &cs_seq); else rc = cs_ioctl_signal_wait(hpriv, cs_type, chunks_execute, num_chunks_execute, &cs_seq); out: if (rc != -EAGAIN) { memset(args, 0, sizeof(*args)); args->out.status = rc; args->out.seq = cs_seq; } if (((rc == -ETIMEDOUT) || (rc == -EBUSY)) && (need_soft_reset)) hl_device_reset(hdev, false, false); return rc; } static long _hl_cs_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, u64 timeout_us, u64 seq) { struct dma_fence *fence; unsigned long timeout; long rc; if (timeout_us == MAX_SCHEDULE_TIMEOUT) timeout = timeout_us; else timeout = usecs_to_jiffies(timeout_us); hl_ctx_get(hdev, ctx); fence = hl_ctx_get_fence(ctx, seq); if (IS_ERR(fence)) { rc = PTR_ERR(fence); if (rc == -EINVAL) dev_notice_ratelimited(hdev->dev, "Can't wait on CS %llu because current CS is at seq %llu\n", seq, ctx->cs_sequence); } else if (fence) { rc = dma_fence_wait_timeout(fence, true, timeout); if (fence->error == -ETIMEDOUT) rc = -ETIMEDOUT; else if (fence->error == -EIO) rc = -EIO; dma_fence_put(fence); } else { dev_dbg(hdev->dev, "Can't wait on seq %llu because current CS is at seq %llu (Fence is gone)\n", seq, ctx->cs_sequence); rc = 1; } hl_ctx_put(ctx); return rc; } int hl_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data) { struct hl_device *hdev = hpriv->hdev; union hl_wait_cs_args *args = data; u64 seq = args->in.seq; long rc; rc = _hl_cs_wait_ioctl(hdev, hpriv->ctx, args->in.timeout_us, seq); memset(args, 0, sizeof(*args)); if (rc < 0) { if (rc == -ERESTARTSYS) { dev_err_ratelimited(hdev->dev, "user process got signal while waiting for CS handle %llu\n", seq); args->out.status = HL_WAIT_CS_STATUS_INTERRUPTED; rc = -EINTR; } else if (rc == -ETIMEDOUT) { dev_err_ratelimited(hdev->dev, "CS %llu has timed-out while user process is waiting for it\n", seq); args->out.status = HL_WAIT_CS_STATUS_TIMEDOUT; } else if (rc == -EIO) { dev_err_ratelimited(hdev->dev, "CS %llu has been aborted while user process is waiting for it\n", seq); args->out.status = HL_WAIT_CS_STATUS_ABORTED; } return rc; } if (rc == 0) args->out.status = HL_WAIT_CS_STATUS_BUSY; else args->out.status = HL_WAIT_CS_STATUS_COMPLETED; return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1