Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Omer Shpigelman | 4238 | 97.56% | 9 | 52.94% |
Oded Gabbay | 60 | 1.38% | 4 | 23.53% |
Paweł Piskorski | 40 | 0.92% | 1 | 5.88% |
Ofir Bitton | 3 | 0.07% | 1 | 5.88% |
Tomer Tayar | 2 | 0.05% | 1 | 5.88% |
Greg Kroah-Hartman | 1 | 0.02% | 1 | 5.88% |
Total | 4344 | 17 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2016-2019 HabanaLabs, Ltd. * All Rights Reserved. */ #include "habanalabs.h" #include "../include/hw_ip/mmu/mmu_general.h" #include <linux/genalloc.h> #include <linux/slab.h> static inline u64 get_phys_addr(struct hl_ctx *ctx, u64 shadow_addr); static struct pgt_info *get_pgt_info(struct hl_ctx *ctx, u64 hop_addr) { struct pgt_info *pgt_info = NULL; hash_for_each_possible(ctx->mmu_shadow_hash, pgt_info, node, (unsigned long) hop_addr) if (hop_addr == pgt_info->shadow_addr) break; return pgt_info; } static void _free_hop(struct hl_ctx *ctx, struct pgt_info *pgt_info) { struct hl_device *hdev = ctx->hdev; gen_pool_free(hdev->mmu_pgt_pool, pgt_info->phys_addr, hdev->asic_prop.mmu_hop_table_size); hash_del(&pgt_info->node); kfree((u64 *) (uintptr_t) pgt_info->shadow_addr); kfree(pgt_info); } static void free_hop(struct hl_ctx *ctx, u64 hop_addr) { struct pgt_info *pgt_info = get_pgt_info(ctx, hop_addr); _free_hop(ctx, pgt_info); } static u64 alloc_hop(struct hl_ctx *ctx) { struct hl_device *hdev = ctx->hdev; struct asic_fixed_properties *prop = &hdev->asic_prop; struct pgt_info *pgt_info; u64 phys_addr, shadow_addr; pgt_info = kmalloc(sizeof(*pgt_info), GFP_KERNEL); if (!pgt_info) return ULLONG_MAX; phys_addr = (u64) gen_pool_alloc(hdev->mmu_pgt_pool, prop->mmu_hop_table_size); if (!phys_addr) { dev_err(hdev->dev, "failed to allocate page\n"); goto pool_add_err; } shadow_addr = (u64) (uintptr_t) kzalloc(prop->mmu_hop_table_size, GFP_KERNEL); if (!shadow_addr) goto shadow_err; pgt_info->phys_addr = phys_addr; pgt_info->shadow_addr = shadow_addr; pgt_info->ctx = ctx; pgt_info->num_of_ptes = 0; hash_add(ctx->mmu_shadow_hash, &pgt_info->node, shadow_addr); return shadow_addr; shadow_err: gen_pool_free(hdev->mmu_pgt_pool, phys_addr, prop->mmu_hop_table_size); pool_add_err: kfree(pgt_info); return ULLONG_MAX; } static inline u64 get_phys_hop0_addr(struct hl_ctx *ctx) { return ctx->hdev->asic_prop.mmu_pgt_addr + (ctx->asid * ctx->hdev->asic_prop.mmu_hop_table_size); } static inline u64 get_hop0_addr(struct hl_ctx *ctx) { return (u64) (uintptr_t) ctx->hdev->mmu_shadow_hop0 + (ctx->asid * ctx->hdev->asic_prop.mmu_hop_table_size); } static inline void flush(struct hl_ctx *ctx) { /* flush all writes from all cores to reach PCI */ mb(); ctx->hdev->asic_funcs->read_pte(ctx->hdev, get_phys_hop0_addr(ctx)); } /* transform the value to physical address when writing to H/W */ static inline void write_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val) { /* * The value to write is actually the address of the next shadow hop + * flags at the 12 LSBs. * Hence in order to get the value to write to the physical PTE, we * clear the 12 LSBs and translate the shadow hop to its associated * physical hop, and add back the original 12 LSBs. */ u64 phys_val = get_phys_addr(ctx, val & HOP_PHYS_ADDR_MASK) | (val & FLAGS_MASK); ctx->hdev->asic_funcs->write_pte(ctx->hdev, get_phys_addr(ctx, shadow_pte_addr), phys_val); *(u64 *) (uintptr_t) shadow_pte_addr = val; } /* do not transform the value to physical address when writing to H/W */ static inline void write_final_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val) { ctx->hdev->asic_funcs->write_pte(ctx->hdev, get_phys_addr(ctx, shadow_pte_addr), val); *(u64 *) (uintptr_t) shadow_pte_addr = val; } /* clear the last and present bits */ static inline void clear_pte(struct hl_ctx *ctx, u64 pte_addr) { /* no need to transform the value to physical address */ write_final_pte(ctx, pte_addr, 0); } static inline void get_pte(struct hl_ctx *ctx, u64 hop_addr) { get_pgt_info(ctx, hop_addr)->num_of_ptes++; } /* * put_pte - decrement the num of ptes and free the hop if possible * * @ctx: pointer to the context structure * @hop_addr: addr of the hop * * This function returns the number of ptes left on this hop. If the number is * 0, it means the pte was freed. */ static inline int put_pte(struct hl_ctx *ctx, u64 hop_addr) { struct pgt_info *pgt_info = get_pgt_info(ctx, hop_addr); int num_of_ptes_left; pgt_info->num_of_ptes--; /* * Need to save the number of ptes left because free_hop might free * the pgt_info */ num_of_ptes_left = pgt_info->num_of_ptes; if (!num_of_ptes_left) _free_hop(ctx, pgt_info); return num_of_ptes_left; } static inline u64 get_hopN_pte_addr(struct hl_ctx *ctx, u64 hop_addr, u64 virt_addr, u64 mask, u64 shift) { return hop_addr + ctx->hdev->asic_prop.mmu_pte_size * ((virt_addr & mask) >> shift); } static inline u64 get_hop0_pte_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop, u64 hop_addr, u64 vaddr) { return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop0_mask, mmu_prop->hop0_shift); } static inline u64 get_hop1_pte_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop, u64 hop_addr, u64 vaddr) { return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop1_mask, mmu_prop->hop1_shift); } static inline u64 get_hop2_pte_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop, u64 hop_addr, u64 vaddr) { return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop2_mask, mmu_prop->hop2_shift); } static inline u64 get_hop3_pte_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop, u64 hop_addr, u64 vaddr) { return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop3_mask, mmu_prop->hop3_shift); } static inline u64 get_hop4_pte_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop, u64 hop_addr, u64 vaddr) { return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop4_mask, mmu_prop->hop4_shift); } static inline u64 get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte) { if (curr_pte & PAGE_PRESENT_MASK) return curr_pte & HOP_PHYS_ADDR_MASK; else return ULLONG_MAX; } static inline u64 get_alloc_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte, bool *is_new_hop) { u64 hop_addr = get_next_hop_addr(ctx, curr_pte); if (hop_addr == ULLONG_MAX) { hop_addr = alloc_hop(ctx); *is_new_hop = (hop_addr != ULLONG_MAX); } return hop_addr; } /* translates shadow address inside hop to a physical address */ static inline u64 get_phys_addr(struct hl_ctx *ctx, u64 shadow_addr) { u64 page_mask = (ctx->hdev->asic_prop.mmu_hop_table_size - 1); u64 shadow_hop_addr = shadow_addr & ~page_mask; u64 pte_offset = shadow_addr & page_mask; u64 phys_hop_addr; if (shadow_hop_addr != get_hop0_addr(ctx)) phys_hop_addr = get_pgt_info(ctx, shadow_hop_addr)->phys_addr; else phys_hop_addr = get_phys_hop0_addr(ctx); return phys_hop_addr + pte_offset; } static bool is_dram_va(struct hl_device *hdev, u64 virt_addr) { struct asic_fixed_properties *prop = &hdev->asic_prop; return hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size, prop->dmmu.start_addr, prop->dmmu.end_addr); } static int dram_default_mapping_init(struct hl_ctx *ctx) { struct hl_device *hdev = ctx->hdev; struct asic_fixed_properties *prop = &hdev->asic_prop; u64 num_of_hop3, total_hops, hop0_addr, hop1_addr, hop2_addr, hop2_pte_addr, hop3_pte_addr, pte_val; int rc, i, j, hop3_allocated = 0; if ((!hdev->dram_supports_virtual_memory) || (!hdev->dram_default_page_mapping) || (ctx->asid == HL_KERNEL_ASID_ID)) return 0; num_of_hop3 = prop->dram_size_for_default_page_mapping; do_div(num_of_hop3, prop->dram_page_size); do_div(num_of_hop3, PTE_ENTRIES_IN_HOP); /* add hop1 and hop2 */ total_hops = num_of_hop3 + 2; ctx->dram_default_hops = kzalloc(HL_PTE_SIZE * total_hops, GFP_KERNEL); if (!ctx->dram_default_hops) return -ENOMEM; hop0_addr = get_hop0_addr(ctx); hop1_addr = alloc_hop(ctx); if (hop1_addr == ULLONG_MAX) { dev_err(hdev->dev, "failed to alloc hop 1\n"); rc = -ENOMEM; goto hop1_err; } ctx->dram_default_hops[total_hops - 1] = hop1_addr; hop2_addr = alloc_hop(ctx); if (hop2_addr == ULLONG_MAX) { dev_err(hdev->dev, "failed to alloc hop 2\n"); rc = -ENOMEM; goto hop2_err; } ctx->dram_default_hops[total_hops - 2] = hop2_addr; for (i = 0 ; i < num_of_hop3 ; i++) { ctx->dram_default_hops[i] = alloc_hop(ctx); if (ctx->dram_default_hops[i] == ULLONG_MAX) { dev_err(hdev->dev, "failed to alloc hop 3, i: %d\n", i); rc = -ENOMEM; goto hop3_err; } hop3_allocated++; } /* need only pte 0 in hops 0 and 1 */ pte_val = (hop1_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; write_pte(ctx, hop0_addr, pte_val); pte_val = (hop2_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; write_pte(ctx, hop1_addr, pte_val); get_pte(ctx, hop1_addr); hop2_pte_addr = hop2_addr; for (i = 0 ; i < num_of_hop3 ; i++) { pte_val = (ctx->dram_default_hops[i] & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; write_pte(ctx, hop2_pte_addr, pte_val); get_pte(ctx, hop2_addr); hop2_pte_addr += HL_PTE_SIZE; } pte_val = (prop->mmu_dram_default_page_addr & HOP_PHYS_ADDR_MASK) | LAST_MASK | PAGE_PRESENT_MASK; for (i = 0 ; i < num_of_hop3 ; i++) { hop3_pte_addr = ctx->dram_default_hops[i]; for (j = 0 ; j < PTE_ENTRIES_IN_HOP ; j++) { write_final_pte(ctx, hop3_pte_addr, pte_val); get_pte(ctx, ctx->dram_default_hops[i]); hop3_pte_addr += HL_PTE_SIZE; } } flush(ctx); return 0; hop3_err: for (i = 0 ; i < hop3_allocated ; i++) free_hop(ctx, ctx->dram_default_hops[i]); free_hop(ctx, hop2_addr); hop2_err: free_hop(ctx, hop1_addr); hop1_err: kfree(ctx->dram_default_hops); return rc; } static void dram_default_mapping_fini(struct hl_ctx *ctx) { struct hl_device *hdev = ctx->hdev; struct asic_fixed_properties *prop = &hdev->asic_prop; u64 num_of_hop3, total_hops, hop0_addr, hop1_addr, hop2_addr, hop2_pte_addr, hop3_pte_addr; int i, j; if ((!hdev->dram_supports_virtual_memory) || (!hdev->dram_default_page_mapping) || (ctx->asid == HL_KERNEL_ASID_ID)) return; num_of_hop3 = prop->dram_size_for_default_page_mapping; do_div(num_of_hop3, prop->dram_page_size); do_div(num_of_hop3, PTE_ENTRIES_IN_HOP); hop0_addr = get_hop0_addr(ctx); /* add hop1 and hop2 */ total_hops = num_of_hop3 + 2; hop1_addr = ctx->dram_default_hops[total_hops - 1]; hop2_addr = ctx->dram_default_hops[total_hops - 2]; for (i = 0 ; i < num_of_hop3 ; i++) { hop3_pte_addr = ctx->dram_default_hops[i]; for (j = 0 ; j < PTE_ENTRIES_IN_HOP ; j++) { clear_pte(ctx, hop3_pte_addr); put_pte(ctx, ctx->dram_default_hops[i]); hop3_pte_addr += HL_PTE_SIZE; } } hop2_pte_addr = hop2_addr; hop2_pte_addr = hop2_addr; for (i = 0 ; i < num_of_hop3 ; i++) { clear_pte(ctx, hop2_pte_addr); put_pte(ctx, hop2_addr); hop2_pte_addr += HL_PTE_SIZE; } clear_pte(ctx, hop1_addr); put_pte(ctx, hop1_addr); clear_pte(ctx, hop0_addr); kfree(ctx->dram_default_hops); flush(ctx); } /** * hl_mmu_init() - initialize the MMU module. * @hdev: habanalabs device structure. * * This function does the following: * - Create a pool of pages for pgt_infos. * - Create a shadow table for pgt * * Return: 0 for success, non-zero for failure. */ int hl_mmu_init(struct hl_device *hdev) { struct asic_fixed_properties *prop = &hdev->asic_prop; int rc; if (!hdev->mmu_enable) return 0; hdev->mmu_pgt_pool = gen_pool_create(__ffs(prop->mmu_hop_table_size), -1); if (!hdev->mmu_pgt_pool) { dev_err(hdev->dev, "Failed to create page gen pool\n"); return -ENOMEM; } rc = gen_pool_add(hdev->mmu_pgt_pool, prop->mmu_pgt_addr + prop->mmu_hop0_tables_total_size, prop->mmu_pgt_size - prop->mmu_hop0_tables_total_size, -1); if (rc) { dev_err(hdev->dev, "Failed to add memory to page gen pool\n"); goto err_pool_add; } hdev->mmu_shadow_hop0 = kvmalloc_array(prop->max_asid, prop->mmu_hop_table_size, GFP_KERNEL | __GFP_ZERO); if (ZERO_OR_NULL_PTR(hdev->mmu_shadow_hop0)) { rc = -ENOMEM; goto err_pool_add; } /* MMU H/W init will be done in device hw_init() */ return 0; err_pool_add: gen_pool_destroy(hdev->mmu_pgt_pool); return rc; } /** * hl_mmu_fini() - release the MMU module. * @hdev: habanalabs device structure. * * This function does the following: * - Disable MMU in H/W. * - Free the pgt_infos pool. * * All contexts should be freed before calling this function. */ void hl_mmu_fini(struct hl_device *hdev) { if (!hdev->mmu_enable) return; /* MMU H/W fini was already done in device hw_fini() */ kvfree(hdev->mmu_shadow_hop0); gen_pool_destroy(hdev->mmu_pgt_pool); } /** * hl_mmu_ctx_init() - initialize a context for using the MMU module. * @ctx: pointer to the context structure to initialize. * * Initialize a mutex to protect the concurrent mapping flow, a hash to hold all * page tables hops related to this context. * Return: 0 on success, non-zero otherwise. */ int hl_mmu_ctx_init(struct hl_ctx *ctx) { struct hl_device *hdev = ctx->hdev; if (!hdev->mmu_enable) return 0; mutex_init(&ctx->mmu_lock); hash_init(ctx->mmu_shadow_hash); return dram_default_mapping_init(ctx); } /* * hl_mmu_ctx_fini - disable a ctx from using the mmu module * * @ctx: pointer to the context structure * * This function does the following: * - Free any pgts which were not freed yet * - Free the mutex * - Free DRAM default page mapping hops */ void hl_mmu_ctx_fini(struct hl_ctx *ctx) { struct hl_device *hdev = ctx->hdev; struct pgt_info *pgt_info; struct hlist_node *tmp; int i; if (!hdev->mmu_enable) return; dram_default_mapping_fini(ctx); if (!hash_empty(ctx->mmu_shadow_hash)) dev_err(hdev->dev, "ctx %d is freed while it has pgts in use\n", ctx->asid); hash_for_each_safe(ctx->mmu_shadow_hash, i, tmp, pgt_info, node) { dev_err_ratelimited(hdev->dev, "pgt_info of addr 0x%llx of asid %d was not destroyed, num_ptes: %d\n", pgt_info->phys_addr, ctx->asid, pgt_info->num_of_ptes); _free_hop(ctx, pgt_info); } mutex_destroy(&ctx->mmu_lock); } static int _hl_mmu_unmap(struct hl_ctx *ctx, u64 virt_addr, bool is_dram_addr) { struct hl_device *hdev = ctx->hdev; struct asic_fixed_properties *prop = &hdev->asic_prop; struct hl_mmu_properties *mmu_prop; u64 hop0_addr = 0, hop0_pte_addr = 0, hop1_addr = 0, hop1_pte_addr = 0, hop2_addr = 0, hop2_pte_addr = 0, hop3_addr = 0, hop3_pte_addr = 0, hop4_addr = 0, hop4_pte_addr = 0, curr_pte; bool is_huge, clear_hop3 = true; /* shifts and masks are the same in PMMU and HPMMU, use one of them */ mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu; hop0_addr = get_hop0_addr(ctx); hop0_pte_addr = get_hop0_pte_addr(ctx, mmu_prop, hop0_addr, virt_addr); curr_pte = *(u64 *) (uintptr_t) hop0_pte_addr; hop1_addr = get_next_hop_addr(ctx, curr_pte); if (hop1_addr == ULLONG_MAX) goto not_mapped; hop1_pte_addr = get_hop1_pte_addr(ctx, mmu_prop, hop1_addr, virt_addr); curr_pte = *(u64 *) (uintptr_t) hop1_pte_addr; hop2_addr = get_next_hop_addr(ctx, curr_pte); if (hop2_addr == ULLONG_MAX) goto not_mapped; hop2_pte_addr = get_hop2_pte_addr(ctx, mmu_prop, hop2_addr, virt_addr); curr_pte = *(u64 *) (uintptr_t) hop2_pte_addr; hop3_addr = get_next_hop_addr(ctx, curr_pte); if (hop3_addr == ULLONG_MAX) goto not_mapped; hop3_pte_addr = get_hop3_pte_addr(ctx, mmu_prop, hop3_addr, virt_addr); curr_pte = *(u64 *) (uintptr_t) hop3_pte_addr; is_huge = curr_pte & LAST_MASK; if (is_dram_addr && !is_huge) { dev_err(hdev->dev, "DRAM unmapping should use huge pages only\n"); return -EFAULT; } if (!is_huge) { hop4_addr = get_next_hop_addr(ctx, curr_pte); if (hop4_addr == ULLONG_MAX) goto not_mapped; hop4_pte_addr = get_hop4_pte_addr(ctx, mmu_prop, hop4_addr, virt_addr); curr_pte = *(u64 *) (uintptr_t) hop4_pte_addr; clear_hop3 = false; } if (hdev->dram_default_page_mapping && is_dram_addr) { u64 default_pte = (prop->mmu_dram_default_page_addr & HOP_PHYS_ADDR_MASK) | LAST_MASK | PAGE_PRESENT_MASK; if (curr_pte == default_pte) { dev_err(hdev->dev, "DRAM: hop3 PTE points to zero page, can't unmap, va: 0x%llx\n", virt_addr); goto not_mapped; } if (!(curr_pte & PAGE_PRESENT_MASK)) { dev_err(hdev->dev, "DRAM: hop3 PTE is cleared! can't unmap, va: 0x%llx\n", virt_addr); goto not_mapped; } write_final_pte(ctx, hop3_pte_addr, default_pte); put_pte(ctx, hop3_addr); } else { if (!(curr_pte & PAGE_PRESENT_MASK)) goto not_mapped; if (hop4_addr) clear_pte(ctx, hop4_pte_addr); else clear_pte(ctx, hop3_pte_addr); if (hop4_addr && !put_pte(ctx, hop4_addr)) clear_hop3 = true; if (!clear_hop3) goto mapped; clear_pte(ctx, hop3_pte_addr); if (put_pte(ctx, hop3_addr)) goto mapped; clear_pte(ctx, hop2_pte_addr); if (put_pte(ctx, hop2_addr)) goto mapped; clear_pte(ctx, hop1_pte_addr); if (put_pte(ctx, hop1_addr)) goto mapped; clear_pte(ctx, hop0_pte_addr); } mapped: return 0; not_mapped: dev_err(hdev->dev, "virt addr 0x%llx is not mapped to phys addr\n", virt_addr); return -EINVAL; } /* * hl_mmu_unmap - unmaps a virtual addr * * @ctx: pointer to the context structure * @virt_addr: virt addr to map from * @page_size: size of the page to unmap * @flush_pte: whether to do a PCI flush * * This function does the following: * - Check that the virt addr is mapped * - Unmap the virt addr and frees pgts if possible * - Returns 0 on success, -EINVAL if the given addr is not mapped * * Because this function changes the page tables in the device and because it * changes the MMU hash, it must be protected by a lock. * However, because it maps only a single page, the lock should be implemented * in a higher level in order to protect the entire mapping of the memory area * * For optimization reasons PCI flush may be requested once after unmapping of * large area. */ int hl_mmu_unmap(struct hl_ctx *ctx, u64 virt_addr, u32 page_size, bool flush_pte) { struct hl_device *hdev = ctx->hdev; struct asic_fixed_properties *prop = &hdev->asic_prop; struct hl_mmu_properties *mmu_prop; u64 real_virt_addr; u32 real_page_size, npages; int i, rc = 0; bool is_dram_addr; if (!hdev->mmu_enable) return 0; is_dram_addr = is_dram_va(hdev, virt_addr); if (is_dram_addr) mmu_prop = &prop->dmmu; else if ((page_size % prop->pmmu_huge.page_size) == 0) mmu_prop = &prop->pmmu_huge; else mmu_prop = &prop->pmmu; /* * The H/W handles mapping of specific page sizes. Hence if the page * size is bigger, we break it to sub-pages and unmap them separately. */ if ((page_size % mmu_prop->page_size) == 0) { real_page_size = mmu_prop->page_size; } else { dev_err(hdev->dev, "page size of %u is not %uKB aligned, can't unmap\n", page_size, mmu_prop->page_size >> 10); return -EFAULT; } npages = page_size / real_page_size; real_virt_addr = virt_addr; for (i = 0 ; i < npages ; i++) { rc = _hl_mmu_unmap(ctx, real_virt_addr, is_dram_addr); if (rc) break; real_virt_addr += real_page_size; } if (flush_pte) flush(ctx); return rc; } static int _hl_mmu_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size, bool is_dram_addr) { struct hl_device *hdev = ctx->hdev; struct asic_fixed_properties *prop = &hdev->asic_prop; struct hl_mmu_properties *mmu_prop; u64 hop0_addr = 0, hop0_pte_addr = 0, hop1_addr = 0, hop1_pte_addr = 0, hop2_addr = 0, hop2_pte_addr = 0, hop3_addr = 0, hop3_pte_addr = 0, hop4_addr = 0, hop4_pte_addr = 0, curr_pte = 0; bool hop1_new = false, hop2_new = false, hop3_new = false, hop4_new = false, is_huge; int rc = -ENOMEM; /* * This mapping function can map a page or a huge page. For huge page * there are only 3 hops rather than 4. Currently the DRAM allocation * uses huge pages only but user memory could have been allocated with * one of the two page sizes. Since this is a common code for all the * three cases, we need this hugs page check. */ if (is_dram_addr) { mmu_prop = &prop->dmmu; is_huge = true; } else if (page_size == prop->pmmu_huge.page_size) { mmu_prop = &prop->pmmu_huge; is_huge = true; } else { mmu_prop = &prop->pmmu; is_huge = false; } hop0_addr = get_hop0_addr(ctx); hop0_pte_addr = get_hop0_pte_addr(ctx, mmu_prop, hop0_addr, virt_addr); curr_pte = *(u64 *) (uintptr_t) hop0_pte_addr; hop1_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop1_new); if (hop1_addr == ULLONG_MAX) goto err; hop1_pte_addr = get_hop1_pte_addr(ctx, mmu_prop, hop1_addr, virt_addr); curr_pte = *(u64 *) (uintptr_t) hop1_pte_addr; hop2_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop2_new); if (hop2_addr == ULLONG_MAX) goto err; hop2_pte_addr = get_hop2_pte_addr(ctx, mmu_prop, hop2_addr, virt_addr); curr_pte = *(u64 *) (uintptr_t) hop2_pte_addr; hop3_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop3_new); if (hop3_addr == ULLONG_MAX) goto err; hop3_pte_addr = get_hop3_pte_addr(ctx, mmu_prop, hop3_addr, virt_addr); curr_pte = *(u64 *) (uintptr_t) hop3_pte_addr; if (!is_huge) { hop4_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop4_new); if (hop4_addr == ULLONG_MAX) goto err; hop4_pte_addr = get_hop4_pte_addr(ctx, mmu_prop, hop4_addr, virt_addr); curr_pte = *(u64 *) (uintptr_t) hop4_pte_addr; } if (hdev->dram_default_page_mapping && is_dram_addr) { u64 default_pte = (prop->mmu_dram_default_page_addr & HOP_PHYS_ADDR_MASK) | LAST_MASK | PAGE_PRESENT_MASK; if (curr_pte != default_pte) { dev_err(hdev->dev, "DRAM: mapping already exists for virt_addr 0x%llx\n", virt_addr); rc = -EINVAL; goto err; } if (hop1_new || hop2_new || hop3_new || hop4_new) { dev_err(hdev->dev, "DRAM mapping should not allocate more hops\n"); rc = -EFAULT; goto err; } } else if (curr_pte & PAGE_PRESENT_MASK) { dev_err(hdev->dev, "mapping already exists for virt_addr 0x%llx\n", virt_addr); dev_dbg(hdev->dev, "hop0 pte: 0x%llx (0x%llx)\n", *(u64 *) (uintptr_t) hop0_pte_addr, hop0_pte_addr); dev_dbg(hdev->dev, "hop1 pte: 0x%llx (0x%llx)\n", *(u64 *) (uintptr_t) hop1_pte_addr, hop1_pte_addr); dev_dbg(hdev->dev, "hop2 pte: 0x%llx (0x%llx)\n", *(u64 *) (uintptr_t) hop2_pte_addr, hop2_pte_addr); dev_dbg(hdev->dev, "hop3 pte: 0x%llx (0x%llx)\n", *(u64 *) (uintptr_t) hop3_pte_addr, hop3_pte_addr); if (!is_huge) dev_dbg(hdev->dev, "hop4 pte: 0x%llx (0x%llx)\n", *(u64 *) (uintptr_t) hop4_pte_addr, hop4_pte_addr); rc = -EINVAL; goto err; } curr_pte = (phys_addr & HOP_PHYS_ADDR_MASK) | LAST_MASK | PAGE_PRESENT_MASK; if (is_huge) write_final_pte(ctx, hop3_pte_addr, curr_pte); else write_final_pte(ctx, hop4_pte_addr, curr_pte); if (hop1_new) { curr_pte = (hop1_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; write_pte(ctx, hop0_pte_addr, curr_pte); } if (hop2_new) { curr_pte = (hop2_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; write_pte(ctx, hop1_pte_addr, curr_pte); get_pte(ctx, hop1_addr); } if (hop3_new) { curr_pte = (hop3_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; write_pte(ctx, hop2_pte_addr, curr_pte); get_pte(ctx, hop2_addr); } if (!is_huge) { if (hop4_new) { curr_pte = (hop4_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; write_pte(ctx, hop3_pte_addr, curr_pte); get_pte(ctx, hop3_addr); } get_pte(ctx, hop4_addr); } else { get_pte(ctx, hop3_addr); } return 0; err: if (hop4_new) free_hop(ctx, hop4_addr); if (hop3_new) free_hop(ctx, hop3_addr); if (hop2_new) free_hop(ctx, hop2_addr); if (hop1_new) free_hop(ctx, hop1_addr); return rc; } /* * hl_mmu_map - maps a virtual addr to physical addr * * @ctx: pointer to the context structure * @virt_addr: virt addr to map from * @phys_addr: phys addr to map to * @page_size: physical page size * @flush_pte: whether to do a PCI flush * * This function does the following: * - Check that the virt addr is not mapped * - Allocate pgts as necessary in order to map the virt addr to the phys * - Returns 0 on success, -EINVAL if addr is already mapped, or -ENOMEM. * * Because this function changes the page tables in the device and because it * changes the MMU hash, it must be protected by a lock. * However, because it maps only a single page, the lock should be implemented * in a higher level in order to protect the entire mapping of the memory area * * For optimization reasons PCI flush may be requested once after mapping of * large area. */ int hl_mmu_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size, bool flush_pte) { struct hl_device *hdev = ctx->hdev; struct asic_fixed_properties *prop = &hdev->asic_prop; struct hl_mmu_properties *mmu_prop; u64 real_virt_addr, real_phys_addr; u32 real_page_size, npages; int i, rc, mapped_cnt = 0; bool is_dram_addr; if (!hdev->mmu_enable) return 0; is_dram_addr = is_dram_va(hdev, virt_addr); if (is_dram_addr) mmu_prop = &prop->dmmu; else if ((page_size % prop->pmmu_huge.page_size) == 0) mmu_prop = &prop->pmmu_huge; else mmu_prop = &prop->pmmu; /* * The H/W handles mapping of specific page sizes. Hence if the page * size is bigger, we break it to sub-pages and map them separately. */ if ((page_size % mmu_prop->page_size) == 0) { real_page_size = mmu_prop->page_size; } else { dev_err(hdev->dev, "page size of %u is not %uKB aligned, can't unmap\n", page_size, mmu_prop->page_size >> 10); return -EFAULT; } WARN_ONCE((phys_addr & (real_page_size - 1)), "Mapping 0x%llx with page size of 0x%x is erroneous! Address must be divisible by page size", phys_addr, real_page_size); npages = page_size / real_page_size; real_virt_addr = virt_addr; real_phys_addr = phys_addr; for (i = 0 ; i < npages ; i++) { rc = _hl_mmu_map(ctx, real_virt_addr, real_phys_addr, real_page_size, is_dram_addr); if (rc) goto err; real_virt_addr += real_page_size; real_phys_addr += real_page_size; mapped_cnt++; } if (flush_pte) flush(ctx); return 0; err: real_virt_addr = virt_addr; for (i = 0 ; i < mapped_cnt ; i++) { if (_hl_mmu_unmap(ctx, real_virt_addr, is_dram_addr)) dev_warn_ratelimited(hdev->dev, "failed to unmap va: 0x%llx\n", real_virt_addr); real_virt_addr += real_page_size; } flush(ctx); return rc; } /* * hl_mmu_swap_out - marks all mapping of the given ctx as swapped out * * @ctx: pointer to the context structure * */ void hl_mmu_swap_out(struct hl_ctx *ctx) { } /* * hl_mmu_swap_in - marks all mapping of the given ctx as swapped in * * @ctx: pointer to the context structure * */ void hl_mmu_swap_in(struct hl_ctx *ctx) { }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1