Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jack Steiner | 4488 | 95.57% | 21 | 65.62% |
Robin Holt | 110 | 2.34% | 1 | 3.12% |
Dimitri Sivanich | 45 | 0.96% | 1 | 3.12% |
Sudip Mukherjee | 26 | 0.55% | 2 | 6.25% |
Roel Kluin | 10 | 0.21% | 1 | 3.12% |
Gustavo A. R. Silva | 4 | 0.09% | 1 | 3.12% |
Julia Lawall | 4 | 0.09% | 1 | 3.12% |
Paul Gortmaker | 3 | 0.06% | 1 | 3.12% |
Ricardo Neri | 3 | 0.06% | 1 | 3.12% |
Thomas Gleixner | 2 | 0.04% | 1 | 3.12% |
Lucas De Marchi | 1 | 0.02% | 1 | 3.12% |
Total | 4696 | 32 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * SN Platform GRU Driver * * KERNEL SERVICES THAT USE THE GRU * * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved. */ #include <linux/kernel.h> #include <linux/errno.h> #include <linux/slab.h> #include <linux/mm.h> #include <linux/spinlock.h> #include <linux/device.h> #include <linux/miscdevice.h> #include <linux/proc_fs.h> #include <linux/interrupt.h> #include <linux/sync_core.h> #include <linux/uaccess.h> #include <linux/delay.h> #include <linux/export.h> #include <asm/io_apic.h> #include "gru.h" #include "grulib.h" #include "grutables.h" #include "grukservices.h" #include "gru_instructions.h" #include <asm/uv/uv_hub.h> /* * Kernel GRU Usage * * The following is an interim algorithm for management of kernel GRU * resources. This will likely be replaced when we better understand the * kernel/user requirements. * * Blade percpu resources reserved for kernel use. These resources are * reserved whenever the the kernel context for the blade is loaded. Note * that the kernel context is not guaranteed to be always available. It is * loaded on demand & can be stolen by a user if the user demand exceeds the * kernel demand. The kernel can always reload the kernel context but * a SLEEP may be required!!!. * * Async Overview: * * Each blade has one "kernel context" that owns GRU kernel resources * located on the blade. Kernel drivers use GRU resources in this context * for sending messages, zeroing memory, etc. * * The kernel context is dynamically loaded on demand. If it is not in * use by the kernel, the kernel context can be unloaded & given to a user. * The kernel context will be reloaded when needed. This may require that * a context be stolen from a user. * NOTE: frequent unloading/reloading of the kernel context is * expensive. We are depending on batch schedulers, cpusets, sane * drivers or some other mechanism to prevent the need for frequent * stealing/reloading. * * The kernel context consists of two parts: * - 1 CB & a few DSRs that are reserved for each cpu on the blade. * Each cpu has it's own private resources & does not share them * with other cpus. These resources are used serially, ie, * locked, used & unlocked on each call to a function in * grukservices. * (Now that we have dynamic loading of kernel contexts, I * may rethink this & allow sharing between cpus....) * * - Additional resources can be reserved long term & used directly * by UV drivers located in the kernel. Drivers using these GRU * resources can use asynchronous GRU instructions that send * interrupts on completion. * - these resources must be explicitly locked/unlocked * - locked resources prevent (obviously) the kernel * context from being unloaded. * - drivers using these resource directly issue their own * GRU instruction and must wait/check completion. * * When these resources are reserved, the caller can optionally * associate a wait_queue with the resources and use asynchronous * GRU instructions. When an async GRU instruction completes, the * driver will do a wakeup on the event. * */ #define ASYNC_HAN_TO_BID(h) ((h) - 1) #define ASYNC_BID_TO_HAN(b) ((b) + 1) #define ASYNC_HAN_TO_BS(h) gru_base[ASYNC_HAN_TO_BID(h)] #define GRU_NUM_KERNEL_CBR 1 #define GRU_NUM_KERNEL_DSR_BYTES 256 #define GRU_NUM_KERNEL_DSR_CL (GRU_NUM_KERNEL_DSR_BYTES / \ GRU_CACHE_LINE_BYTES) /* GRU instruction attributes for all instructions */ #define IMA IMA_CB_DELAY /* GRU cacheline size is always 64 bytes - even on arches with 128 byte lines */ #define __gru_cacheline_aligned__ \ __attribute__((__aligned__(GRU_CACHE_LINE_BYTES))) #define MAGIC 0x1234567887654321UL /* Default retry count for GRU errors on kernel instructions */ #define EXCEPTION_RETRY_LIMIT 3 /* Status of message queue sections */ #define MQS_EMPTY 0 #define MQS_FULL 1 #define MQS_NOOP 2 /*----------------- RESOURCE MANAGEMENT -------------------------------------*/ /* optimized for x86_64 */ struct message_queue { union gru_mesqhead head __gru_cacheline_aligned__; /* CL 0 */ int qlines; /* DW 1 */ long hstatus[2]; void *next __gru_cacheline_aligned__;/* CL 1 */ void *limit; void *start; void *start2; char data ____cacheline_aligned; /* CL 2 */ }; /* First word in every message - used by mesq interface */ struct message_header { char present; char present2; char lines; char fill; }; #define HSTATUS(mq, h) ((mq) + offsetof(struct message_queue, hstatus[h])) /* * Reload the blade's kernel context into a GRU chiplet. Called holding * the bs_kgts_sema for READ. Will steal user contexts if necessary. */ static void gru_load_kernel_context(struct gru_blade_state *bs, int blade_id) { struct gru_state *gru; struct gru_thread_state *kgts; void *vaddr; int ctxnum, ncpus; up_read(&bs->bs_kgts_sema); down_write(&bs->bs_kgts_sema); if (!bs->bs_kgts) { do { bs->bs_kgts = gru_alloc_gts(NULL, 0, 0, 0, 0, 0); if (!IS_ERR(bs->bs_kgts)) break; msleep(1); } while (true); bs->bs_kgts->ts_user_blade_id = blade_id; } kgts = bs->bs_kgts; if (!kgts->ts_gru) { STAT(load_kernel_context); ncpus = uv_blade_nr_possible_cpus(blade_id); kgts->ts_cbr_au_count = GRU_CB_COUNT_TO_AU( GRU_NUM_KERNEL_CBR * ncpus + bs->bs_async_cbrs); kgts->ts_dsr_au_count = GRU_DS_BYTES_TO_AU( GRU_NUM_KERNEL_DSR_BYTES * ncpus + bs->bs_async_dsr_bytes); while (!gru_assign_gru_context(kgts)) { msleep(1); gru_steal_context(kgts); } gru_load_context(kgts); gru = bs->bs_kgts->ts_gru; vaddr = gru->gs_gru_base_vaddr; ctxnum = kgts->ts_ctxnum; bs->kernel_cb = get_gseg_base_address_cb(vaddr, ctxnum, 0); bs->kernel_dsr = get_gseg_base_address_ds(vaddr, ctxnum, 0); } downgrade_write(&bs->bs_kgts_sema); } /* * Free all kernel contexts that are not currently in use. * Returns 0 if all freed, else number of inuse context. */ static int gru_free_kernel_contexts(void) { struct gru_blade_state *bs; struct gru_thread_state *kgts; int bid, ret = 0; for (bid = 0; bid < GRU_MAX_BLADES; bid++) { bs = gru_base[bid]; if (!bs) continue; /* Ignore busy contexts. Don't want to block here. */ if (down_write_trylock(&bs->bs_kgts_sema)) { kgts = bs->bs_kgts; if (kgts && kgts->ts_gru) gru_unload_context(kgts, 0); bs->bs_kgts = NULL; up_write(&bs->bs_kgts_sema); kfree(kgts); } else { ret++; } } return ret; } /* * Lock & load the kernel context for the specified blade. */ static struct gru_blade_state *gru_lock_kernel_context(int blade_id) { struct gru_blade_state *bs; int bid; STAT(lock_kernel_context); again: bid = blade_id < 0 ? uv_numa_blade_id() : blade_id; bs = gru_base[bid]; /* Handle the case where migration occurred while waiting for the sema */ down_read(&bs->bs_kgts_sema); if (blade_id < 0 && bid != uv_numa_blade_id()) { up_read(&bs->bs_kgts_sema); goto again; } if (!bs->bs_kgts || !bs->bs_kgts->ts_gru) gru_load_kernel_context(bs, bid); return bs; } /* * Unlock the kernel context for the specified blade. Context is not * unloaded but may be stolen before next use. */ static void gru_unlock_kernel_context(int blade_id) { struct gru_blade_state *bs; bs = gru_base[blade_id]; up_read(&bs->bs_kgts_sema); STAT(unlock_kernel_context); } /* * Reserve & get pointers to the DSR/CBRs reserved for the current cpu. * - returns with preemption disabled */ static int gru_get_cpu_resources(int dsr_bytes, void **cb, void **dsr) { struct gru_blade_state *bs; int lcpu; BUG_ON(dsr_bytes > GRU_NUM_KERNEL_DSR_BYTES); preempt_disable(); bs = gru_lock_kernel_context(-1); lcpu = uv_blade_processor_id(); *cb = bs->kernel_cb + lcpu * GRU_HANDLE_STRIDE; *dsr = bs->kernel_dsr + lcpu * GRU_NUM_KERNEL_DSR_BYTES; return 0; } /* * Free the current cpus reserved DSR/CBR resources. */ static void gru_free_cpu_resources(void *cb, void *dsr) { gru_unlock_kernel_context(uv_numa_blade_id()); preempt_enable(); } /* * Reserve GRU resources to be used asynchronously. * Note: currently supports only 1 reservation per blade. * * input: * blade_id - blade on which resources should be reserved * cbrs - number of CBRs * dsr_bytes - number of DSR bytes needed * output: * handle to identify resource * (0 = async resources already reserved) */ unsigned long gru_reserve_async_resources(int blade_id, int cbrs, int dsr_bytes, struct completion *cmp) { struct gru_blade_state *bs; struct gru_thread_state *kgts; int ret = 0; bs = gru_base[blade_id]; down_write(&bs->bs_kgts_sema); /* Verify no resources already reserved */ if (bs->bs_async_dsr_bytes + bs->bs_async_cbrs) goto done; bs->bs_async_dsr_bytes = dsr_bytes; bs->bs_async_cbrs = cbrs; bs->bs_async_wq = cmp; kgts = bs->bs_kgts; /* Resources changed. Unload context if already loaded */ if (kgts && kgts->ts_gru) gru_unload_context(kgts, 0); ret = ASYNC_BID_TO_HAN(blade_id); done: up_write(&bs->bs_kgts_sema); return ret; } /* * Release async resources previously reserved. * * input: * han - handle to identify resources */ void gru_release_async_resources(unsigned long han) { struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han); down_write(&bs->bs_kgts_sema); bs->bs_async_dsr_bytes = 0; bs->bs_async_cbrs = 0; bs->bs_async_wq = NULL; up_write(&bs->bs_kgts_sema); } /* * Wait for async GRU instructions to complete. * * input: * han - handle to identify resources */ void gru_wait_async_cbr(unsigned long han) { struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han); wait_for_completion(bs->bs_async_wq); mb(); } /* * Lock previous reserved async GRU resources * * input: * han - handle to identify resources * output: * cb - pointer to first CBR * dsr - pointer to first DSR */ void gru_lock_async_resource(unsigned long han, void **cb, void **dsr) { struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han); int blade_id = ASYNC_HAN_TO_BID(han); int ncpus; gru_lock_kernel_context(blade_id); ncpus = uv_blade_nr_possible_cpus(blade_id); if (cb) *cb = bs->kernel_cb + ncpus * GRU_HANDLE_STRIDE; if (dsr) *dsr = bs->kernel_dsr + ncpus * GRU_NUM_KERNEL_DSR_BYTES; } /* * Unlock previous reserved async GRU resources * * input: * han - handle to identify resources */ void gru_unlock_async_resource(unsigned long han) { int blade_id = ASYNC_HAN_TO_BID(han); gru_unlock_kernel_context(blade_id); } /*----------------------------------------------------------------------*/ int gru_get_cb_exception_detail(void *cb, struct control_block_extended_exc_detail *excdet) { struct gru_control_block_extended *cbe; struct gru_thread_state *kgts = NULL; unsigned long off; int cbrnum, bid; /* * Locate kgts for cb. This algorithm is SLOW but * this function is rarely called (ie., almost never). * Performance does not matter. */ for_each_possible_blade(bid) { if (!gru_base[bid]) break; kgts = gru_base[bid]->bs_kgts; if (!kgts || !kgts->ts_gru) continue; off = cb - kgts->ts_gru->gs_gru_base_vaddr; if (off < GRU_SIZE) break; kgts = NULL; } BUG_ON(!kgts); cbrnum = thread_cbr_number(kgts, get_cb_number(cb)); cbe = get_cbe(GRUBASE(cb), cbrnum); gru_flush_cache(cbe); /* CBE not coherent */ sync_core(); excdet->opc = cbe->opccpy; excdet->exopc = cbe->exopccpy; excdet->ecause = cbe->ecause; excdet->exceptdet0 = cbe->idef1upd; excdet->exceptdet1 = cbe->idef3upd; gru_flush_cache(cbe); return 0; } static char *gru_get_cb_exception_detail_str(int ret, void *cb, char *buf, int size) { struct gru_control_block_status *gen = (void *)cb; struct control_block_extended_exc_detail excdet; if (ret > 0 && gen->istatus == CBS_EXCEPTION) { gru_get_cb_exception_detail(cb, &excdet); snprintf(buf, size, "GRU:%d exception: cb %p, opc %d, exopc %d, ecause 0x%x," "excdet0 0x%lx, excdet1 0x%x", smp_processor_id(), gen, excdet.opc, excdet.exopc, excdet.ecause, excdet.exceptdet0, excdet.exceptdet1); } else { snprintf(buf, size, "No exception"); } return buf; } static int gru_wait_idle_or_exception(struct gru_control_block_status *gen) { while (gen->istatus >= CBS_ACTIVE) { cpu_relax(); barrier(); } return gen->istatus; } static int gru_retry_exception(void *cb) { struct gru_control_block_status *gen = (void *)cb; struct control_block_extended_exc_detail excdet; int retry = EXCEPTION_RETRY_LIMIT; while (1) { if (gru_wait_idle_or_exception(gen) == CBS_IDLE) return CBS_IDLE; if (gru_get_cb_message_queue_substatus(cb)) return CBS_EXCEPTION; gru_get_cb_exception_detail(cb, &excdet); if ((excdet.ecause & ~EXCEPTION_RETRY_BITS) || (excdet.cbrexecstatus & CBR_EXS_ABORT_OCC)) break; if (retry-- == 0) break; gen->icmd = 1; gru_flush_cache(gen); } return CBS_EXCEPTION; } int gru_check_status_proc(void *cb) { struct gru_control_block_status *gen = (void *)cb; int ret; ret = gen->istatus; if (ret == CBS_EXCEPTION) ret = gru_retry_exception(cb); rmb(); return ret; } int gru_wait_proc(void *cb) { struct gru_control_block_status *gen = (void *)cb; int ret; ret = gru_wait_idle_or_exception(gen); if (ret == CBS_EXCEPTION) ret = gru_retry_exception(cb); rmb(); return ret; } static void gru_abort(int ret, void *cb, char *str) { char buf[GRU_EXC_STR_SIZE]; panic("GRU FATAL ERROR: %s - %s\n", str, gru_get_cb_exception_detail_str(ret, cb, buf, sizeof(buf))); } void gru_wait_abort_proc(void *cb) { int ret; ret = gru_wait_proc(cb); if (ret) gru_abort(ret, cb, "gru_wait_abort"); } /*------------------------------ MESSAGE QUEUES -----------------------------*/ /* Internal status . These are NOT returned to the user. */ #define MQIE_AGAIN -1 /* try again */ /* * Save/restore the "present" flag that is in the second line of 2-line * messages */ static inline int get_present2(void *p) { struct message_header *mhdr = p + GRU_CACHE_LINE_BYTES; return mhdr->present; } static inline void restore_present2(void *p, int val) { struct message_header *mhdr = p + GRU_CACHE_LINE_BYTES; mhdr->present = val; } /* * Create a message queue. * qlines - message queue size in cache lines. Includes 2-line header. */ int gru_create_message_queue(struct gru_message_queue_desc *mqd, void *p, unsigned int bytes, int nasid, int vector, int apicid) { struct message_queue *mq = p; unsigned int qlines; qlines = bytes / GRU_CACHE_LINE_BYTES - 2; memset(mq, 0, bytes); mq->start = &mq->data; mq->start2 = &mq->data + (qlines / 2 - 1) * GRU_CACHE_LINE_BYTES; mq->next = &mq->data; mq->limit = &mq->data + (qlines - 2) * GRU_CACHE_LINE_BYTES; mq->qlines = qlines; mq->hstatus[0] = 0; mq->hstatus[1] = 1; mq->head = gru_mesq_head(2, qlines / 2 + 1); mqd->mq = mq; mqd->mq_gpa = uv_gpa(mq); mqd->qlines = qlines; mqd->interrupt_pnode = nasid >> 1; mqd->interrupt_vector = vector; mqd->interrupt_apicid = apicid; return 0; } EXPORT_SYMBOL_GPL(gru_create_message_queue); /* * Send a NOOP message to a message queue * Returns: * 0 - if queue is full after the send. This is the normal case * but various races can change this. * -1 - if mesq sent successfully but queue not full * >0 - unexpected error. MQE_xxx returned */ static int send_noop_message(void *cb, struct gru_message_queue_desc *mqd, void *mesg) { const struct message_header noop_header = { .present = MQS_NOOP, .lines = 1}; unsigned long m; int substatus, ret; struct message_header save_mhdr, *mhdr = mesg; STAT(mesq_noop); save_mhdr = *mhdr; *mhdr = noop_header; gru_mesq(cb, mqd->mq_gpa, gru_get_tri(mhdr), 1, IMA); ret = gru_wait(cb); if (ret) { substatus = gru_get_cb_message_queue_substatus(cb); switch (substatus) { case CBSS_NO_ERROR: STAT(mesq_noop_unexpected_error); ret = MQE_UNEXPECTED_CB_ERR; break; case CBSS_LB_OVERFLOWED: STAT(mesq_noop_lb_overflow); ret = MQE_CONGESTION; break; case CBSS_QLIMIT_REACHED: STAT(mesq_noop_qlimit_reached); ret = 0; break; case CBSS_AMO_NACKED: STAT(mesq_noop_amo_nacked); ret = MQE_CONGESTION; break; case CBSS_PUT_NACKED: STAT(mesq_noop_put_nacked); m = mqd->mq_gpa + (gru_get_amo_value_head(cb) << 6); gru_vstore(cb, m, gru_get_tri(mesg), XTYPE_CL, 1, 1, IMA); if (gru_wait(cb) == CBS_IDLE) ret = MQIE_AGAIN; else ret = MQE_UNEXPECTED_CB_ERR; break; case CBSS_PAGE_OVERFLOW: STAT(mesq_noop_page_overflow); fallthrough; default: BUG(); } } *mhdr = save_mhdr; return ret; } /* * Handle a gru_mesq full. */ static int send_message_queue_full(void *cb, struct gru_message_queue_desc *mqd, void *mesg, int lines) { union gru_mesqhead mqh; unsigned int limit, head; unsigned long avalue; int half, qlines; /* Determine if switching to first/second half of q */ avalue = gru_get_amo_value(cb); head = gru_get_amo_value_head(cb); limit = gru_get_amo_value_limit(cb); qlines = mqd->qlines; half = (limit != qlines); if (half) mqh = gru_mesq_head(qlines / 2 + 1, qlines); else mqh = gru_mesq_head(2, qlines / 2 + 1); /* Try to get lock for switching head pointer */ gru_gamir(cb, EOP_IR_CLR, HSTATUS(mqd->mq_gpa, half), XTYPE_DW, IMA); if (gru_wait(cb) != CBS_IDLE) goto cberr; if (!gru_get_amo_value(cb)) { STAT(mesq_qf_locked); return MQE_QUEUE_FULL; } /* Got the lock. Send optional NOP if queue not full, */ if (head != limit) { if (send_noop_message(cb, mqd, mesg)) { gru_gamir(cb, EOP_IR_INC, HSTATUS(mqd->mq_gpa, half), XTYPE_DW, IMA); if (gru_wait(cb) != CBS_IDLE) goto cberr; STAT(mesq_qf_noop_not_full); return MQIE_AGAIN; } avalue++; } /* Then flip queuehead to other half of queue. */ gru_gamer(cb, EOP_ERR_CSWAP, mqd->mq_gpa, XTYPE_DW, mqh.val, avalue, IMA); if (gru_wait(cb) != CBS_IDLE) goto cberr; /* If not successfully in swapping queue head, clear the hstatus lock */ if (gru_get_amo_value(cb) != avalue) { STAT(mesq_qf_switch_head_failed); gru_gamir(cb, EOP_IR_INC, HSTATUS(mqd->mq_gpa, half), XTYPE_DW, IMA); if (gru_wait(cb) != CBS_IDLE) goto cberr; } return MQIE_AGAIN; cberr: STAT(mesq_qf_unexpected_error); return MQE_UNEXPECTED_CB_ERR; } /* * Handle a PUT failure. Note: if message was a 2-line message, one of the * lines might have successfully have been written. Before sending the * message, "present" must be cleared in BOTH lines to prevent the receiver * from prematurely seeing the full message. */ static int send_message_put_nacked(void *cb, struct gru_message_queue_desc *mqd, void *mesg, int lines) { unsigned long m; int ret, loops = 200; /* experimentally determined */ m = mqd->mq_gpa + (gru_get_amo_value_head(cb) << 6); if (lines == 2) { gru_vset(cb, m, 0, XTYPE_CL, lines, 1, IMA); if (gru_wait(cb) != CBS_IDLE) return MQE_UNEXPECTED_CB_ERR; } gru_vstore(cb, m, gru_get_tri(mesg), XTYPE_CL, lines, 1, IMA); if (gru_wait(cb) != CBS_IDLE) return MQE_UNEXPECTED_CB_ERR; if (!mqd->interrupt_vector) return MQE_OK; /* * Send a noop message in order to deliver a cross-partition interrupt * to the SSI that contains the target message queue. Normally, the * interrupt is automatically delivered by hardware following mesq * operations, but some error conditions require explicit delivery. * The noop message will trigger delivery. Otherwise partition failures * could cause unrecovered errors. */ do { ret = send_noop_message(cb, mqd, mesg); } while ((ret == MQIE_AGAIN || ret == MQE_CONGESTION) && (loops-- > 0)); if (ret == MQIE_AGAIN || ret == MQE_CONGESTION) { /* * Don't indicate to the app to resend the message, as it's * already been successfully sent. We simply send an OK * (rather than fail the send with MQE_UNEXPECTED_CB_ERR), * assuming that the other side is receiving enough * interrupts to get this message processed anyway. */ ret = MQE_OK; } return ret; } /* * Handle a gru_mesq failure. Some of these failures are software recoverable * or retryable. */ static int send_message_failure(void *cb, struct gru_message_queue_desc *mqd, void *mesg, int lines) { int substatus, ret = 0; substatus = gru_get_cb_message_queue_substatus(cb); switch (substatus) { case CBSS_NO_ERROR: STAT(mesq_send_unexpected_error); ret = MQE_UNEXPECTED_CB_ERR; break; case CBSS_LB_OVERFLOWED: STAT(mesq_send_lb_overflow); ret = MQE_CONGESTION; break; case CBSS_QLIMIT_REACHED: STAT(mesq_send_qlimit_reached); ret = send_message_queue_full(cb, mqd, mesg, lines); break; case CBSS_AMO_NACKED: STAT(mesq_send_amo_nacked); ret = MQE_CONGESTION; break; case CBSS_PUT_NACKED: STAT(mesq_send_put_nacked); ret = send_message_put_nacked(cb, mqd, mesg, lines); break; case CBSS_PAGE_OVERFLOW: STAT(mesq_page_overflow); fallthrough; default: BUG(); } return ret; } /* * Send a message to a message queue * mqd message queue descriptor * mesg message. ust be vaddr within a GSEG * bytes message size (<= 2 CL) */ int gru_send_message_gpa(struct gru_message_queue_desc *mqd, void *mesg, unsigned int bytes) { struct message_header *mhdr; void *cb; void *dsr; int istatus, clines, ret; STAT(mesq_send); BUG_ON(bytes < sizeof(int) || bytes > 2 * GRU_CACHE_LINE_BYTES); clines = DIV_ROUND_UP(bytes, GRU_CACHE_LINE_BYTES); if (gru_get_cpu_resources(bytes, &cb, &dsr)) return MQE_BUG_NO_RESOURCES; memcpy(dsr, mesg, bytes); mhdr = dsr; mhdr->present = MQS_FULL; mhdr->lines = clines; if (clines == 2) { mhdr->present2 = get_present2(mhdr); restore_present2(mhdr, MQS_FULL); } do { ret = MQE_OK; gru_mesq(cb, mqd->mq_gpa, gru_get_tri(mhdr), clines, IMA); istatus = gru_wait(cb); if (istatus != CBS_IDLE) ret = send_message_failure(cb, mqd, dsr, clines); } while (ret == MQIE_AGAIN); gru_free_cpu_resources(cb, dsr); if (ret) STAT(mesq_send_failed); return ret; } EXPORT_SYMBOL_GPL(gru_send_message_gpa); /* * Advance the receive pointer for the queue to the next message. */ void gru_free_message(struct gru_message_queue_desc *mqd, void *mesg) { struct message_queue *mq = mqd->mq; struct message_header *mhdr = mq->next; void *next, *pnext; int half = -1; int lines = mhdr->lines; if (lines == 2) restore_present2(mhdr, MQS_EMPTY); mhdr->present = MQS_EMPTY; pnext = mq->next; next = pnext + GRU_CACHE_LINE_BYTES * lines; if (next == mq->limit) { next = mq->start; half = 1; } else if (pnext < mq->start2 && next >= mq->start2) { half = 0; } if (half >= 0) mq->hstatus[half] = 1; mq->next = next; } EXPORT_SYMBOL_GPL(gru_free_message); /* * Get next message from message queue. Return NULL if no message * present. User must call next_message() to move to next message. * rmq message queue */ void *gru_get_next_message(struct gru_message_queue_desc *mqd) { struct message_queue *mq = mqd->mq; struct message_header *mhdr = mq->next; int present = mhdr->present; /* skip NOOP messages */ while (present == MQS_NOOP) { gru_free_message(mqd, mhdr); mhdr = mq->next; present = mhdr->present; } /* Wait for both halves of 2 line messages */ if (present == MQS_FULL && mhdr->lines == 2 && get_present2(mhdr) == MQS_EMPTY) present = MQS_EMPTY; if (!present) { STAT(mesq_receive_none); return NULL; } if (mhdr->lines == 2) restore_present2(mhdr, mhdr->present2); STAT(mesq_receive); return mhdr; } EXPORT_SYMBOL_GPL(gru_get_next_message); /* ---------------------- GRU DATA COPY FUNCTIONS ---------------------------*/ /* * Load a DW from a global GPA. The GPA can be a memory or MMR address. */ int gru_read_gpa(unsigned long *value, unsigned long gpa) { void *cb; void *dsr; int ret, iaa; STAT(read_gpa); if (gru_get_cpu_resources(GRU_NUM_KERNEL_DSR_BYTES, &cb, &dsr)) return MQE_BUG_NO_RESOURCES; iaa = gpa >> 62; gru_vload_phys(cb, gpa, gru_get_tri(dsr), iaa, IMA); ret = gru_wait(cb); if (ret == CBS_IDLE) *value = *(unsigned long *)dsr; gru_free_cpu_resources(cb, dsr); return ret; } EXPORT_SYMBOL_GPL(gru_read_gpa); /* * Copy a block of data using the GRU resources */ int gru_copy_gpa(unsigned long dest_gpa, unsigned long src_gpa, unsigned int bytes) { void *cb; void *dsr; int ret; STAT(copy_gpa); if (gru_get_cpu_resources(GRU_NUM_KERNEL_DSR_BYTES, &cb, &dsr)) return MQE_BUG_NO_RESOURCES; gru_bcopy(cb, src_gpa, dest_gpa, gru_get_tri(dsr), XTYPE_B, bytes, GRU_NUM_KERNEL_DSR_CL, IMA); ret = gru_wait(cb); gru_free_cpu_resources(cb, dsr); return ret; } EXPORT_SYMBOL_GPL(gru_copy_gpa); /* ------------------- KERNEL QUICKTESTS RUN AT STARTUP ----------------*/ /* Temp - will delete after we gain confidence in the GRU */ static int quicktest0(unsigned long arg) { unsigned long word0; unsigned long word1; void *cb; void *dsr; unsigned long *p; int ret = -EIO; if (gru_get_cpu_resources(GRU_CACHE_LINE_BYTES, &cb, &dsr)) return MQE_BUG_NO_RESOURCES; p = dsr; word0 = MAGIC; word1 = 0; gru_vload(cb, uv_gpa(&word0), gru_get_tri(dsr), XTYPE_DW, 1, 1, IMA); if (gru_wait(cb) != CBS_IDLE) { printk(KERN_DEBUG "GRU:%d quicktest0: CBR failure 1\n", smp_processor_id()); goto done; } if (*p != MAGIC) { printk(KERN_DEBUG "GRU:%d quicktest0 bad magic 0x%lx\n", smp_processor_id(), *p); goto done; } gru_vstore(cb, uv_gpa(&word1), gru_get_tri(dsr), XTYPE_DW, 1, 1, IMA); if (gru_wait(cb) != CBS_IDLE) { printk(KERN_DEBUG "GRU:%d quicktest0: CBR failure 2\n", smp_processor_id()); goto done; } if (word0 != word1 || word1 != MAGIC) { printk(KERN_DEBUG "GRU:%d quicktest0 err: found 0x%lx, expected 0x%lx\n", smp_processor_id(), word1, MAGIC); goto done; } ret = 0; done: gru_free_cpu_resources(cb, dsr); return ret; } #define ALIGNUP(p, q) ((void *)(((unsigned long)(p) + (q) - 1) & ~(q - 1))) static int quicktest1(unsigned long arg) { struct gru_message_queue_desc mqd; void *p, *mq; int i, ret = -EIO; char mes[GRU_CACHE_LINE_BYTES], *m; /* Need 1K cacheline aligned that does not cross page boundary */ p = kmalloc(4096, 0); if (p == NULL) return -ENOMEM; mq = ALIGNUP(p, 1024); memset(mes, 0xee, sizeof(mes)); gru_create_message_queue(&mqd, mq, 8 * GRU_CACHE_LINE_BYTES, 0, 0, 0); for (i = 0; i < 6; i++) { mes[8] = i; do { ret = gru_send_message_gpa(&mqd, mes, sizeof(mes)); } while (ret == MQE_CONGESTION); if (ret) break; } if (ret != MQE_QUEUE_FULL || i != 4) { printk(KERN_DEBUG "GRU:%d quicktest1: unexpect status %d, i %d\n", smp_processor_id(), ret, i); goto done; } for (i = 0; i < 6; i++) { m = gru_get_next_message(&mqd); if (!m || m[8] != i) break; gru_free_message(&mqd, m); } if (i != 4) { printk(KERN_DEBUG "GRU:%d quicktest2: bad message, i %d, m %p, m8 %d\n", smp_processor_id(), i, m, m ? m[8] : -1); goto done; } ret = 0; done: kfree(p); return ret; } static int quicktest2(unsigned long arg) { static DECLARE_COMPLETION(cmp); unsigned long han; int blade_id = 0; int numcb = 4; int ret = 0; unsigned long *buf; void *cb0, *cb; struct gru_control_block_status *gen; int i, k, istatus, bytes; bytes = numcb * 4 * 8; buf = kmalloc(bytes, GFP_KERNEL); if (!buf) return -ENOMEM; ret = -EBUSY; han = gru_reserve_async_resources(blade_id, numcb, 0, &cmp); if (!han) goto done; gru_lock_async_resource(han, &cb0, NULL); memset(buf, 0xee, bytes); for (i = 0; i < numcb; i++) gru_vset(cb0 + i * GRU_HANDLE_STRIDE, uv_gpa(&buf[i * 4]), 0, XTYPE_DW, 4, 1, IMA_INTERRUPT); ret = 0; k = numcb; do { gru_wait_async_cbr(han); for (i = 0; i < numcb; i++) { cb = cb0 + i * GRU_HANDLE_STRIDE; istatus = gru_check_status(cb); if (istatus != CBS_ACTIVE && istatus != CBS_CALL_OS) break; } if (i == numcb) continue; if (istatus != CBS_IDLE) { printk(KERN_DEBUG "GRU:%d quicktest2: cb %d, exception\n", smp_processor_id(), i); ret = -EFAULT; } else if (buf[4 * i] || buf[4 * i + 1] || buf[4 * i + 2] || buf[4 * i + 3]) { printk(KERN_DEBUG "GRU:%d quicktest2:cb %d, buf 0x%lx, 0x%lx, 0x%lx, 0x%lx\n", smp_processor_id(), i, buf[4 * i], buf[4 * i + 1], buf[4 * i + 2], buf[4 * i + 3]); ret = -EIO; } k--; gen = cb; gen->istatus = CBS_CALL_OS; /* don't handle this CBR again */ } while (k); BUG_ON(cmp.done); gru_unlock_async_resource(han); gru_release_async_resources(han); done: kfree(buf); return ret; } #define BUFSIZE 200 static int quicktest3(unsigned long arg) { char buf1[BUFSIZE], buf2[BUFSIZE]; int ret = 0; memset(buf2, 0, sizeof(buf2)); memset(buf1, get_cycles() & 255, sizeof(buf1)); gru_copy_gpa(uv_gpa(buf2), uv_gpa(buf1), BUFSIZE); if (memcmp(buf1, buf2, BUFSIZE)) { printk(KERN_DEBUG "GRU:%d quicktest3 error\n", smp_processor_id()); ret = -EIO; } return ret; } /* * Debugging only. User hook for various kernel tests * of driver & gru. */ int gru_ktest(unsigned long arg) { int ret = -EINVAL; switch (arg & 0xff) { case 0: ret = quicktest0(arg); break; case 1: ret = quicktest1(arg); break; case 2: ret = quicktest2(arg); break; case 3: ret = quicktest3(arg); break; case 99: ret = gru_free_kernel_contexts(); break; } return ret; } int gru_kservices_init(void) { return 0; } void gru_kservices_exit(void) { if (gru_free_kernel_contexts()) BUG(); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1