Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Adrian Hunter | 3000 | 64.60% | 32 | 46.38% |
Nehal Shah | 329 | 7.08% | 1 | 1.45% |
Dongsheng Wang | 318 | 6.85% | 2 | 2.90% |
Raul E Rangel | 304 | 6.55% | 3 | 4.35% |
Hans de Goede | 303 | 6.52% | 3 | 4.35% |
Gao, Yunpeng | 113 | 2.43% | 1 | 1.45% |
Philip Elcan | 67 | 1.44% | 1 | 1.45% |
Andy Shevchenko | 52 | 1.12% | 2 | 2.90% |
Russell King | 38 | 0.82% | 4 | 5.80% |
Arvind Yadav | 17 | 0.37% | 1 | 1.45% |
Rui Zhang | 16 | 0.34% | 1 | 1.45% |
Thomas Gleixner | 14 | 0.30% | 2 | 2.90% |
Mika Westerberg | 13 | 0.28% | 1 | 1.45% |
Michele Curti | 9 | 0.19% | 1 | 1.45% |
Daniel Drake | 9 | 0.19% | 1 | 1.45% |
Peter Griffin | 8 | 0.17% | 1 | 1.45% |
Maurice Petallo | 7 | 0.15% | 2 | 2.90% |
Ulf Hansson | 7 | 0.15% | 2 | 2.90% |
Fu Zhonghui | 5 | 0.11% | 1 | 1.45% |
Akshu Agrawal | 5 | 0.11% | 1 | 1.45% |
Dave Hansen | 3 | 0.06% | 1 | 1.45% |
Baolin Wang | 2 | 0.04% | 1 | 1.45% |
Azhar Shaikh | 2 | 0.04% | 1 | 1.45% |
Christoph Hellwig | 1 | 0.02% | 1 | 1.45% |
Gustavo A. R. Silva | 1 | 0.02% | 1 | 1.45% |
Rafael J. Wysocki | 1 | 0.02% | 1 | 1.45% |
Total | 4644 | 69 |
// SPDX-License-Identifier: GPL-2.0-only /* * Secure Digital Host Controller Interface ACPI driver. * * Copyright (c) 2012, Intel Corporation. */ #include <linux/init.h> #include <linux/export.h> #include <linux/module.h> #include <linux/device.h> #include <linux/platform_device.h> #include <linux/ioport.h> #include <linux/io.h> #include <linux/dma-mapping.h> #include <linux/compiler.h> #include <linux/stddef.h> #include <linux/bitops.h> #include <linux/types.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/acpi.h> #include <linux/pm.h> #include <linux/pm_runtime.h> #include <linux/delay.h> #include <linux/dmi.h> #include <linux/mmc/host.h> #include <linux/mmc/pm.h> #include <linux/mmc/slot-gpio.h> #ifdef CONFIG_X86 #include <asm/cpu_device_id.h> #include <asm/intel-family.h> #include <asm/iosf_mbi.h> #include <linux/pci.h> #endif #include "sdhci.h" enum { SDHCI_ACPI_SD_CD = BIT(0), SDHCI_ACPI_RUNTIME_PM = BIT(1), SDHCI_ACPI_SD_CD_OVERRIDE_LEVEL = BIT(2), }; struct sdhci_acpi_chip { const struct sdhci_ops *ops; unsigned int quirks; unsigned int quirks2; unsigned long caps; unsigned int caps2; mmc_pm_flag_t pm_caps; }; struct sdhci_acpi_slot { const struct sdhci_acpi_chip *chip; unsigned int quirks; unsigned int quirks2; unsigned long caps; unsigned int caps2; mmc_pm_flag_t pm_caps; unsigned int flags; size_t priv_size; int (*probe_slot)(struct platform_device *, struct acpi_device *); int (*remove_slot)(struct platform_device *); int (*free_slot)(struct platform_device *pdev); int (*setup_host)(struct platform_device *pdev); }; struct sdhci_acpi_host { struct sdhci_host *host; const struct sdhci_acpi_slot *slot; struct platform_device *pdev; bool use_runtime_pm; bool is_intel; bool reset_signal_volt_on_suspend; unsigned long private[] ____cacheline_aligned; }; enum { DMI_QUIRK_RESET_SD_SIGNAL_VOLT_ON_SUSP = BIT(0), DMI_QUIRK_SD_NO_WRITE_PROTECT = BIT(1), }; static inline void *sdhci_acpi_priv(struct sdhci_acpi_host *c) { return (void *)c->private; } static inline bool sdhci_acpi_flag(struct sdhci_acpi_host *c, unsigned int flag) { return c->slot && (c->slot->flags & flag); } #define INTEL_DSM_HS_CAPS_SDR25 BIT(0) #define INTEL_DSM_HS_CAPS_DDR50 BIT(1) #define INTEL_DSM_HS_CAPS_SDR50 BIT(2) #define INTEL_DSM_HS_CAPS_SDR104 BIT(3) enum { INTEL_DSM_FNS = 0, INTEL_DSM_V18_SWITCH = 3, INTEL_DSM_V33_SWITCH = 4, INTEL_DSM_HS_CAPS = 8, }; struct intel_host { u32 dsm_fns; u32 hs_caps; }; static const guid_t intel_dsm_guid = GUID_INIT(0xF6C13EA5, 0x65CD, 0x461F, 0xAB, 0x7A, 0x29, 0xF7, 0xE8, 0xD5, 0xBD, 0x61); static int __intel_dsm(struct intel_host *intel_host, struct device *dev, unsigned int fn, u32 *result) { union acpi_object *obj; int err = 0; obj = acpi_evaluate_dsm(ACPI_HANDLE(dev), &intel_dsm_guid, 0, fn, NULL); if (!obj) return -EOPNOTSUPP; if (obj->type == ACPI_TYPE_INTEGER) { *result = obj->integer.value; } else if (obj->type == ACPI_TYPE_BUFFER && obj->buffer.length > 0) { size_t len = min_t(size_t, obj->buffer.length, 4); *result = 0; memcpy(result, obj->buffer.pointer, len); } else { dev_err(dev, "%s DSM fn %u obj->type %d obj->buffer.length %d\n", __func__, fn, obj->type, obj->buffer.length); err = -EINVAL; } ACPI_FREE(obj); return err; } static int intel_dsm(struct intel_host *intel_host, struct device *dev, unsigned int fn, u32 *result) { if (fn > 31 || !(intel_host->dsm_fns & (1 << fn))) return -EOPNOTSUPP; return __intel_dsm(intel_host, dev, fn, result); } static void intel_dsm_init(struct intel_host *intel_host, struct device *dev, struct mmc_host *mmc) { int err; intel_host->hs_caps = ~0; err = __intel_dsm(intel_host, dev, INTEL_DSM_FNS, &intel_host->dsm_fns); if (err) { pr_debug("%s: DSM not supported, error %d\n", mmc_hostname(mmc), err); return; } pr_debug("%s: DSM function mask %#x\n", mmc_hostname(mmc), intel_host->dsm_fns); intel_dsm(intel_host, dev, INTEL_DSM_HS_CAPS, &intel_host->hs_caps); } static int intel_start_signal_voltage_switch(struct mmc_host *mmc, struct mmc_ios *ios) { struct device *dev = mmc_dev(mmc); struct sdhci_acpi_host *c = dev_get_drvdata(dev); struct intel_host *intel_host = sdhci_acpi_priv(c); unsigned int fn; u32 result = 0; int err; err = sdhci_start_signal_voltage_switch(mmc, ios); if (err) return err; switch (ios->signal_voltage) { case MMC_SIGNAL_VOLTAGE_330: fn = INTEL_DSM_V33_SWITCH; break; case MMC_SIGNAL_VOLTAGE_180: fn = INTEL_DSM_V18_SWITCH; break; default: return 0; } err = intel_dsm(intel_host, dev, fn, &result); pr_debug("%s: %s DSM fn %u error %d result %u\n", mmc_hostname(mmc), __func__, fn, err, result); return 0; } static void sdhci_acpi_int_hw_reset(struct sdhci_host *host) { u8 reg; reg = sdhci_readb(host, SDHCI_POWER_CONTROL); reg |= 0x10; sdhci_writeb(host, reg, SDHCI_POWER_CONTROL); /* For eMMC, minimum is 1us but give it 9us for good measure */ udelay(9); reg &= ~0x10; sdhci_writeb(host, reg, SDHCI_POWER_CONTROL); /* For eMMC, minimum is 200us but give it 300us for good measure */ usleep_range(300, 1000); } static const struct sdhci_ops sdhci_acpi_ops_dflt = { .set_clock = sdhci_set_clock, .set_bus_width = sdhci_set_bus_width, .reset = sdhci_reset, .set_uhs_signaling = sdhci_set_uhs_signaling, }; static const struct sdhci_ops sdhci_acpi_ops_int = { .set_clock = sdhci_set_clock, .set_bus_width = sdhci_set_bus_width, .reset = sdhci_reset, .set_uhs_signaling = sdhci_set_uhs_signaling, .hw_reset = sdhci_acpi_int_hw_reset, }; static const struct sdhci_acpi_chip sdhci_acpi_chip_int = { .ops = &sdhci_acpi_ops_int, }; #ifdef CONFIG_X86 static bool sdhci_acpi_byt(void) { static const struct x86_cpu_id byt[] = { X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT, NULL), {} }; return x86_match_cpu(byt); } static bool sdhci_acpi_cht(void) { static const struct x86_cpu_id cht[] = { X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT, NULL), {} }; return x86_match_cpu(cht); } #define BYT_IOSF_SCCEP 0x63 #define BYT_IOSF_OCP_NETCTRL0 0x1078 #define BYT_IOSF_OCP_TIMEOUT_BASE GENMASK(10, 8) static void sdhci_acpi_byt_setting(struct device *dev) { u32 val = 0; if (!sdhci_acpi_byt()) return; if (iosf_mbi_read(BYT_IOSF_SCCEP, MBI_CR_READ, BYT_IOSF_OCP_NETCTRL0, &val)) { dev_err(dev, "%s read error\n", __func__); return; } if (!(val & BYT_IOSF_OCP_TIMEOUT_BASE)) return; val &= ~BYT_IOSF_OCP_TIMEOUT_BASE; if (iosf_mbi_write(BYT_IOSF_SCCEP, MBI_CR_WRITE, BYT_IOSF_OCP_NETCTRL0, val)) { dev_err(dev, "%s write error\n", __func__); return; } dev_dbg(dev, "%s completed\n", __func__); } static bool sdhci_acpi_byt_defer(struct device *dev) { if (!sdhci_acpi_byt()) return false; if (!iosf_mbi_available()) return true; sdhci_acpi_byt_setting(dev); return false; } static bool sdhci_acpi_cht_pci_wifi(unsigned int vendor, unsigned int device, unsigned int slot, unsigned int parent_slot) { struct pci_dev *dev, *parent, *from = NULL; while (1) { dev = pci_get_device(vendor, device, from); pci_dev_put(from); if (!dev) break; parent = pci_upstream_bridge(dev); if (ACPI_COMPANION(&dev->dev) && PCI_SLOT(dev->devfn) == slot && parent && PCI_SLOT(parent->devfn) == parent_slot && !pci_upstream_bridge(parent)) { pci_dev_put(dev); return true; } from = dev; } return false; } /* * GPDwin uses PCI wifi which conflicts with SDIO's use of * acpi_device_fix_up_power() on child device nodes. Identifying GPDwin is * problematic, but since SDIO is only used for wifi, the presence of the PCI * wifi card in the expected slot with an ACPI companion node, is used to * indicate that acpi_device_fix_up_power() should be avoided. */ static inline bool sdhci_acpi_no_fixup_child_power(struct acpi_device *adev) { return sdhci_acpi_cht() && acpi_dev_hid_uid_match(adev, "80860F14", "2") && sdhci_acpi_cht_pci_wifi(0x14e4, 0x43ec, 0, 28); } #else static inline void sdhci_acpi_byt_setting(struct device *dev) { } static inline bool sdhci_acpi_byt_defer(struct device *dev) { return false; } static inline bool sdhci_acpi_no_fixup_child_power(struct acpi_device *adev) { return false; } #endif static int bxt_get_cd(struct mmc_host *mmc) { int gpio_cd = mmc_gpio_get_cd(mmc); struct sdhci_host *host = mmc_priv(mmc); unsigned long flags; int ret = 0; if (!gpio_cd) return 0; spin_lock_irqsave(&host->lock, flags); if (host->flags & SDHCI_DEVICE_DEAD) goto out; ret = !!(sdhci_readl(host, SDHCI_PRESENT_STATE) & SDHCI_CARD_PRESENT); out: spin_unlock_irqrestore(&host->lock, flags); return ret; } static int intel_probe_slot(struct platform_device *pdev, struct acpi_device *adev) { struct sdhci_acpi_host *c = platform_get_drvdata(pdev); struct intel_host *intel_host = sdhci_acpi_priv(c); struct sdhci_host *host = c->host; if (acpi_dev_hid_uid_match(adev, "80860F14", "1") && sdhci_readl(host, SDHCI_CAPABILITIES) == 0x446cc8b2 && sdhci_readl(host, SDHCI_CAPABILITIES_1) == 0x00000807) host->timeout_clk = 1000; /* 1000 kHz i.e. 1 MHz */ if (acpi_dev_hid_uid_match(adev, "80865ACA", NULL)) host->mmc_host_ops.get_cd = bxt_get_cd; intel_dsm_init(intel_host, &pdev->dev, host->mmc); host->mmc_host_ops.start_signal_voltage_switch = intel_start_signal_voltage_switch; c->is_intel = true; return 0; } static int intel_setup_host(struct platform_device *pdev) { struct sdhci_acpi_host *c = platform_get_drvdata(pdev); struct intel_host *intel_host = sdhci_acpi_priv(c); if (!(intel_host->hs_caps & INTEL_DSM_HS_CAPS_SDR25)) c->host->mmc->caps &= ~MMC_CAP_UHS_SDR25; if (!(intel_host->hs_caps & INTEL_DSM_HS_CAPS_SDR50)) c->host->mmc->caps &= ~MMC_CAP_UHS_SDR50; if (!(intel_host->hs_caps & INTEL_DSM_HS_CAPS_DDR50)) c->host->mmc->caps &= ~MMC_CAP_UHS_DDR50; if (!(intel_host->hs_caps & INTEL_DSM_HS_CAPS_SDR104)) c->host->mmc->caps &= ~MMC_CAP_UHS_SDR104; return 0; } static const struct sdhci_acpi_slot sdhci_acpi_slot_int_emmc = { .chip = &sdhci_acpi_chip_int, .caps = MMC_CAP_8_BIT_DATA | MMC_CAP_NONREMOVABLE | MMC_CAP_HW_RESET | MMC_CAP_1_8V_DDR | MMC_CAP_CMD_DURING_TFR | MMC_CAP_WAIT_WHILE_BUSY, .flags = SDHCI_ACPI_RUNTIME_PM, .quirks = SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC | SDHCI_QUIRK_NO_LED, .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN | SDHCI_QUIRK2_STOP_WITH_TC | SDHCI_QUIRK2_CAPS_BIT63_FOR_HS400, .probe_slot = intel_probe_slot, .setup_host = intel_setup_host, .priv_size = sizeof(struct intel_host), }; static const struct sdhci_acpi_slot sdhci_acpi_slot_int_sdio = { .quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION | SDHCI_QUIRK_NO_LED | SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC, .quirks2 = SDHCI_QUIRK2_HOST_OFF_CARD_ON, .caps = MMC_CAP_NONREMOVABLE | MMC_CAP_POWER_OFF_CARD | MMC_CAP_WAIT_WHILE_BUSY, .flags = SDHCI_ACPI_RUNTIME_PM, .pm_caps = MMC_PM_KEEP_POWER, .probe_slot = intel_probe_slot, .setup_host = intel_setup_host, .priv_size = sizeof(struct intel_host), }; static const struct sdhci_acpi_slot sdhci_acpi_slot_int_sd = { .flags = SDHCI_ACPI_SD_CD | SDHCI_ACPI_SD_CD_OVERRIDE_LEVEL | SDHCI_ACPI_RUNTIME_PM, .quirks = SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC | SDHCI_QUIRK_NO_LED, .quirks2 = SDHCI_QUIRK2_CARD_ON_NEEDS_BUS_ON | SDHCI_QUIRK2_STOP_WITH_TC, .caps = MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_AGGRESSIVE_PM, .probe_slot = intel_probe_slot, .setup_host = intel_setup_host, .priv_size = sizeof(struct intel_host), }; #define VENDOR_SPECIFIC_PWRCTL_CLEAR_REG 0x1a8 #define VENDOR_SPECIFIC_PWRCTL_CTL_REG 0x1ac static irqreturn_t sdhci_acpi_qcom_handler(int irq, void *ptr) { struct sdhci_host *host = ptr; sdhci_writel(host, 0x3, VENDOR_SPECIFIC_PWRCTL_CLEAR_REG); sdhci_writel(host, 0x1, VENDOR_SPECIFIC_PWRCTL_CTL_REG); return IRQ_HANDLED; } static int qcom_probe_slot(struct platform_device *pdev, struct acpi_device *adev) { struct sdhci_acpi_host *c = platform_get_drvdata(pdev); struct sdhci_host *host = c->host; int *irq = sdhci_acpi_priv(c); *irq = -EINVAL; if (!acpi_dev_hid_uid_match(adev, "QCOM8051", NULL)) return 0; *irq = platform_get_irq(pdev, 1); if (*irq < 0) return 0; return request_threaded_irq(*irq, NULL, sdhci_acpi_qcom_handler, IRQF_ONESHOT | IRQF_TRIGGER_HIGH, "sdhci_qcom", host); } static int qcom_free_slot(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct sdhci_acpi_host *c = platform_get_drvdata(pdev); struct sdhci_host *host = c->host; struct acpi_device *adev; int *irq = sdhci_acpi_priv(c); adev = ACPI_COMPANION(dev); if (!adev) return -ENODEV; if (!acpi_dev_hid_uid_match(adev, "QCOM8051", NULL)) return 0; if (*irq < 0) return 0; free_irq(*irq, host); return 0; } static const struct sdhci_acpi_slot sdhci_acpi_slot_qcom_sd_3v = { .quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION, .quirks2 = SDHCI_QUIRK2_NO_1_8_V, .caps = MMC_CAP_NONREMOVABLE, .priv_size = sizeof(int), .probe_slot = qcom_probe_slot, .free_slot = qcom_free_slot, }; static const struct sdhci_acpi_slot sdhci_acpi_slot_qcom_sd = { .quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION, .caps = MMC_CAP_NONREMOVABLE, }; struct amd_sdhci_host { bool tuned_clock; bool dll_enabled; }; /* AMD sdhci reset dll register. */ #define SDHCI_AMD_RESET_DLL_REGISTER 0x908 static int amd_select_drive_strength(struct mmc_card *card, unsigned int max_dtr, int host_drv, int card_drv, int *drv_type) { *drv_type = MMC_SET_DRIVER_TYPE_A; return MMC_SET_DRIVER_TYPE_A; } static void sdhci_acpi_amd_hs400_dll(struct sdhci_host *host, bool enable) { struct sdhci_acpi_host *acpi_host = sdhci_priv(host); struct amd_sdhci_host *amd_host = sdhci_acpi_priv(acpi_host); /* AMD Platform requires dll setting */ sdhci_writel(host, 0x40003210, SDHCI_AMD_RESET_DLL_REGISTER); usleep_range(10, 20); if (enable) sdhci_writel(host, 0x40033210, SDHCI_AMD_RESET_DLL_REGISTER); amd_host->dll_enabled = enable; } /* * The initialization sequence for HS400 is: * HS->HS200->Perform Tuning->HS->HS400 * * The re-tuning sequence is: * HS400->DDR52->HS->HS200->Perform Tuning->HS->HS400 * * The AMD eMMC Controller can only use the tuned clock while in HS200 and HS400 * mode. If we switch to a different mode, we need to disable the tuned clock. * If we have previously performed tuning and switch back to HS200 or * HS400, we can re-enable the tuned clock. * */ static void amd_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) { struct sdhci_host *host = mmc_priv(mmc); struct sdhci_acpi_host *acpi_host = sdhci_priv(host); struct amd_sdhci_host *amd_host = sdhci_acpi_priv(acpi_host); unsigned int old_timing = host->timing; u16 val; sdhci_set_ios(mmc, ios); if (old_timing != host->timing && amd_host->tuned_clock) { if (host->timing == MMC_TIMING_MMC_HS400 || host->timing == MMC_TIMING_MMC_HS200) { val = sdhci_readw(host, SDHCI_HOST_CONTROL2); val |= SDHCI_CTRL_TUNED_CLK; sdhci_writew(host, val, SDHCI_HOST_CONTROL2); } else { val = sdhci_readw(host, SDHCI_HOST_CONTROL2); val &= ~SDHCI_CTRL_TUNED_CLK; sdhci_writew(host, val, SDHCI_HOST_CONTROL2); } /* DLL is only required for HS400 */ if (host->timing == MMC_TIMING_MMC_HS400 && !amd_host->dll_enabled) sdhci_acpi_amd_hs400_dll(host, true); } } static int amd_sdhci_execute_tuning(struct mmc_host *mmc, u32 opcode) { int err; struct sdhci_host *host = mmc_priv(mmc); struct sdhci_acpi_host *acpi_host = sdhci_priv(host); struct amd_sdhci_host *amd_host = sdhci_acpi_priv(acpi_host); amd_host->tuned_clock = false; err = sdhci_execute_tuning(mmc, opcode); if (!err && !host->tuning_err) amd_host->tuned_clock = true; return err; } static void amd_sdhci_reset(struct sdhci_host *host, u8 mask) { struct sdhci_acpi_host *acpi_host = sdhci_priv(host); struct amd_sdhci_host *amd_host = sdhci_acpi_priv(acpi_host); if (mask & SDHCI_RESET_ALL) { amd_host->tuned_clock = false; sdhci_acpi_amd_hs400_dll(host, false); } sdhci_reset(host, mask); } static const struct sdhci_ops sdhci_acpi_ops_amd = { .set_clock = sdhci_set_clock, .set_bus_width = sdhci_set_bus_width, .reset = amd_sdhci_reset, .set_uhs_signaling = sdhci_set_uhs_signaling, }; static const struct sdhci_acpi_chip sdhci_acpi_chip_amd = { .ops = &sdhci_acpi_ops_amd, }; static int sdhci_acpi_emmc_amd_probe_slot(struct platform_device *pdev, struct acpi_device *adev) { struct sdhci_acpi_host *c = platform_get_drvdata(pdev); struct sdhci_host *host = c->host; sdhci_read_caps(host); if (host->caps1 & SDHCI_SUPPORT_DDR50) host->mmc->caps = MMC_CAP_1_8V_DDR; if ((host->caps1 & SDHCI_SUPPORT_SDR104) && (host->mmc->caps & MMC_CAP_1_8V_DDR)) host->mmc->caps2 = MMC_CAP2_HS400_1_8V; host->mmc_host_ops.select_drive_strength = amd_select_drive_strength; host->mmc_host_ops.set_ios = amd_set_ios; host->mmc_host_ops.execute_tuning = amd_sdhci_execute_tuning; return 0; } static const struct sdhci_acpi_slot sdhci_acpi_slot_amd_emmc = { .chip = &sdhci_acpi_chip_amd, .caps = MMC_CAP_8_BIT_DATA | MMC_CAP_NONREMOVABLE, .quirks = SDHCI_QUIRK_32BIT_DMA_ADDR | SDHCI_QUIRK_32BIT_DMA_SIZE | SDHCI_QUIRK_32BIT_ADMA_SIZE, .quirks2 = SDHCI_QUIRK2_BROKEN_64_BIT_DMA, .probe_slot = sdhci_acpi_emmc_amd_probe_slot, .priv_size = sizeof(struct amd_sdhci_host), }; struct sdhci_acpi_uid_slot { const char *hid; const char *uid; const struct sdhci_acpi_slot *slot; }; static const struct sdhci_acpi_uid_slot sdhci_acpi_uids[] = { { "80865ACA", NULL, &sdhci_acpi_slot_int_sd }, { "80865ACC", NULL, &sdhci_acpi_slot_int_emmc }, { "80865AD0", NULL, &sdhci_acpi_slot_int_sdio }, { "80860F14" , "1" , &sdhci_acpi_slot_int_emmc }, { "80860F14" , "2" , &sdhci_acpi_slot_int_sdio }, { "80860F14" , "3" , &sdhci_acpi_slot_int_sd }, { "80860F16" , NULL, &sdhci_acpi_slot_int_sd }, { "INT33BB" , "2" , &sdhci_acpi_slot_int_sdio }, { "INT33BB" , "3" , &sdhci_acpi_slot_int_sd }, { "INT33C6" , NULL, &sdhci_acpi_slot_int_sdio }, { "INT3436" , NULL, &sdhci_acpi_slot_int_sdio }, { "INT344D" , NULL, &sdhci_acpi_slot_int_sdio }, { "PNP0FFF" , "3" , &sdhci_acpi_slot_int_sd }, { "PNP0D40" }, { "QCOM8051", NULL, &sdhci_acpi_slot_qcom_sd_3v }, { "QCOM8052", NULL, &sdhci_acpi_slot_qcom_sd }, { "AMDI0040", NULL, &sdhci_acpi_slot_amd_emmc }, { }, }; static const struct acpi_device_id sdhci_acpi_ids[] = { { "80865ACA" }, { "80865ACC" }, { "80865AD0" }, { "80860F14" }, { "80860F16" }, { "INT33BB" }, { "INT33C6" }, { "INT3436" }, { "INT344D" }, { "PNP0D40" }, { "QCOM8051" }, { "QCOM8052" }, { "AMDI0040" }, { }, }; MODULE_DEVICE_TABLE(acpi, sdhci_acpi_ids); static const struct dmi_system_id sdhci_acpi_quirks[] = { { /* * The Lenovo Miix 320-10ICR has a bug in the _PS0 method of * the SHC1 ACPI device, this bug causes it to reprogram the * wrong LDO (DLDO3) to 1.8V if 1.8V modes are used and the * card is (runtime) suspended + resumed. DLDO3 is used for * the LCD and setting it to 1.8V causes the LCD to go black. */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), DMI_MATCH(DMI_PRODUCT_VERSION, "Lenovo MIIX 320-10ICR"), }, .driver_data = (void *)DMI_QUIRK_RESET_SD_SIGNAL_VOLT_ON_SUSP, }, { /* * The Acer Aspire Switch 10 (SW5-012) microSD slot always * reports the card being write-protected even though microSD * cards do not have a write-protect switch at all. */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Acer"), DMI_MATCH(DMI_PRODUCT_NAME, "Aspire SW5-012"), }, .driver_data = (void *)DMI_QUIRK_SD_NO_WRITE_PROTECT, }, {} /* Terminating entry */ }; static const struct sdhci_acpi_slot *sdhci_acpi_get_slot(struct acpi_device *adev) { const struct sdhci_acpi_uid_slot *u; for (u = sdhci_acpi_uids; u->hid; u++) { if (acpi_dev_hid_uid_match(adev, u->hid, u->uid)) return u->slot; } return NULL; } static int sdhci_acpi_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; const struct sdhci_acpi_slot *slot; struct acpi_device *device, *child; const struct dmi_system_id *id; struct sdhci_acpi_host *c; struct sdhci_host *host; struct resource *iomem; resource_size_t len; size_t priv_size; int quirks = 0; int err; device = ACPI_COMPANION(dev); if (!device) return -ENODEV; id = dmi_first_match(sdhci_acpi_quirks); if (id) quirks = (long)id->driver_data; slot = sdhci_acpi_get_slot(device); /* Power on the SDHCI controller and its children */ acpi_device_fix_up_power(device); if (!sdhci_acpi_no_fixup_child_power(device)) { list_for_each_entry(child, &device->children, node) if (child->status.present && child->status.enabled) acpi_device_fix_up_power(child); } if (sdhci_acpi_byt_defer(dev)) return -EPROBE_DEFER; iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!iomem) return -ENOMEM; len = resource_size(iomem); if (len < 0x100) dev_err(dev, "Invalid iomem size!\n"); if (!devm_request_mem_region(dev, iomem->start, len, dev_name(dev))) return -ENOMEM; priv_size = slot ? slot->priv_size : 0; host = sdhci_alloc_host(dev, sizeof(struct sdhci_acpi_host) + priv_size); if (IS_ERR(host)) return PTR_ERR(host); c = sdhci_priv(host); c->host = host; c->slot = slot; c->pdev = pdev; c->use_runtime_pm = sdhci_acpi_flag(c, SDHCI_ACPI_RUNTIME_PM); platform_set_drvdata(pdev, c); host->hw_name = "ACPI"; host->ops = &sdhci_acpi_ops_dflt; host->irq = platform_get_irq(pdev, 0); if (host->irq < 0) { err = -EINVAL; goto err_free; } host->ioaddr = devm_ioremap(dev, iomem->start, resource_size(iomem)); if (host->ioaddr == NULL) { err = -ENOMEM; goto err_free; } if (c->slot) { if (c->slot->probe_slot) { err = c->slot->probe_slot(pdev, device); if (err) goto err_free; } if (c->slot->chip) { host->ops = c->slot->chip->ops; host->quirks |= c->slot->chip->quirks; host->quirks2 |= c->slot->chip->quirks2; host->mmc->caps |= c->slot->chip->caps; host->mmc->caps2 |= c->slot->chip->caps2; host->mmc->pm_caps |= c->slot->chip->pm_caps; } host->quirks |= c->slot->quirks; host->quirks2 |= c->slot->quirks2; host->mmc->caps |= c->slot->caps; host->mmc->caps2 |= c->slot->caps2; host->mmc->pm_caps |= c->slot->pm_caps; } host->mmc->caps2 |= MMC_CAP2_NO_PRESCAN_POWERUP; if (sdhci_acpi_flag(c, SDHCI_ACPI_SD_CD)) { bool v = sdhci_acpi_flag(c, SDHCI_ACPI_SD_CD_OVERRIDE_LEVEL); err = mmc_gpiod_request_cd(host->mmc, NULL, 0, v, 0); if (err) { if (err == -EPROBE_DEFER) goto err_free; dev_warn(dev, "failed to setup card detect gpio\n"); c->use_runtime_pm = false; } if (quirks & DMI_QUIRK_RESET_SD_SIGNAL_VOLT_ON_SUSP) c->reset_signal_volt_on_suspend = true; if (quirks & DMI_QUIRK_SD_NO_WRITE_PROTECT) host->mmc->caps2 |= MMC_CAP2_NO_WRITE_PROTECT; } err = sdhci_setup_host(host); if (err) goto err_free; if (c->slot && c->slot->setup_host) { err = c->slot->setup_host(pdev); if (err) goto err_cleanup; } err = __sdhci_add_host(host); if (err) goto err_cleanup; if (c->use_runtime_pm) { pm_runtime_set_active(dev); pm_suspend_ignore_children(dev, 1); pm_runtime_set_autosuspend_delay(dev, 50); pm_runtime_use_autosuspend(dev); pm_runtime_enable(dev); } device_enable_async_suspend(dev); return 0; err_cleanup: sdhci_cleanup_host(c->host); err_free: if (c->slot && c->slot->free_slot) c->slot->free_slot(pdev); sdhci_free_host(c->host); return err; } static int sdhci_acpi_remove(struct platform_device *pdev) { struct sdhci_acpi_host *c = platform_get_drvdata(pdev); struct device *dev = &pdev->dev; int dead; if (c->use_runtime_pm) { pm_runtime_get_sync(dev); pm_runtime_disable(dev); pm_runtime_put_noidle(dev); } if (c->slot && c->slot->remove_slot) c->slot->remove_slot(pdev); dead = (sdhci_readl(c->host, SDHCI_INT_STATUS) == ~0); sdhci_remove_host(c->host, dead); if (c->slot && c->slot->free_slot) c->slot->free_slot(pdev); sdhci_free_host(c->host); return 0; } static void __maybe_unused sdhci_acpi_reset_signal_voltage_if_needed( struct device *dev) { struct sdhci_acpi_host *c = dev_get_drvdata(dev); struct sdhci_host *host = c->host; if (c->is_intel && c->reset_signal_volt_on_suspend && host->mmc->ios.signal_voltage != MMC_SIGNAL_VOLTAGE_330) { struct intel_host *intel_host = sdhci_acpi_priv(c); unsigned int fn = INTEL_DSM_V33_SWITCH; u32 result = 0; intel_dsm(intel_host, dev, fn, &result); } } #ifdef CONFIG_PM_SLEEP static int sdhci_acpi_suspend(struct device *dev) { struct sdhci_acpi_host *c = dev_get_drvdata(dev); struct sdhci_host *host = c->host; int ret; if (host->tuning_mode != SDHCI_TUNING_MODE_3) mmc_retune_needed(host->mmc); ret = sdhci_suspend_host(host); if (ret) return ret; sdhci_acpi_reset_signal_voltage_if_needed(dev); return 0; } static int sdhci_acpi_resume(struct device *dev) { struct sdhci_acpi_host *c = dev_get_drvdata(dev); sdhci_acpi_byt_setting(&c->pdev->dev); return sdhci_resume_host(c->host); } #endif #ifdef CONFIG_PM static int sdhci_acpi_runtime_suspend(struct device *dev) { struct sdhci_acpi_host *c = dev_get_drvdata(dev); struct sdhci_host *host = c->host; int ret; if (host->tuning_mode != SDHCI_TUNING_MODE_3) mmc_retune_needed(host->mmc); ret = sdhci_runtime_suspend_host(host); if (ret) return ret; sdhci_acpi_reset_signal_voltage_if_needed(dev); return 0; } static int sdhci_acpi_runtime_resume(struct device *dev) { struct sdhci_acpi_host *c = dev_get_drvdata(dev); sdhci_acpi_byt_setting(&c->pdev->dev); return sdhci_runtime_resume_host(c->host, 0); } #endif static const struct dev_pm_ops sdhci_acpi_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(sdhci_acpi_suspend, sdhci_acpi_resume) SET_RUNTIME_PM_OPS(sdhci_acpi_runtime_suspend, sdhci_acpi_runtime_resume, NULL) }; static struct platform_driver sdhci_acpi_driver = { .driver = { .name = "sdhci-acpi", .acpi_match_table = sdhci_acpi_ids, .pm = &sdhci_acpi_pm_ops, }, .probe = sdhci_acpi_probe, .remove = sdhci_acpi_remove, }; module_platform_driver(sdhci_acpi_driver); MODULE_DESCRIPTION("Secure Digital Host Controller Interface ACPI driver"); MODULE_AUTHOR("Adrian Hunter"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1