Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Artem B. Bityutskiy | 3070 | 91.23% | 34 | 56.67% |
Sheng Yong | 91 | 2.70% | 2 | 3.33% |
Tatyana Brokhman | 45 | 1.34% | 2 | 3.33% |
Richard Weinberger | 45 | 1.34% | 5 | 8.33% |
Boris Brezillon | 22 | 0.65% | 2 | 3.33% |
Christoph Hellwig | 19 | 0.56% | 1 | 1.67% |
Quentin Schulz | 17 | 0.51% | 1 | 1.67% |
Vinit Agnihotri | 14 | 0.42% | 1 | 1.67% |
Peter Horton | 11 | 0.33% | 1 | 1.67% |
Kyungmin Park | 5 | 0.15% | 1 | 1.67% |
Adrian Bunk | 5 | 0.15% | 1 | 1.67% |
Brian Norris | 3 | 0.09% | 1 | 1.67% |
Tejun Heo | 3 | 0.09% | 1 | 1.67% |
Deepak Saxena | 3 | 0.09% | 1 | 1.67% |
Ezequiel García | 3 | 0.09% | 1 | 1.67% |
Florin Malita | 3 | 0.09% | 1 | 1.67% |
Joe Perches | 2 | 0.06% | 1 | 1.67% |
Thomas Gleixner | 2 | 0.06% | 1 | 1.67% |
Shinya Kuribayashi | 1 | 0.03% | 1 | 1.67% |
Hou Tao | 1 | 0.03% | 1 | 1.67% |
Total | 3365 | 60 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) International Business Machines Corp., 2006 * Copyright (c) Nokia Corporation, 2006, 2007 * * Author: Artem Bityutskiy (Битюцкий Артём) */ /* * This file includes volume table manipulation code. The volume table is an * on-flash table containing volume meta-data like name, number of reserved * physical eraseblocks, type, etc. The volume table is stored in the so-called * "layout volume". * * The layout volume is an internal volume which is organized as follows. It * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each * other. This redundancy guarantees robustness to unclean reboots. The volume * table is basically an array of volume table records. Each record contains * full information about the volume and protected by a CRC checksum. Note, * nowadays we use the atomic LEB change operation when updating the volume * table, so we do not really need 2 LEBs anymore, but we preserve the older * design for the backward compatibility reasons. * * When the volume table is changed, it is first changed in RAM. Then LEB 0 is * erased, and the updated volume table is written back to LEB 0. Then same for * LEB 1. This scheme guarantees recoverability from unclean reboots. * * In this UBI implementation the on-flash volume table does not contain any * information about how much data static volumes contain. * * But it would still be beneficial to store this information in the volume * table. For example, suppose we have a static volume X, and all its physical * eraseblocks became bad for some reasons. Suppose we are attaching the * corresponding MTD device, for some reason we find no logical eraseblocks * corresponding to the volume X. According to the volume table volume X does * exist. So we don't know whether it is just empty or all its physical * eraseblocks went bad. So we cannot alarm the user properly. * * The volume table also stores so-called "update marker", which is used for * volume updates. Before updating the volume, the update marker is set, and * after the update operation is finished, the update marker is cleared. So if * the update operation was interrupted (e.g. by an unclean reboot) - the * update marker is still there and we know that the volume's contents is * damaged. */ #include <linux/crc32.h> #include <linux/err.h> #include <linux/slab.h> #include <asm/div64.h> #include "ubi.h" static void self_vtbl_check(const struct ubi_device *ubi); /* Empty volume table record */ static struct ubi_vtbl_record empty_vtbl_record; /** * ubi_update_layout_vol - helper for updatting layout volumes on flash * @ubi: UBI device description object */ static int ubi_update_layout_vol(struct ubi_device *ubi) { struct ubi_volume *layout_vol; int i, err; layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)]; for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) { err = ubi_eba_atomic_leb_change(ubi, layout_vol, i, ubi->vtbl, ubi->vtbl_size); if (err) return err; } return 0; } /** * ubi_change_vtbl_record - change volume table record. * @ubi: UBI device description object * @idx: table index to change * @vtbl_rec: new volume table record * * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty * volume table record is written. The caller does not have to calculate CRC of * the record as it is done by this function. Returns zero in case of success * and a negative error code in case of failure. */ int ubi_change_vtbl_record(struct ubi_device *ubi, int idx, struct ubi_vtbl_record *vtbl_rec) { int err; uint32_t crc; ubi_assert(idx >= 0 && idx < ubi->vtbl_slots); if (!vtbl_rec) vtbl_rec = &empty_vtbl_record; else { crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC); vtbl_rec->crc = cpu_to_be32(crc); } memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record)); err = ubi_update_layout_vol(ubi); self_vtbl_check(ubi); return err ? err : 0; } /** * ubi_vtbl_rename_volumes - rename UBI volumes in the volume table. * @ubi: UBI device description object * @rename_list: list of &struct ubi_rename_entry objects * * This function re-names multiple volumes specified in @req in the volume * table. Returns zero in case of success and a negative error code in case of * failure. */ int ubi_vtbl_rename_volumes(struct ubi_device *ubi, struct list_head *rename_list) { struct ubi_rename_entry *re; list_for_each_entry(re, rename_list, list) { uint32_t crc; struct ubi_volume *vol = re->desc->vol; struct ubi_vtbl_record *vtbl_rec = &ubi->vtbl[vol->vol_id]; if (re->remove) { memcpy(vtbl_rec, &empty_vtbl_record, sizeof(struct ubi_vtbl_record)); continue; } vtbl_rec->name_len = cpu_to_be16(re->new_name_len); memcpy(vtbl_rec->name, re->new_name, re->new_name_len); memset(vtbl_rec->name + re->new_name_len, 0, UBI_VOL_NAME_MAX + 1 - re->new_name_len); crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC); vtbl_rec->crc = cpu_to_be32(crc); } return ubi_update_layout_vol(ubi); } /** * vtbl_check - check if volume table is not corrupted and sensible. * @ubi: UBI device description object * @vtbl: volume table * * This function returns zero if @vtbl is all right, %1 if CRC is incorrect, * and %-EINVAL if it contains inconsistent data. */ static int vtbl_check(const struct ubi_device *ubi, const struct ubi_vtbl_record *vtbl) { int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len; int upd_marker, err; uint32_t crc; const char *name; for (i = 0; i < ubi->vtbl_slots; i++) { cond_resched(); reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs); alignment = be32_to_cpu(vtbl[i].alignment); data_pad = be32_to_cpu(vtbl[i].data_pad); upd_marker = vtbl[i].upd_marker; vol_type = vtbl[i].vol_type; name_len = be16_to_cpu(vtbl[i].name_len); name = &vtbl[i].name[0]; crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC); if (be32_to_cpu(vtbl[i].crc) != crc) { ubi_err(ubi, "bad CRC at record %u: %#08x, not %#08x", i, crc, be32_to_cpu(vtbl[i].crc)); ubi_dump_vtbl_record(&vtbl[i], i); return 1; } if (reserved_pebs == 0) { if (memcmp(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE)) { err = 2; goto bad; } continue; } if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 || name_len < 0) { err = 3; goto bad; } if (alignment > ubi->leb_size || alignment == 0) { err = 4; goto bad; } n = alignment & (ubi->min_io_size - 1); if (alignment != 1 && n) { err = 5; goto bad; } n = ubi->leb_size % alignment; if (data_pad != n) { ubi_err(ubi, "bad data_pad, has to be %d", n); err = 6; goto bad; } if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) { err = 7; goto bad; } if (upd_marker != 0 && upd_marker != 1) { err = 8; goto bad; } if (reserved_pebs > ubi->good_peb_count) { ubi_err(ubi, "too large reserved_pebs %d, good PEBs %d", reserved_pebs, ubi->good_peb_count); err = 9; goto bad; } if (name_len > UBI_VOL_NAME_MAX) { err = 10; goto bad; } if (name[0] == '\0') { err = 11; goto bad; } if (name_len != strnlen(name, name_len + 1)) { err = 12; goto bad; } } /* Checks that all names are unique */ for (i = 0; i < ubi->vtbl_slots - 1; i++) { for (n = i + 1; n < ubi->vtbl_slots; n++) { int len1 = be16_to_cpu(vtbl[i].name_len); int len2 = be16_to_cpu(vtbl[n].name_len); if (len1 > 0 && len1 == len2 && !strncmp(vtbl[i].name, vtbl[n].name, len1)) { ubi_err(ubi, "volumes %d and %d have the same name \"%s\"", i, n, vtbl[i].name); ubi_dump_vtbl_record(&vtbl[i], i); ubi_dump_vtbl_record(&vtbl[n], n); return -EINVAL; } } } return 0; bad: ubi_err(ubi, "volume table check failed: record %d, error %d", i, err); ubi_dump_vtbl_record(&vtbl[i], i); return -EINVAL; } /** * create_vtbl - create a copy of volume table. * @ubi: UBI device description object * @ai: attaching information * @copy: number of the volume table copy * @vtbl: contents of the volume table * * This function returns zero in case of success and a negative error code in * case of failure. */ static int create_vtbl(struct ubi_device *ubi, struct ubi_attach_info *ai, int copy, void *vtbl) { int err, tries = 0; struct ubi_vid_io_buf *vidb; struct ubi_vid_hdr *vid_hdr; struct ubi_ainf_peb *new_aeb; dbg_gen("create volume table (copy #%d)", copy + 1); vidb = ubi_alloc_vid_buf(ubi, GFP_KERNEL); if (!vidb) return -ENOMEM; vid_hdr = ubi_get_vid_hdr(vidb); retry: new_aeb = ubi_early_get_peb(ubi, ai); if (IS_ERR(new_aeb)) { err = PTR_ERR(new_aeb); goto out_free; } vid_hdr->vol_type = UBI_LAYOUT_VOLUME_TYPE; vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOLUME_ID); vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT; vid_hdr->data_size = vid_hdr->used_ebs = vid_hdr->data_pad = cpu_to_be32(0); vid_hdr->lnum = cpu_to_be32(copy); vid_hdr->sqnum = cpu_to_be64(++ai->max_sqnum); /* The EC header is already there, write the VID header */ err = ubi_io_write_vid_hdr(ubi, new_aeb->pnum, vidb); if (err) goto write_error; /* Write the layout volume contents */ err = ubi_io_write_data(ubi, vtbl, new_aeb->pnum, 0, ubi->vtbl_size); if (err) goto write_error; /* * And add it to the attaching information. Don't delete the old version * of this LEB as it will be deleted and freed in 'ubi_add_to_av()'. */ err = ubi_add_to_av(ubi, ai, new_aeb->pnum, new_aeb->ec, vid_hdr, 0); ubi_free_aeb(ai, new_aeb); ubi_free_vid_buf(vidb); return err; write_error: if (err == -EIO && ++tries <= 5) { /* * Probably this physical eraseblock went bad, try to pick * another one. */ list_add(&new_aeb->u.list, &ai->erase); goto retry; } ubi_free_aeb(ai, new_aeb); out_free: ubi_free_vid_buf(vidb); return err; } /** * process_lvol - process the layout volume. * @ubi: UBI device description object * @ai: attaching information * @av: layout volume attaching information * * This function is responsible for reading the layout volume, ensuring it is * not corrupted, and recovering from corruptions if needed. Returns volume * table in case of success and a negative error code in case of failure. */ static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi, struct ubi_attach_info *ai, struct ubi_ainf_volume *av) { int err; struct rb_node *rb; struct ubi_ainf_peb *aeb; struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL }; int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1}; /* * UBI goes through the following steps when it changes the layout * volume: * a. erase LEB 0; * b. write new data to LEB 0; * c. erase LEB 1; * d. write new data to LEB 1. * * Before the change, both LEBs contain the same data. * * Due to unclean reboots, the contents of LEB 0 may be lost, but there * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not. * Similarly, LEB 1 may be lost, but there should be LEB 0. And * finally, unclean reboots may result in a situation when neither LEB * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB * 0 contains more recent information. * * So the plan is to first check LEB 0. Then * a. if LEB 0 is OK, it must be containing the most recent data; then * we compare it with LEB 1, and if they are different, we copy LEB * 0 to LEB 1; * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1 * to LEB 0. */ dbg_gen("check layout volume"); /* Read both LEB 0 and LEB 1 into memory */ ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) { leb[aeb->lnum] = vzalloc(ubi->vtbl_size); if (!leb[aeb->lnum]) { err = -ENOMEM; goto out_free; } err = ubi_io_read_data(ubi, leb[aeb->lnum], aeb->pnum, 0, ubi->vtbl_size); if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) /* * Scrub the PEB later. Note, -EBADMSG indicates an * uncorrectable ECC error, but we have our own CRC and * the data will be checked later. If the data is OK, * the PEB will be scrubbed (because we set * aeb->scrub). If the data is not OK, the contents of * the PEB will be recovered from the second copy, and * aeb->scrub will be cleared in * 'ubi_add_to_av()'. */ aeb->scrub = 1; else if (err) goto out_free; } err = -EINVAL; if (leb[0]) { leb_corrupted[0] = vtbl_check(ubi, leb[0]); if (leb_corrupted[0] < 0) goto out_free; } if (!leb_corrupted[0]) { /* LEB 0 is OK */ if (leb[1]) leb_corrupted[1] = memcmp(leb[0], leb[1], ubi->vtbl_size); if (leb_corrupted[1]) { ubi_warn(ubi, "volume table copy #2 is corrupted"); err = create_vtbl(ubi, ai, 1, leb[0]); if (err) goto out_free; ubi_msg(ubi, "volume table was restored"); } /* Both LEB 1 and LEB 2 are OK and consistent */ vfree(leb[1]); return leb[0]; } else { /* LEB 0 is corrupted or does not exist */ if (leb[1]) { leb_corrupted[1] = vtbl_check(ubi, leb[1]); if (leb_corrupted[1] < 0) goto out_free; } if (leb_corrupted[1]) { /* Both LEB 0 and LEB 1 are corrupted */ ubi_err(ubi, "both volume tables are corrupted"); goto out_free; } ubi_warn(ubi, "volume table copy #1 is corrupted"); err = create_vtbl(ubi, ai, 0, leb[1]); if (err) goto out_free; ubi_msg(ubi, "volume table was restored"); vfree(leb[0]); return leb[1]; } out_free: vfree(leb[0]); vfree(leb[1]); return ERR_PTR(err); } /** * create_empty_lvol - create empty layout volume. * @ubi: UBI device description object * @ai: attaching information * * This function returns volume table contents in case of success and a * negative error code in case of failure. */ static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi, struct ubi_attach_info *ai) { int i; struct ubi_vtbl_record *vtbl; vtbl = vzalloc(ubi->vtbl_size); if (!vtbl) return ERR_PTR(-ENOMEM); for (i = 0; i < ubi->vtbl_slots; i++) memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE); for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) { int err; err = create_vtbl(ubi, ai, i, vtbl); if (err) { vfree(vtbl); return ERR_PTR(err); } } return vtbl; } /** * init_volumes - initialize volume information for existing volumes. * @ubi: UBI device description object * @ai: scanning information * @vtbl: volume table * * This function allocates volume description objects for existing volumes. * Returns zero in case of success and a negative error code in case of * failure. */ static int init_volumes(struct ubi_device *ubi, const struct ubi_attach_info *ai, const struct ubi_vtbl_record *vtbl) { int i, err, reserved_pebs = 0; struct ubi_ainf_volume *av; struct ubi_volume *vol; for (i = 0; i < ubi->vtbl_slots; i++) { cond_resched(); if (be32_to_cpu(vtbl[i].reserved_pebs) == 0) continue; /* Empty record */ vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL); if (!vol) return -ENOMEM; vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs); vol->alignment = be32_to_cpu(vtbl[i].alignment); vol->data_pad = be32_to_cpu(vtbl[i].data_pad); vol->upd_marker = vtbl[i].upd_marker; vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME; vol->name_len = be16_to_cpu(vtbl[i].name_len); vol->usable_leb_size = ubi->leb_size - vol->data_pad; memcpy(vol->name, vtbl[i].name, vol->name_len); vol->name[vol->name_len] = '\0'; vol->vol_id = i; if (vtbl[i].flags & UBI_VTBL_SKIP_CRC_CHECK_FLG) vol->skip_check = 1; if (vtbl[i].flags & UBI_VTBL_AUTORESIZE_FLG) { /* Auto re-size flag may be set only for one volume */ if (ubi->autoresize_vol_id != -1) { ubi_err(ubi, "more than one auto-resize volume (%d and %d)", ubi->autoresize_vol_id, i); kfree(vol); return -EINVAL; } ubi->autoresize_vol_id = i; } ubi_assert(!ubi->volumes[i]); ubi->volumes[i] = vol; ubi->vol_count += 1; vol->ubi = ubi; reserved_pebs += vol->reserved_pebs; /* * We use ubi->peb_count and not vol->reserved_pebs because * we want to keep the code simple. Otherwise we'd have to * resize/check the bitmap upon volume resize too. * Allocating a few bytes more does not hurt. */ err = ubi_fastmap_init_checkmap(vol, ubi->peb_count); if (err) return err; /* * In case of dynamic volume UBI knows nothing about how many * data is stored there. So assume the whole volume is used. */ if (vol->vol_type == UBI_DYNAMIC_VOLUME) { vol->used_ebs = vol->reserved_pebs; vol->last_eb_bytes = vol->usable_leb_size; vol->used_bytes = (long long)vol->used_ebs * vol->usable_leb_size; continue; } /* Static volumes only */ av = ubi_find_av(ai, i); if (!av || !av->leb_count) { /* * No eraseblocks belonging to this volume found. We * don't actually know whether this static volume is * completely corrupted or just contains no data. And * we cannot know this as long as data size is not * stored on flash. So we just assume the volume is * empty. FIXME: this should be handled. */ continue; } if (av->leb_count != av->used_ebs) { /* * We found a static volume which misses several * eraseblocks. Treat it as corrupted. */ ubi_warn(ubi, "static volume %d misses %d LEBs - corrupted", av->vol_id, av->used_ebs - av->leb_count); vol->corrupted = 1; continue; } vol->used_ebs = av->used_ebs; vol->used_bytes = (long long)(vol->used_ebs - 1) * vol->usable_leb_size; vol->used_bytes += av->last_data_size; vol->last_eb_bytes = av->last_data_size; } /* And add the layout volume */ vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL); if (!vol) return -ENOMEM; vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS; vol->alignment = UBI_LAYOUT_VOLUME_ALIGN; vol->vol_type = UBI_DYNAMIC_VOLUME; vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1; memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1); vol->usable_leb_size = ubi->leb_size; vol->used_ebs = vol->reserved_pebs; vol->last_eb_bytes = vol->reserved_pebs; vol->used_bytes = (long long)vol->used_ebs * (ubi->leb_size - vol->data_pad); vol->vol_id = UBI_LAYOUT_VOLUME_ID; vol->ref_count = 1; ubi_assert(!ubi->volumes[i]); ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol; reserved_pebs += vol->reserved_pebs; ubi->vol_count += 1; vol->ubi = ubi; err = ubi_fastmap_init_checkmap(vol, UBI_LAYOUT_VOLUME_EBS); if (err) return err; if (reserved_pebs > ubi->avail_pebs) { ubi_err(ubi, "not enough PEBs, required %d, available %d", reserved_pebs, ubi->avail_pebs); if (ubi->corr_peb_count) ubi_err(ubi, "%d PEBs are corrupted and not used", ubi->corr_peb_count); return -ENOSPC; } ubi->rsvd_pebs += reserved_pebs; ubi->avail_pebs -= reserved_pebs; return 0; } /** * check_av - check volume attaching information. * @vol: UBI volume description object * @av: volume attaching information * * This function returns zero if the volume attaching information is consistent * to the data read from the volume tabla, and %-EINVAL if not. */ static int check_av(const struct ubi_volume *vol, const struct ubi_ainf_volume *av) { int err; if (av->highest_lnum >= vol->reserved_pebs) { err = 1; goto bad; } if (av->leb_count > vol->reserved_pebs) { err = 2; goto bad; } if (av->vol_type != vol->vol_type) { err = 3; goto bad; } if (av->used_ebs > vol->reserved_pebs) { err = 4; goto bad; } if (av->data_pad != vol->data_pad) { err = 5; goto bad; } return 0; bad: ubi_err(vol->ubi, "bad attaching information, error %d", err); ubi_dump_av(av); ubi_dump_vol_info(vol); return -EINVAL; } /** * check_attaching_info - check that attaching information. * @ubi: UBI device description object * @ai: attaching information * * Even though we protect on-flash data by CRC checksums, we still don't trust * the media. This function ensures that attaching information is consistent to * the information read from the volume table. Returns zero if the attaching * information is OK and %-EINVAL if it is not. */ static int check_attaching_info(const struct ubi_device *ubi, struct ubi_attach_info *ai) { int err, i; struct ubi_ainf_volume *av; struct ubi_volume *vol; if (ai->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) { ubi_err(ubi, "found %d volumes while attaching, maximum is %d + %d", ai->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots); return -EINVAL; } if (ai->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT && ai->highest_vol_id < UBI_INTERNAL_VOL_START) { ubi_err(ubi, "too large volume ID %d found", ai->highest_vol_id); return -EINVAL; } for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) { cond_resched(); av = ubi_find_av(ai, i); vol = ubi->volumes[i]; if (!vol) { if (av) ubi_remove_av(ai, av); continue; } if (vol->reserved_pebs == 0) { ubi_assert(i < ubi->vtbl_slots); if (!av) continue; /* * During attaching we found a volume which does not * exist according to the information in the volume * table. This must have happened due to an unclean * reboot while the volume was being removed. Discard * these eraseblocks. */ ubi_msg(ubi, "finish volume %d removal", av->vol_id); ubi_remove_av(ai, av); } else if (av) { err = check_av(vol, av); if (err) return err; } } return 0; } /** * ubi_read_volume_table - read the volume table. * @ubi: UBI device description object * @ai: attaching information * * This function reads volume table, checks it, recover from errors if needed, * or creates it if needed. Returns zero in case of success and a negative * error code in case of failure. */ int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_attach_info *ai) { int err; struct ubi_ainf_volume *av; empty_vtbl_record.crc = cpu_to_be32(0xf116c36b); /* * The number of supported volumes is limited by the eraseblock size * and by the UBI_MAX_VOLUMES constant. */ ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE; if (ubi->vtbl_slots > UBI_MAX_VOLUMES) ubi->vtbl_slots = UBI_MAX_VOLUMES; ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE; ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size); av = ubi_find_av(ai, UBI_LAYOUT_VOLUME_ID); if (!av) { /* * No logical eraseblocks belonging to the layout volume were * found. This could mean that the flash is just empty. In * this case we create empty layout volume. * * But if flash is not empty this must be a corruption or the * MTD device just contains garbage. */ if (ai->is_empty) { ubi->vtbl = create_empty_lvol(ubi, ai); if (IS_ERR(ubi->vtbl)) return PTR_ERR(ubi->vtbl); } else { ubi_err(ubi, "the layout volume was not found"); return -EINVAL; } } else { if (av->leb_count > UBI_LAYOUT_VOLUME_EBS) { /* This must not happen with proper UBI images */ ubi_err(ubi, "too many LEBs (%d) in layout volume", av->leb_count); return -EINVAL; } ubi->vtbl = process_lvol(ubi, ai, av); if (IS_ERR(ubi->vtbl)) return PTR_ERR(ubi->vtbl); } ubi->avail_pebs = ubi->good_peb_count - ubi->corr_peb_count; /* * The layout volume is OK, initialize the corresponding in-RAM data * structures. */ err = init_volumes(ubi, ai, ubi->vtbl); if (err) goto out_free; /* * Make sure that the attaching information is consistent to the * information stored in the volume table. */ err = check_attaching_info(ubi, ai); if (err) goto out_free; return 0; out_free: vfree(ubi->vtbl); ubi_free_all_volumes(ubi); return err; } /** * self_vtbl_check - check volume table. * @ubi: UBI device description object */ static void self_vtbl_check(const struct ubi_device *ubi) { if (!ubi_dbg_chk_gen(ubi)) return; if (vtbl_check(ubi, ubi->vtbl)) { ubi_err(ubi, "self-check failed"); BUG(); } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1