Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sathya Perla | 7266 | 70.62% | 9 | 20.00% |
Venkat Duvvuru | 931 | 9.05% | 6 | 13.33% |
Somnath Kotur | 776 | 7.54% | 3 | 6.67% |
Sriharsha Basavapatna | 483 | 4.69% | 3 | 6.67% |
Andy Gospodarek | 353 | 3.43% | 1 | 2.22% |
Pablo Neira Ayuso | 301 | 2.93% | 5 | 11.11% |
wenxu | 49 | 0.48% | 2 | 4.44% |
Jiri Pirko | 36 | 0.35% | 3 | 6.67% |
Davide Caratti | 25 | 0.24% | 1 | 2.22% |
Jonathan Lemon | 23 | 0.22% | 1 | 2.22% |
Michael Chan | 19 | 0.18% | 1 | 2.22% |
Petr Machata | 14 | 0.14% | 1 | 2.22% |
Américo Wang | 5 | 0.05% | 2 | 4.44% |
Jakub Kiciński | 2 | 0.02% | 2 | 4.44% |
Po Liu | 2 | 0.02% | 1 | 2.22% |
Sunil Challa | 2 | 0.02% | 2 | 4.44% |
Dan Carpenter | 1 | 0.01% | 1 | 2.22% |
Florian Fainelli | 1 | 0.01% | 1 | 2.22% |
Total | 10289 | 45 |
/* Broadcom NetXtreme-C/E network driver. * * Copyright (c) 2017 Broadcom Limited * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation. */ #include <linux/netdevice.h> #include <linux/inetdevice.h> #include <linux/if_vlan.h> #include <net/flow_dissector.h> #include <net/pkt_cls.h> #include <net/tc_act/tc_gact.h> #include <net/tc_act/tc_skbedit.h> #include <net/tc_act/tc_mirred.h> #include <net/tc_act/tc_vlan.h> #include <net/tc_act/tc_pedit.h> #include <net/tc_act/tc_tunnel_key.h> #include <net/vxlan.h> #include "bnxt_hsi.h" #include "bnxt.h" #include "bnxt_sriov.h" #include "bnxt_tc.h" #include "bnxt_vfr.h" #define BNXT_FID_INVALID 0xffff #define VLAN_TCI(vid, prio) ((vid) | ((prio) << VLAN_PRIO_SHIFT)) #define is_vlan_pcp_wildcarded(vlan_tci_mask) \ ((ntohs(vlan_tci_mask) & VLAN_PRIO_MASK) == 0x0000) #define is_vlan_pcp_exactmatch(vlan_tci_mask) \ ((ntohs(vlan_tci_mask) & VLAN_PRIO_MASK) == VLAN_PRIO_MASK) #define is_vlan_pcp_zero(vlan_tci) \ ((ntohs(vlan_tci) & VLAN_PRIO_MASK) == 0x0000) #define is_vid_exactmatch(vlan_tci_mask) \ ((ntohs(vlan_tci_mask) & VLAN_VID_MASK) == VLAN_VID_MASK) static bool is_wildcard(void *mask, int len); static bool is_exactmatch(void *mask, int len); /* Return the dst fid of the func for flow forwarding * For PFs: src_fid is the fid of the PF * For VF-reps: src_fid the fid of the VF */ static u16 bnxt_flow_get_dst_fid(struct bnxt *pf_bp, struct net_device *dev) { struct bnxt *bp; /* check if dev belongs to the same switch */ if (!netdev_port_same_parent_id(pf_bp->dev, dev)) { netdev_info(pf_bp->dev, "dev(ifindex=%d) not on same switch\n", dev->ifindex); return BNXT_FID_INVALID; } /* Is dev a VF-rep? */ if (bnxt_dev_is_vf_rep(dev)) return bnxt_vf_rep_get_fid(dev); bp = netdev_priv(dev); return bp->pf.fw_fid; } static int bnxt_tc_parse_redir(struct bnxt *bp, struct bnxt_tc_actions *actions, const struct flow_action_entry *act) { struct net_device *dev = act->dev; if (!dev) { netdev_info(bp->dev, "no dev in mirred action\n"); return -EINVAL; } actions->flags |= BNXT_TC_ACTION_FLAG_FWD; actions->dst_dev = dev; return 0; } static int bnxt_tc_parse_vlan(struct bnxt *bp, struct bnxt_tc_actions *actions, const struct flow_action_entry *act) { switch (act->id) { case FLOW_ACTION_VLAN_POP: actions->flags |= BNXT_TC_ACTION_FLAG_POP_VLAN; break; case FLOW_ACTION_VLAN_PUSH: actions->flags |= BNXT_TC_ACTION_FLAG_PUSH_VLAN; actions->push_vlan_tci = htons(act->vlan.vid); actions->push_vlan_tpid = act->vlan.proto; break; default: return -EOPNOTSUPP; } return 0; } static int bnxt_tc_parse_tunnel_set(struct bnxt *bp, struct bnxt_tc_actions *actions, const struct flow_action_entry *act) { const struct ip_tunnel_info *tun_info = act->tunnel; const struct ip_tunnel_key *tun_key = &tun_info->key; if (ip_tunnel_info_af(tun_info) != AF_INET) { netdev_info(bp->dev, "only IPv4 tunnel-encap is supported\n"); return -EOPNOTSUPP; } actions->tun_encap_key = *tun_key; actions->flags |= BNXT_TC_ACTION_FLAG_TUNNEL_ENCAP; return 0; } /* Key & Mask from the stack comes unaligned in multiple iterations of 4 bytes * each(u32). * This routine consolidates such multiple unaligned values into one * field each for Key & Mask (for src and dst macs separately) * For example, * Mask/Key Offset Iteration * ========== ====== ========= * dst mac 0xffffffff 0 1 * dst mac 0x0000ffff 4 2 * * src mac 0xffff0000 4 1 * src mac 0xffffffff 8 2 * * The above combination coming from the stack will be consolidated as * Mask/Key * ============== * src mac: 0xffffffffffff * dst mac: 0xffffffffffff */ static void bnxt_set_l2_key_mask(u32 part_key, u32 part_mask, u8 *actual_key, u8 *actual_mask) { u32 key = get_unaligned((u32 *)actual_key); u32 mask = get_unaligned((u32 *)actual_mask); part_key &= part_mask; part_key |= key & ~part_mask; put_unaligned(mask | part_mask, (u32 *)actual_mask); put_unaligned(part_key, (u32 *)actual_key); } static int bnxt_fill_l2_rewrite_fields(struct bnxt_tc_actions *actions, u16 *eth_addr, u16 *eth_addr_mask) { u16 *p; int j; if (unlikely(bnxt_eth_addr_key_mask_invalid(eth_addr, eth_addr_mask))) return -EINVAL; if (!is_wildcard(ð_addr_mask[0], ETH_ALEN)) { if (!is_exactmatch(ð_addr_mask[0], ETH_ALEN)) return -EINVAL; /* FW expects dmac to be in u16 array format */ p = eth_addr; for (j = 0; j < 3; j++) actions->l2_rewrite_dmac[j] = cpu_to_be16(*(p + j)); } if (!is_wildcard(ð_addr_mask[ETH_ALEN / 2], ETH_ALEN)) { if (!is_exactmatch(ð_addr_mask[ETH_ALEN / 2], ETH_ALEN)) return -EINVAL; /* FW expects smac to be in u16 array format */ p = ð_addr[ETH_ALEN / 2]; for (j = 0; j < 3; j++) actions->l2_rewrite_smac[j] = cpu_to_be16(*(p + j)); } return 0; } static int bnxt_tc_parse_pedit(struct bnxt *bp, struct bnxt_tc_actions *actions, struct flow_action_entry *act, int act_idx, u8 *eth_addr, u8 *eth_addr_mask) { size_t offset_of_ip6_daddr = offsetof(struct ipv6hdr, daddr); size_t offset_of_ip6_saddr = offsetof(struct ipv6hdr, saddr); u32 mask, val, offset, idx; u8 htype; offset = act->mangle.offset; htype = act->mangle.htype; mask = ~act->mangle.mask; val = act->mangle.val; switch (htype) { case FLOW_ACT_MANGLE_HDR_TYPE_ETH: if (offset > PEDIT_OFFSET_SMAC_LAST_4_BYTES) { netdev_err(bp->dev, "%s: eth_hdr: Invalid pedit field\n", __func__); return -EINVAL; } actions->flags |= BNXT_TC_ACTION_FLAG_L2_REWRITE; bnxt_set_l2_key_mask(val, mask, ð_addr[offset], ð_addr_mask[offset]); break; case FLOW_ACT_MANGLE_HDR_TYPE_IP4: actions->flags |= BNXT_TC_ACTION_FLAG_NAT_XLATE; actions->nat.l3_is_ipv4 = true; if (offset == offsetof(struct iphdr, saddr)) { actions->nat.src_xlate = true; actions->nat.l3.ipv4.saddr.s_addr = htonl(val); } else if (offset == offsetof(struct iphdr, daddr)) { actions->nat.src_xlate = false; actions->nat.l3.ipv4.daddr.s_addr = htonl(val); } else { netdev_err(bp->dev, "%s: IPv4_hdr: Invalid pedit field\n", __func__); return -EINVAL; } netdev_dbg(bp->dev, "nat.src_xlate = %d src IP: %pI4 dst ip : %pI4\n", actions->nat.src_xlate, &actions->nat.l3.ipv4.saddr, &actions->nat.l3.ipv4.daddr); break; case FLOW_ACT_MANGLE_HDR_TYPE_IP6: actions->flags |= BNXT_TC_ACTION_FLAG_NAT_XLATE; actions->nat.l3_is_ipv4 = false; if (offset >= offsetof(struct ipv6hdr, saddr) && offset < offset_of_ip6_daddr) { /* 16 byte IPv6 address comes in 4 iterations of * 4byte chunks each */ actions->nat.src_xlate = true; idx = (offset - offset_of_ip6_saddr) / 4; /* First 4bytes will be copied to idx 0 and so on */ actions->nat.l3.ipv6.saddr.s6_addr32[idx] = htonl(val); } else if (offset >= offset_of_ip6_daddr && offset < offset_of_ip6_daddr + 16) { actions->nat.src_xlate = false; idx = (offset - offset_of_ip6_daddr) / 4; actions->nat.l3.ipv6.saddr.s6_addr32[idx] = htonl(val); } else { netdev_err(bp->dev, "%s: IPv6_hdr: Invalid pedit field\n", __func__); return -EINVAL; } break; case FLOW_ACT_MANGLE_HDR_TYPE_TCP: case FLOW_ACT_MANGLE_HDR_TYPE_UDP: /* HW does not support L4 rewrite alone without L3 * rewrite */ if (!(actions->flags & BNXT_TC_ACTION_FLAG_NAT_XLATE)) { netdev_err(bp->dev, "Need to specify L3 rewrite as well\n"); return -EINVAL; } if (actions->nat.src_xlate) actions->nat.l4.ports.sport = htons(val); else actions->nat.l4.ports.dport = htons(val); netdev_dbg(bp->dev, "actions->nat.sport = %d dport = %d\n", actions->nat.l4.ports.sport, actions->nat.l4.ports.dport); break; default: netdev_err(bp->dev, "%s: Unsupported pedit hdr type\n", __func__); return -EINVAL; } return 0; } static int bnxt_tc_parse_actions(struct bnxt *bp, struct bnxt_tc_actions *actions, struct flow_action *flow_action, struct netlink_ext_ack *extack) { /* Used to store the L2 rewrite mask for dmac (6 bytes) followed by * smac (6 bytes) if rewrite of both is specified, otherwise either * dmac or smac */ u16 eth_addr_mask[ETH_ALEN] = { 0 }; /* Used to store the L2 rewrite key for dmac (6 bytes) followed by * smac (6 bytes) if rewrite of both is specified, otherwise either * dmac or smac */ u16 eth_addr[ETH_ALEN] = { 0 }; struct flow_action_entry *act; int i, rc; if (!flow_action_has_entries(flow_action)) { netdev_info(bp->dev, "no actions\n"); return -EINVAL; } if (!flow_action_basic_hw_stats_check(flow_action, extack)) return -EOPNOTSUPP; flow_action_for_each(i, act, flow_action) { switch (act->id) { case FLOW_ACTION_DROP: actions->flags |= BNXT_TC_ACTION_FLAG_DROP; return 0; /* don't bother with other actions */ case FLOW_ACTION_REDIRECT: rc = bnxt_tc_parse_redir(bp, actions, act); if (rc) return rc; break; case FLOW_ACTION_VLAN_POP: case FLOW_ACTION_VLAN_PUSH: case FLOW_ACTION_VLAN_MANGLE: rc = bnxt_tc_parse_vlan(bp, actions, act); if (rc) return rc; break; case FLOW_ACTION_TUNNEL_ENCAP: rc = bnxt_tc_parse_tunnel_set(bp, actions, act); if (rc) return rc; break; case FLOW_ACTION_TUNNEL_DECAP: actions->flags |= BNXT_TC_ACTION_FLAG_TUNNEL_DECAP; break; /* Packet edit: L2 rewrite, NAT, NAPT */ case FLOW_ACTION_MANGLE: rc = bnxt_tc_parse_pedit(bp, actions, act, i, (u8 *)eth_addr, (u8 *)eth_addr_mask); if (rc) return rc; break; default: break; } } if (actions->flags & BNXT_TC_ACTION_FLAG_L2_REWRITE) { rc = bnxt_fill_l2_rewrite_fields(actions, eth_addr, eth_addr_mask); if (rc) return rc; } if (actions->flags & BNXT_TC_ACTION_FLAG_FWD) { if (actions->flags & BNXT_TC_ACTION_FLAG_TUNNEL_ENCAP) { /* dst_fid is PF's fid */ actions->dst_fid = bp->pf.fw_fid; } else { /* find the FID from dst_dev */ actions->dst_fid = bnxt_flow_get_dst_fid(bp, actions->dst_dev); if (actions->dst_fid == BNXT_FID_INVALID) return -EINVAL; } } return 0; } static int bnxt_tc_parse_flow(struct bnxt *bp, struct flow_cls_offload *tc_flow_cmd, struct bnxt_tc_flow *flow) { struct flow_rule *rule = flow_cls_offload_flow_rule(tc_flow_cmd); struct flow_dissector *dissector = rule->match.dissector; /* KEY_CONTROL and KEY_BASIC are needed for forming a meaningful key */ if ((dissector->used_keys & BIT(FLOW_DISSECTOR_KEY_CONTROL)) == 0 || (dissector->used_keys & BIT(FLOW_DISSECTOR_KEY_BASIC)) == 0) { netdev_info(bp->dev, "cannot form TC key: used_keys = 0x%x\n", dissector->used_keys); return -EOPNOTSUPP; } if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { struct flow_match_basic match; flow_rule_match_basic(rule, &match); flow->l2_key.ether_type = match.key->n_proto; flow->l2_mask.ether_type = match.mask->n_proto; if (match.key->n_proto == htons(ETH_P_IP) || match.key->n_proto == htons(ETH_P_IPV6)) { flow->l4_key.ip_proto = match.key->ip_proto; flow->l4_mask.ip_proto = match.mask->ip_proto; } } if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { struct flow_match_eth_addrs match; flow_rule_match_eth_addrs(rule, &match); flow->flags |= BNXT_TC_FLOW_FLAGS_ETH_ADDRS; ether_addr_copy(flow->l2_key.dmac, match.key->dst); ether_addr_copy(flow->l2_mask.dmac, match.mask->dst); ether_addr_copy(flow->l2_key.smac, match.key->src); ether_addr_copy(flow->l2_mask.smac, match.mask->src); } if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { struct flow_match_vlan match; flow_rule_match_vlan(rule, &match); flow->l2_key.inner_vlan_tci = cpu_to_be16(VLAN_TCI(match.key->vlan_id, match.key->vlan_priority)); flow->l2_mask.inner_vlan_tci = cpu_to_be16((VLAN_TCI(match.mask->vlan_id, match.mask->vlan_priority))); flow->l2_key.inner_vlan_tpid = htons(ETH_P_8021Q); flow->l2_mask.inner_vlan_tpid = htons(0xffff); flow->l2_key.num_vlans = 1; } if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) { struct flow_match_ipv4_addrs match; flow_rule_match_ipv4_addrs(rule, &match); flow->flags |= BNXT_TC_FLOW_FLAGS_IPV4_ADDRS; flow->l3_key.ipv4.daddr.s_addr = match.key->dst; flow->l3_mask.ipv4.daddr.s_addr = match.mask->dst; flow->l3_key.ipv4.saddr.s_addr = match.key->src; flow->l3_mask.ipv4.saddr.s_addr = match.mask->src; } else if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IPV6_ADDRS)) { struct flow_match_ipv6_addrs match; flow_rule_match_ipv6_addrs(rule, &match); flow->flags |= BNXT_TC_FLOW_FLAGS_IPV6_ADDRS; flow->l3_key.ipv6.daddr = match.key->dst; flow->l3_mask.ipv6.daddr = match.mask->dst; flow->l3_key.ipv6.saddr = match.key->src; flow->l3_mask.ipv6.saddr = match.mask->src; } if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { struct flow_match_ports match; flow_rule_match_ports(rule, &match); flow->flags |= BNXT_TC_FLOW_FLAGS_PORTS; flow->l4_key.ports.dport = match.key->dst; flow->l4_mask.ports.dport = match.mask->dst; flow->l4_key.ports.sport = match.key->src; flow->l4_mask.ports.sport = match.mask->src; } if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ICMP)) { struct flow_match_icmp match; flow_rule_match_icmp(rule, &match); flow->flags |= BNXT_TC_FLOW_FLAGS_ICMP; flow->l4_key.icmp.type = match.key->type; flow->l4_key.icmp.code = match.key->code; flow->l4_mask.icmp.type = match.mask->type; flow->l4_mask.icmp.code = match.mask->code; } if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) { struct flow_match_ipv4_addrs match; flow_rule_match_enc_ipv4_addrs(rule, &match); flow->flags |= BNXT_TC_FLOW_FLAGS_TUNL_IPV4_ADDRS; flow->tun_key.u.ipv4.dst = match.key->dst; flow->tun_mask.u.ipv4.dst = match.mask->dst; flow->tun_key.u.ipv4.src = match.key->src; flow->tun_mask.u.ipv4.src = match.mask->src; } else if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) { return -EOPNOTSUPP; } if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { struct flow_match_enc_keyid match; flow_rule_match_enc_keyid(rule, &match); flow->flags |= BNXT_TC_FLOW_FLAGS_TUNL_ID; flow->tun_key.tun_id = key32_to_tunnel_id(match.key->keyid); flow->tun_mask.tun_id = key32_to_tunnel_id(match.mask->keyid); } if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_PORTS)) { struct flow_match_ports match; flow_rule_match_enc_ports(rule, &match); flow->flags |= BNXT_TC_FLOW_FLAGS_TUNL_PORTS; flow->tun_key.tp_dst = match.key->dst; flow->tun_mask.tp_dst = match.mask->dst; flow->tun_key.tp_src = match.key->src; flow->tun_mask.tp_src = match.mask->src; } return bnxt_tc_parse_actions(bp, &flow->actions, &rule->action, tc_flow_cmd->common.extack); } static int bnxt_hwrm_cfa_flow_free(struct bnxt *bp, struct bnxt_tc_flow_node *flow_node) { struct hwrm_cfa_flow_free_input req = { 0 }; int rc; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_FLOW_FREE, -1, -1); if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) req.ext_flow_handle = flow_node->ext_flow_handle; else req.flow_handle = flow_node->flow_handle; rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (rc) netdev_info(bp->dev, "%s: Error rc=%d\n", __func__, rc); return rc; } static int ipv6_mask_len(struct in6_addr *mask) { int mask_len = 0, i; for (i = 0; i < 4; i++) mask_len += inet_mask_len(mask->s6_addr32[i]); return mask_len; } static bool is_wildcard(void *mask, int len) { const u8 *p = mask; int i; for (i = 0; i < len; i++) { if (p[i] != 0) return false; } return true; } static bool is_exactmatch(void *mask, int len) { const u8 *p = mask; int i; for (i = 0; i < len; i++) if (p[i] != 0xff) return false; return true; } static bool is_vlan_tci_allowed(__be16 vlan_tci_mask, __be16 vlan_tci) { /* VLAN priority must be either exactly zero or fully wildcarded and * VLAN id must be exact match. */ if (is_vid_exactmatch(vlan_tci_mask) && ((is_vlan_pcp_exactmatch(vlan_tci_mask) && is_vlan_pcp_zero(vlan_tci)) || is_vlan_pcp_wildcarded(vlan_tci_mask))) return true; return false; } static bool bits_set(void *key, int len) { const u8 *p = key; int i; for (i = 0; i < len; i++) if (p[i] != 0) return true; return false; } static int bnxt_hwrm_cfa_flow_alloc(struct bnxt *bp, struct bnxt_tc_flow *flow, __le16 ref_flow_handle, __le32 tunnel_handle, struct bnxt_tc_flow_node *flow_node) { struct bnxt_tc_actions *actions = &flow->actions; struct bnxt_tc_l3_key *l3_mask = &flow->l3_mask; struct bnxt_tc_l3_key *l3_key = &flow->l3_key; struct hwrm_cfa_flow_alloc_input req = { 0 }; struct hwrm_cfa_flow_alloc_output *resp; u16 flow_flags = 0, action_flags = 0; int rc; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_FLOW_ALLOC, -1, -1); req.src_fid = cpu_to_le16(flow->src_fid); req.ref_flow_handle = ref_flow_handle; if (actions->flags & BNXT_TC_ACTION_FLAG_L2_REWRITE) { memcpy(req.l2_rewrite_dmac, actions->l2_rewrite_dmac, ETH_ALEN); memcpy(req.l2_rewrite_smac, actions->l2_rewrite_smac, ETH_ALEN); action_flags |= CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_L2_HEADER_REWRITE; } if (actions->flags & BNXT_TC_ACTION_FLAG_NAT_XLATE) { if (actions->nat.l3_is_ipv4) { action_flags |= CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_NAT_IPV4_ADDRESS; if (actions->nat.src_xlate) { action_flags |= CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_NAT_SRC; /* L3 source rewrite */ req.nat_ip_address[0] = actions->nat.l3.ipv4.saddr.s_addr; /* L4 source port */ if (actions->nat.l4.ports.sport) req.nat_port = actions->nat.l4.ports.sport; } else { action_flags |= CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_NAT_DEST; /* L3 destination rewrite */ req.nat_ip_address[0] = actions->nat.l3.ipv4.daddr.s_addr; /* L4 destination port */ if (actions->nat.l4.ports.dport) req.nat_port = actions->nat.l4.ports.dport; } netdev_dbg(bp->dev, "req.nat_ip_address: %pI4 src_xlate: %d req.nat_port: %x\n", req.nat_ip_address, actions->nat.src_xlate, req.nat_port); } else { if (actions->nat.src_xlate) { action_flags |= CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_NAT_SRC; /* L3 source rewrite */ memcpy(req.nat_ip_address, actions->nat.l3.ipv6.saddr.s6_addr32, sizeof(req.nat_ip_address)); /* L4 source port */ if (actions->nat.l4.ports.sport) req.nat_port = actions->nat.l4.ports.sport; } else { action_flags |= CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_NAT_DEST; /* L3 destination rewrite */ memcpy(req.nat_ip_address, actions->nat.l3.ipv6.daddr.s6_addr32, sizeof(req.nat_ip_address)); /* L4 destination port */ if (actions->nat.l4.ports.dport) req.nat_port = actions->nat.l4.ports.dport; } netdev_dbg(bp->dev, "req.nat_ip_address: %pI6 src_xlate: %d req.nat_port: %x\n", req.nat_ip_address, actions->nat.src_xlate, req.nat_port); } } if (actions->flags & BNXT_TC_ACTION_FLAG_TUNNEL_DECAP || actions->flags & BNXT_TC_ACTION_FLAG_TUNNEL_ENCAP) { req.tunnel_handle = tunnel_handle; flow_flags |= CFA_FLOW_ALLOC_REQ_FLAGS_TUNNEL; action_flags |= CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_TUNNEL; } req.ethertype = flow->l2_key.ether_type; req.ip_proto = flow->l4_key.ip_proto; if (flow->flags & BNXT_TC_FLOW_FLAGS_ETH_ADDRS) { memcpy(req.dmac, flow->l2_key.dmac, ETH_ALEN); memcpy(req.smac, flow->l2_key.smac, ETH_ALEN); } if (flow->l2_key.num_vlans > 0) { flow_flags |= CFA_FLOW_ALLOC_REQ_FLAGS_NUM_VLAN_ONE; /* FW expects the inner_vlan_tci value to be set * in outer_vlan_tci when num_vlans is 1 (which is * always the case in TC.) */ req.outer_vlan_tci = flow->l2_key.inner_vlan_tci; } /* If all IP and L4 fields are wildcarded then this is an L2 flow */ if (is_wildcard(l3_mask, sizeof(*l3_mask)) && is_wildcard(&flow->l4_mask, sizeof(flow->l4_mask))) { flow_flags |= CFA_FLOW_ALLOC_REQ_FLAGS_FLOWTYPE_L2; } else { flow_flags |= flow->l2_key.ether_type == htons(ETH_P_IP) ? CFA_FLOW_ALLOC_REQ_FLAGS_FLOWTYPE_IPV4 : CFA_FLOW_ALLOC_REQ_FLAGS_FLOWTYPE_IPV6; if (flow->flags & BNXT_TC_FLOW_FLAGS_IPV4_ADDRS) { req.ip_dst[0] = l3_key->ipv4.daddr.s_addr; req.ip_dst_mask_len = inet_mask_len(l3_mask->ipv4.daddr.s_addr); req.ip_src[0] = l3_key->ipv4.saddr.s_addr; req.ip_src_mask_len = inet_mask_len(l3_mask->ipv4.saddr.s_addr); } else if (flow->flags & BNXT_TC_FLOW_FLAGS_IPV6_ADDRS) { memcpy(req.ip_dst, l3_key->ipv6.daddr.s6_addr32, sizeof(req.ip_dst)); req.ip_dst_mask_len = ipv6_mask_len(&l3_mask->ipv6.daddr); memcpy(req.ip_src, l3_key->ipv6.saddr.s6_addr32, sizeof(req.ip_src)); req.ip_src_mask_len = ipv6_mask_len(&l3_mask->ipv6.saddr); } } if (flow->flags & BNXT_TC_FLOW_FLAGS_PORTS) { req.l4_src_port = flow->l4_key.ports.sport; req.l4_src_port_mask = flow->l4_mask.ports.sport; req.l4_dst_port = flow->l4_key.ports.dport; req.l4_dst_port_mask = flow->l4_mask.ports.dport; } else if (flow->flags & BNXT_TC_FLOW_FLAGS_ICMP) { /* l4 ports serve as type/code when ip_proto is ICMP */ req.l4_src_port = htons(flow->l4_key.icmp.type); req.l4_src_port_mask = htons(flow->l4_mask.icmp.type); req.l4_dst_port = htons(flow->l4_key.icmp.code); req.l4_dst_port_mask = htons(flow->l4_mask.icmp.code); } req.flags = cpu_to_le16(flow_flags); if (actions->flags & BNXT_TC_ACTION_FLAG_DROP) { action_flags |= CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_DROP; } else { if (actions->flags & BNXT_TC_ACTION_FLAG_FWD) { action_flags |= CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_FWD; req.dst_fid = cpu_to_le16(actions->dst_fid); } if (actions->flags & BNXT_TC_ACTION_FLAG_PUSH_VLAN) { action_flags |= CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_L2_HEADER_REWRITE; req.l2_rewrite_vlan_tpid = actions->push_vlan_tpid; req.l2_rewrite_vlan_tci = actions->push_vlan_tci; memcpy(&req.l2_rewrite_dmac, &req.dmac, ETH_ALEN); memcpy(&req.l2_rewrite_smac, &req.smac, ETH_ALEN); } if (actions->flags & BNXT_TC_ACTION_FLAG_POP_VLAN) { action_flags |= CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_L2_HEADER_REWRITE; /* Rewrite config with tpid = 0 implies vlan pop */ req.l2_rewrite_vlan_tpid = 0; memcpy(&req.l2_rewrite_dmac, &req.dmac, ETH_ALEN); memcpy(&req.l2_rewrite_smac, &req.smac, ETH_ALEN); } } req.action_flags = cpu_to_le16(action_flags); mutex_lock(&bp->hwrm_cmd_lock); rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (!rc) { resp = bnxt_get_hwrm_resp_addr(bp, &req); /* CFA_FLOW_ALLOC response interpretation: * fw with fw with * 16-bit 64-bit * flow handle flow handle * =========== =========== * flow_handle flow handle flow context id * ext_flow_handle INVALID flow handle * flow_id INVALID flow counter id */ flow_node->flow_handle = resp->flow_handle; if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) { flow_node->ext_flow_handle = resp->ext_flow_handle; flow_node->flow_id = resp->flow_id; } } mutex_unlock(&bp->hwrm_cmd_lock); return rc; } static int hwrm_cfa_decap_filter_alloc(struct bnxt *bp, struct bnxt_tc_flow *flow, struct bnxt_tc_l2_key *l2_info, __le32 ref_decap_handle, __le32 *decap_filter_handle) { struct hwrm_cfa_decap_filter_alloc_input req = { 0 }; struct hwrm_cfa_decap_filter_alloc_output *resp; struct ip_tunnel_key *tun_key = &flow->tun_key; u32 enables = 0; int rc; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_DECAP_FILTER_ALLOC, -1, -1); req.flags = cpu_to_le32(CFA_DECAP_FILTER_ALLOC_REQ_FLAGS_OVS_TUNNEL); enables |= CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE | CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL; req.tunnel_type = CFA_DECAP_FILTER_ALLOC_REQ_TUNNEL_TYPE_VXLAN; req.ip_protocol = CFA_DECAP_FILTER_ALLOC_REQ_IP_PROTOCOL_UDP; if (flow->flags & BNXT_TC_FLOW_FLAGS_TUNL_ID) { enables |= CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_TUNNEL_ID; /* tunnel_id is wrongly defined in hsi defn. as __le32 */ req.tunnel_id = tunnel_id_to_key32(tun_key->tun_id); } if (flow->flags & BNXT_TC_FLOW_FLAGS_TUNL_ETH_ADDRS) { enables |= CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_DST_MACADDR; ether_addr_copy(req.dst_macaddr, l2_info->dmac); } if (l2_info->num_vlans) { enables |= CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_T_IVLAN_VID; req.t_ivlan_vid = l2_info->inner_vlan_tci; } enables |= CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE; req.ethertype = htons(ETH_P_IP); if (flow->flags & BNXT_TC_FLOW_FLAGS_TUNL_IPV4_ADDRS) { enables |= CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE; req.ip_addr_type = CFA_DECAP_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4; req.dst_ipaddr[0] = tun_key->u.ipv4.dst; req.src_ipaddr[0] = tun_key->u.ipv4.src; } if (flow->flags & BNXT_TC_FLOW_FLAGS_TUNL_PORTS) { enables |= CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_DST_PORT; req.dst_port = tun_key->tp_dst; } /* Eventhough the decap_handle returned by hwrm_cfa_decap_filter_alloc * is defined as __le32, l2_ctxt_ref_id is defined in HSI as __le16. */ req.l2_ctxt_ref_id = (__force __le16)ref_decap_handle; req.enables = cpu_to_le32(enables); mutex_lock(&bp->hwrm_cmd_lock); rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (!rc) { resp = bnxt_get_hwrm_resp_addr(bp, &req); *decap_filter_handle = resp->decap_filter_id; } else { netdev_info(bp->dev, "%s: Error rc=%d\n", __func__, rc); } mutex_unlock(&bp->hwrm_cmd_lock); return rc; } static int hwrm_cfa_decap_filter_free(struct bnxt *bp, __le32 decap_filter_handle) { struct hwrm_cfa_decap_filter_free_input req = { 0 }; int rc; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_DECAP_FILTER_FREE, -1, -1); req.decap_filter_id = decap_filter_handle; rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (rc) netdev_info(bp->dev, "%s: Error rc=%d\n", __func__, rc); return rc; } static int hwrm_cfa_encap_record_alloc(struct bnxt *bp, struct ip_tunnel_key *encap_key, struct bnxt_tc_l2_key *l2_info, __le32 *encap_record_handle) { struct hwrm_cfa_encap_record_alloc_input req = { 0 }; struct hwrm_cfa_encap_record_alloc_output *resp; struct hwrm_cfa_encap_data_vxlan *encap = (struct hwrm_cfa_encap_data_vxlan *)&req.encap_data; struct hwrm_vxlan_ipv4_hdr *encap_ipv4 = (struct hwrm_vxlan_ipv4_hdr *)encap->l3; int rc; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_ENCAP_RECORD_ALLOC, -1, -1); req.encap_type = CFA_ENCAP_RECORD_ALLOC_REQ_ENCAP_TYPE_VXLAN; ether_addr_copy(encap->dst_mac_addr, l2_info->dmac); ether_addr_copy(encap->src_mac_addr, l2_info->smac); if (l2_info->num_vlans) { encap->num_vlan_tags = l2_info->num_vlans; encap->ovlan_tci = l2_info->inner_vlan_tci; encap->ovlan_tpid = l2_info->inner_vlan_tpid; } encap_ipv4->ver_hlen = 4 << VXLAN_IPV4_HDR_VER_HLEN_VERSION_SFT; encap_ipv4->ver_hlen |= 5 << VXLAN_IPV4_HDR_VER_HLEN_HEADER_LENGTH_SFT; encap_ipv4->ttl = encap_key->ttl; encap_ipv4->dest_ip_addr = encap_key->u.ipv4.dst; encap_ipv4->src_ip_addr = encap_key->u.ipv4.src; encap_ipv4->protocol = IPPROTO_UDP; encap->dst_port = encap_key->tp_dst; encap->vni = tunnel_id_to_key32(encap_key->tun_id); mutex_lock(&bp->hwrm_cmd_lock); rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (!rc) { resp = bnxt_get_hwrm_resp_addr(bp, &req); *encap_record_handle = resp->encap_record_id; } else { netdev_info(bp->dev, "%s: Error rc=%d\n", __func__, rc); } mutex_unlock(&bp->hwrm_cmd_lock); return rc; } static int hwrm_cfa_encap_record_free(struct bnxt *bp, __le32 encap_record_handle) { struct hwrm_cfa_encap_record_free_input req = { 0 }; int rc; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_ENCAP_RECORD_FREE, -1, -1); req.encap_record_id = encap_record_handle; rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (rc) netdev_info(bp->dev, "%s: Error rc=%d\n", __func__, rc); return rc; } static int bnxt_tc_put_l2_node(struct bnxt *bp, struct bnxt_tc_flow_node *flow_node) { struct bnxt_tc_l2_node *l2_node = flow_node->l2_node; struct bnxt_tc_info *tc_info = bp->tc_info; int rc; /* remove flow_node from the L2 shared flow list */ list_del(&flow_node->l2_list_node); if (--l2_node->refcount == 0) { rc = rhashtable_remove_fast(&tc_info->l2_table, &l2_node->node, tc_info->l2_ht_params); if (rc) netdev_err(bp->dev, "Error: %s: rhashtable_remove_fast: %d\n", __func__, rc); kfree_rcu(l2_node, rcu); } return 0; } static struct bnxt_tc_l2_node * bnxt_tc_get_l2_node(struct bnxt *bp, struct rhashtable *l2_table, struct rhashtable_params ht_params, struct bnxt_tc_l2_key *l2_key) { struct bnxt_tc_l2_node *l2_node; int rc; l2_node = rhashtable_lookup_fast(l2_table, l2_key, ht_params); if (!l2_node) { l2_node = kzalloc(sizeof(*l2_node), GFP_KERNEL); if (!l2_node) { rc = -ENOMEM; return NULL; } l2_node->key = *l2_key; rc = rhashtable_insert_fast(l2_table, &l2_node->node, ht_params); if (rc) { kfree_rcu(l2_node, rcu); netdev_err(bp->dev, "Error: %s: rhashtable_insert_fast: %d\n", __func__, rc); return NULL; } INIT_LIST_HEAD(&l2_node->common_l2_flows); } return l2_node; } /* Get the ref_flow_handle for a flow by checking if there are any other * flows that share the same L2 key as this flow. */ static int bnxt_tc_get_ref_flow_handle(struct bnxt *bp, struct bnxt_tc_flow *flow, struct bnxt_tc_flow_node *flow_node, __le16 *ref_flow_handle) { struct bnxt_tc_info *tc_info = bp->tc_info; struct bnxt_tc_flow_node *ref_flow_node; struct bnxt_tc_l2_node *l2_node; l2_node = bnxt_tc_get_l2_node(bp, &tc_info->l2_table, tc_info->l2_ht_params, &flow->l2_key); if (!l2_node) return -1; /* If any other flow is using this l2_node, use it's flow_handle * as the ref_flow_handle */ if (l2_node->refcount > 0) { ref_flow_node = list_first_entry(&l2_node->common_l2_flows, struct bnxt_tc_flow_node, l2_list_node); *ref_flow_handle = ref_flow_node->flow_handle; } else { *ref_flow_handle = cpu_to_le16(0xffff); } /* Insert the l2_node into the flow_node so that subsequent flows * with a matching l2 key can use the flow_handle of this flow * as their ref_flow_handle */ flow_node->l2_node = l2_node; list_add(&flow_node->l2_list_node, &l2_node->common_l2_flows); l2_node->refcount++; return 0; } /* After the flow parsing is done, this routine is used for checking * if there are any aspects of the flow that prevent it from being * offloaded. */ static bool bnxt_tc_can_offload(struct bnxt *bp, struct bnxt_tc_flow *flow) { /* If L4 ports are specified then ip_proto must be TCP or UDP */ if ((flow->flags & BNXT_TC_FLOW_FLAGS_PORTS) && (flow->l4_key.ip_proto != IPPROTO_TCP && flow->l4_key.ip_proto != IPPROTO_UDP)) { netdev_info(bp->dev, "Cannot offload non-TCP/UDP (%d) ports\n", flow->l4_key.ip_proto); return false; } /* Currently source/dest MAC cannot be partial wildcard */ if (bits_set(&flow->l2_key.smac, sizeof(flow->l2_key.smac)) && !is_exactmatch(flow->l2_mask.smac, sizeof(flow->l2_mask.smac))) { netdev_info(bp->dev, "Wildcard match unsupported for Source MAC\n"); return false; } if (bits_set(&flow->l2_key.dmac, sizeof(flow->l2_key.dmac)) && !is_exactmatch(&flow->l2_mask.dmac, sizeof(flow->l2_mask.dmac))) { netdev_info(bp->dev, "Wildcard match unsupported for Dest MAC\n"); return false; } /* Currently VLAN fields cannot be partial wildcard */ if (bits_set(&flow->l2_key.inner_vlan_tci, sizeof(flow->l2_key.inner_vlan_tci)) && !is_vlan_tci_allowed(flow->l2_mask.inner_vlan_tci, flow->l2_key.inner_vlan_tci)) { netdev_info(bp->dev, "Unsupported VLAN TCI\n"); return false; } if (bits_set(&flow->l2_key.inner_vlan_tpid, sizeof(flow->l2_key.inner_vlan_tpid)) && !is_exactmatch(&flow->l2_mask.inner_vlan_tpid, sizeof(flow->l2_mask.inner_vlan_tpid))) { netdev_info(bp->dev, "Wildcard match unsupported for VLAN TPID\n"); return false; } /* Currently Ethertype must be set */ if (!is_exactmatch(&flow->l2_mask.ether_type, sizeof(flow->l2_mask.ether_type))) { netdev_info(bp->dev, "Wildcard match unsupported for Ethertype\n"); return false; } return true; } /* Returns the final refcount of the node on success * or a -ve error code on failure */ static int bnxt_tc_put_tunnel_node(struct bnxt *bp, struct rhashtable *tunnel_table, struct rhashtable_params *ht_params, struct bnxt_tc_tunnel_node *tunnel_node) { int rc; if (--tunnel_node->refcount == 0) { rc = rhashtable_remove_fast(tunnel_table, &tunnel_node->node, *ht_params); if (rc) { netdev_err(bp->dev, "rhashtable_remove_fast rc=%d\n", rc); rc = -1; } kfree_rcu(tunnel_node, rcu); return rc; } else { return tunnel_node->refcount; } } /* Get (or add) either encap or decap tunnel node from/to the supplied * hash table. */ static struct bnxt_tc_tunnel_node * bnxt_tc_get_tunnel_node(struct bnxt *bp, struct rhashtable *tunnel_table, struct rhashtable_params *ht_params, struct ip_tunnel_key *tun_key) { struct bnxt_tc_tunnel_node *tunnel_node; int rc; tunnel_node = rhashtable_lookup_fast(tunnel_table, tun_key, *ht_params); if (!tunnel_node) { tunnel_node = kzalloc(sizeof(*tunnel_node), GFP_KERNEL); if (!tunnel_node) { rc = -ENOMEM; goto err; } tunnel_node->key = *tun_key; tunnel_node->tunnel_handle = INVALID_TUNNEL_HANDLE; rc = rhashtable_insert_fast(tunnel_table, &tunnel_node->node, *ht_params); if (rc) { kfree_rcu(tunnel_node, rcu); goto err; } } tunnel_node->refcount++; return tunnel_node; err: netdev_info(bp->dev, "error rc=%d\n", rc); return NULL; } static int bnxt_tc_get_ref_decap_handle(struct bnxt *bp, struct bnxt_tc_flow *flow, struct bnxt_tc_l2_key *l2_key, struct bnxt_tc_flow_node *flow_node, __le32 *ref_decap_handle) { struct bnxt_tc_info *tc_info = bp->tc_info; struct bnxt_tc_flow_node *ref_flow_node; struct bnxt_tc_l2_node *decap_l2_node; decap_l2_node = bnxt_tc_get_l2_node(bp, &tc_info->decap_l2_table, tc_info->decap_l2_ht_params, l2_key); if (!decap_l2_node) return -1; /* If any other flow is using this decap_l2_node, use it's decap_handle * as the ref_decap_handle */ if (decap_l2_node->refcount > 0) { ref_flow_node = list_first_entry(&decap_l2_node->common_l2_flows, struct bnxt_tc_flow_node, decap_l2_list_node); *ref_decap_handle = ref_flow_node->decap_node->tunnel_handle; } else { *ref_decap_handle = INVALID_TUNNEL_HANDLE; } /* Insert the l2_node into the flow_node so that subsequent flows * with a matching decap l2 key can use the decap_filter_handle of * this flow as their ref_decap_handle */ flow_node->decap_l2_node = decap_l2_node; list_add(&flow_node->decap_l2_list_node, &decap_l2_node->common_l2_flows); decap_l2_node->refcount++; return 0; } static void bnxt_tc_put_decap_l2_node(struct bnxt *bp, struct bnxt_tc_flow_node *flow_node) { struct bnxt_tc_l2_node *decap_l2_node = flow_node->decap_l2_node; struct bnxt_tc_info *tc_info = bp->tc_info; int rc; /* remove flow_node from the decap L2 sharing flow list */ list_del(&flow_node->decap_l2_list_node); if (--decap_l2_node->refcount == 0) { rc = rhashtable_remove_fast(&tc_info->decap_l2_table, &decap_l2_node->node, tc_info->decap_l2_ht_params); if (rc) netdev_err(bp->dev, "rhashtable_remove_fast rc=%d\n", rc); kfree_rcu(decap_l2_node, rcu); } } static void bnxt_tc_put_decap_handle(struct bnxt *bp, struct bnxt_tc_flow_node *flow_node) { __le32 decap_handle = flow_node->decap_node->tunnel_handle; struct bnxt_tc_info *tc_info = bp->tc_info; int rc; if (flow_node->decap_l2_node) bnxt_tc_put_decap_l2_node(bp, flow_node); rc = bnxt_tc_put_tunnel_node(bp, &tc_info->decap_table, &tc_info->decap_ht_params, flow_node->decap_node); if (!rc && decap_handle != INVALID_TUNNEL_HANDLE) hwrm_cfa_decap_filter_free(bp, decap_handle); } static int bnxt_tc_resolve_tunnel_hdrs(struct bnxt *bp, struct ip_tunnel_key *tun_key, struct bnxt_tc_l2_key *l2_info) { #ifdef CONFIG_INET struct net_device *real_dst_dev = bp->dev; struct flowi4 flow = { {0} }; struct net_device *dst_dev; struct neighbour *nbr; struct rtable *rt; int rc; flow.flowi4_proto = IPPROTO_UDP; flow.fl4_dport = tun_key->tp_dst; flow.daddr = tun_key->u.ipv4.dst; rt = ip_route_output_key(dev_net(real_dst_dev), &flow); if (IS_ERR(rt)) { netdev_info(bp->dev, "no route to %pI4b\n", &flow.daddr); return -EOPNOTSUPP; } /* The route must either point to the real_dst_dev or a dst_dev that * uses the real_dst_dev. */ dst_dev = rt->dst.dev; if (is_vlan_dev(dst_dev)) { #if IS_ENABLED(CONFIG_VLAN_8021Q) struct vlan_dev_priv *vlan = vlan_dev_priv(dst_dev); if (vlan->real_dev != real_dst_dev) { netdev_info(bp->dev, "dst_dev(%s) doesn't use PF-if(%s)\n", netdev_name(dst_dev), netdev_name(real_dst_dev)); rc = -EOPNOTSUPP; goto put_rt; } l2_info->inner_vlan_tci = htons(vlan->vlan_id); l2_info->inner_vlan_tpid = vlan->vlan_proto; l2_info->num_vlans = 1; #endif } else if (dst_dev != real_dst_dev) { netdev_info(bp->dev, "dst_dev(%s) for %pI4b is not PF-if(%s)\n", netdev_name(dst_dev), &flow.daddr, netdev_name(real_dst_dev)); rc = -EOPNOTSUPP; goto put_rt; } nbr = dst_neigh_lookup(&rt->dst, &flow.daddr); if (!nbr) { netdev_info(bp->dev, "can't lookup neighbor for %pI4b\n", &flow.daddr); rc = -EOPNOTSUPP; goto put_rt; } tun_key->u.ipv4.src = flow.saddr; tun_key->ttl = ip4_dst_hoplimit(&rt->dst); neigh_ha_snapshot(l2_info->dmac, nbr, dst_dev); ether_addr_copy(l2_info->smac, dst_dev->dev_addr); neigh_release(nbr); ip_rt_put(rt); return 0; put_rt: ip_rt_put(rt); return rc; #else return -EOPNOTSUPP; #endif } static int bnxt_tc_get_decap_handle(struct bnxt *bp, struct bnxt_tc_flow *flow, struct bnxt_tc_flow_node *flow_node, __le32 *decap_filter_handle) { struct ip_tunnel_key *decap_key = &flow->tun_key; struct bnxt_tc_info *tc_info = bp->tc_info; struct bnxt_tc_l2_key l2_info = { {0} }; struct bnxt_tc_tunnel_node *decap_node; struct ip_tunnel_key tun_key = { 0 }; struct bnxt_tc_l2_key *decap_l2_info; __le32 ref_decap_handle; int rc; /* Check if there's another flow using the same tunnel decap. * If not, add this tunnel to the table and resolve the other * tunnel header fileds. Ignore src_port in the tunnel_key, * since it is not required for decap filters. */ decap_key->tp_src = 0; decap_node = bnxt_tc_get_tunnel_node(bp, &tc_info->decap_table, &tc_info->decap_ht_params, decap_key); if (!decap_node) return -ENOMEM; flow_node->decap_node = decap_node; if (decap_node->tunnel_handle != INVALID_TUNNEL_HANDLE) goto done; /* Resolve the L2 fields for tunnel decap * Resolve the route for remote vtep (saddr) of the decap key * Find it's next-hop mac addrs */ tun_key.u.ipv4.dst = flow->tun_key.u.ipv4.src; tun_key.tp_dst = flow->tun_key.tp_dst; rc = bnxt_tc_resolve_tunnel_hdrs(bp, &tun_key, &l2_info); if (rc) goto put_decap; decap_l2_info = &decap_node->l2_info; /* decap smac is wildcarded */ ether_addr_copy(decap_l2_info->dmac, l2_info.smac); if (l2_info.num_vlans) { decap_l2_info->num_vlans = l2_info.num_vlans; decap_l2_info->inner_vlan_tpid = l2_info.inner_vlan_tpid; decap_l2_info->inner_vlan_tci = l2_info.inner_vlan_tci; } flow->flags |= BNXT_TC_FLOW_FLAGS_TUNL_ETH_ADDRS; /* For getting a decap_filter_handle we first need to check if * there are any other decap flows that share the same tunnel L2 * key and if so, pass that flow's decap_filter_handle as the * ref_decap_handle for this flow. */ rc = bnxt_tc_get_ref_decap_handle(bp, flow, decap_l2_info, flow_node, &ref_decap_handle); if (rc) goto put_decap; /* Issue the hwrm cmd to allocate a decap filter handle */ rc = hwrm_cfa_decap_filter_alloc(bp, flow, decap_l2_info, ref_decap_handle, &decap_node->tunnel_handle); if (rc) goto put_decap_l2; done: *decap_filter_handle = decap_node->tunnel_handle; return 0; put_decap_l2: bnxt_tc_put_decap_l2_node(bp, flow_node); put_decap: bnxt_tc_put_tunnel_node(bp, &tc_info->decap_table, &tc_info->decap_ht_params, flow_node->decap_node); return rc; } static void bnxt_tc_put_encap_handle(struct bnxt *bp, struct bnxt_tc_tunnel_node *encap_node) { __le32 encap_handle = encap_node->tunnel_handle; struct bnxt_tc_info *tc_info = bp->tc_info; int rc; rc = bnxt_tc_put_tunnel_node(bp, &tc_info->encap_table, &tc_info->encap_ht_params, encap_node); if (!rc && encap_handle != INVALID_TUNNEL_HANDLE) hwrm_cfa_encap_record_free(bp, encap_handle); } /* Lookup the tunnel encap table and check if there's an encap_handle * alloc'd already. * If not, query L2 info via a route lookup and issue an encap_record_alloc * cmd to FW. */ static int bnxt_tc_get_encap_handle(struct bnxt *bp, struct bnxt_tc_flow *flow, struct bnxt_tc_flow_node *flow_node, __le32 *encap_handle) { struct ip_tunnel_key *encap_key = &flow->actions.tun_encap_key; struct bnxt_tc_info *tc_info = bp->tc_info; struct bnxt_tc_tunnel_node *encap_node; int rc; /* Check if there's another flow using the same tunnel encap. * If not, add this tunnel to the table and resolve the other * tunnel header fileds */ encap_node = bnxt_tc_get_tunnel_node(bp, &tc_info->encap_table, &tc_info->encap_ht_params, encap_key); if (!encap_node) return -ENOMEM; flow_node->encap_node = encap_node; if (encap_node->tunnel_handle != INVALID_TUNNEL_HANDLE) goto done; rc = bnxt_tc_resolve_tunnel_hdrs(bp, encap_key, &encap_node->l2_info); if (rc) goto put_encap; /* Allocate a new tunnel encap record */ rc = hwrm_cfa_encap_record_alloc(bp, encap_key, &encap_node->l2_info, &encap_node->tunnel_handle); if (rc) goto put_encap; done: *encap_handle = encap_node->tunnel_handle; return 0; put_encap: bnxt_tc_put_tunnel_node(bp, &tc_info->encap_table, &tc_info->encap_ht_params, encap_node); return rc; } static void bnxt_tc_put_tunnel_handle(struct bnxt *bp, struct bnxt_tc_flow *flow, struct bnxt_tc_flow_node *flow_node) { if (flow->actions.flags & BNXT_TC_ACTION_FLAG_TUNNEL_DECAP) bnxt_tc_put_decap_handle(bp, flow_node); else if (flow->actions.flags & BNXT_TC_ACTION_FLAG_TUNNEL_ENCAP) bnxt_tc_put_encap_handle(bp, flow_node->encap_node); } static int bnxt_tc_get_tunnel_handle(struct bnxt *bp, struct bnxt_tc_flow *flow, struct bnxt_tc_flow_node *flow_node, __le32 *tunnel_handle) { if (flow->actions.flags & BNXT_TC_ACTION_FLAG_TUNNEL_DECAP) return bnxt_tc_get_decap_handle(bp, flow, flow_node, tunnel_handle); else if (flow->actions.flags & BNXT_TC_ACTION_FLAG_TUNNEL_ENCAP) return bnxt_tc_get_encap_handle(bp, flow, flow_node, tunnel_handle); else return 0; } static int __bnxt_tc_del_flow(struct bnxt *bp, struct bnxt_tc_flow_node *flow_node) { struct bnxt_tc_info *tc_info = bp->tc_info; int rc; /* send HWRM cmd to free the flow-id */ bnxt_hwrm_cfa_flow_free(bp, flow_node); mutex_lock(&tc_info->lock); /* release references to any tunnel encap/decap nodes */ bnxt_tc_put_tunnel_handle(bp, &flow_node->flow, flow_node); /* release reference to l2 node */ bnxt_tc_put_l2_node(bp, flow_node); mutex_unlock(&tc_info->lock); rc = rhashtable_remove_fast(&tc_info->flow_table, &flow_node->node, tc_info->flow_ht_params); if (rc) netdev_err(bp->dev, "Error: %s: rhashtable_remove_fast rc=%d\n", __func__, rc); kfree_rcu(flow_node, rcu); return 0; } static void bnxt_tc_set_flow_dir(struct bnxt *bp, struct bnxt_tc_flow *flow, u16 src_fid) { flow->l2_key.dir = (bp->pf.fw_fid == src_fid) ? BNXT_DIR_RX : BNXT_DIR_TX; } static void bnxt_tc_set_src_fid(struct bnxt *bp, struct bnxt_tc_flow *flow, u16 src_fid) { if (flow->actions.flags & BNXT_TC_ACTION_FLAG_TUNNEL_DECAP) flow->src_fid = bp->pf.fw_fid; else flow->src_fid = src_fid; } /* Add a new flow or replace an existing flow. * Notes on locking: * There are essentially two critical sections here. * 1. while adding a new flow * a) lookup l2-key * b) issue HWRM cmd and get flow_handle * c) link l2-key with flow * 2. while deleting a flow * a) unlinking l2-key from flow * A lock is needed to protect these two critical sections. * * The hash-tables are already protected by the rhashtable API. */ static int bnxt_tc_add_flow(struct bnxt *bp, u16 src_fid, struct flow_cls_offload *tc_flow_cmd) { struct bnxt_tc_flow_node *new_node, *old_node; struct bnxt_tc_info *tc_info = bp->tc_info; struct bnxt_tc_flow *flow; __le32 tunnel_handle = 0; __le16 ref_flow_handle; int rc; /* allocate memory for the new flow and it's node */ new_node = kzalloc(sizeof(*new_node), GFP_KERNEL); if (!new_node) { rc = -ENOMEM; goto done; } new_node->cookie = tc_flow_cmd->cookie; flow = &new_node->flow; rc = bnxt_tc_parse_flow(bp, tc_flow_cmd, flow); if (rc) goto free_node; bnxt_tc_set_src_fid(bp, flow, src_fid); bnxt_tc_set_flow_dir(bp, flow, flow->src_fid); if (!bnxt_tc_can_offload(bp, flow)) { rc = -EOPNOTSUPP; kfree_rcu(new_node, rcu); return rc; } /* If a flow exists with the same cookie, delete it */ old_node = rhashtable_lookup_fast(&tc_info->flow_table, &tc_flow_cmd->cookie, tc_info->flow_ht_params); if (old_node) __bnxt_tc_del_flow(bp, old_node); /* Check if the L2 part of the flow has been offloaded already. * If so, bump up it's refcnt and get it's reference handle. */ mutex_lock(&tc_info->lock); rc = bnxt_tc_get_ref_flow_handle(bp, flow, new_node, &ref_flow_handle); if (rc) goto unlock; /* If the flow involves tunnel encap/decap, get tunnel_handle */ rc = bnxt_tc_get_tunnel_handle(bp, flow, new_node, &tunnel_handle); if (rc) goto put_l2; /* send HWRM cmd to alloc the flow */ rc = bnxt_hwrm_cfa_flow_alloc(bp, flow, ref_flow_handle, tunnel_handle, new_node); if (rc) goto put_tunnel; flow->lastused = jiffies; spin_lock_init(&flow->stats_lock); /* add new flow to flow-table */ rc = rhashtable_insert_fast(&tc_info->flow_table, &new_node->node, tc_info->flow_ht_params); if (rc) goto hwrm_flow_free; mutex_unlock(&tc_info->lock); return 0; hwrm_flow_free: bnxt_hwrm_cfa_flow_free(bp, new_node); put_tunnel: bnxt_tc_put_tunnel_handle(bp, flow, new_node); put_l2: bnxt_tc_put_l2_node(bp, new_node); unlock: mutex_unlock(&tc_info->lock); free_node: kfree_rcu(new_node, rcu); done: netdev_err(bp->dev, "Error: %s: cookie=0x%lx error=%d\n", __func__, tc_flow_cmd->cookie, rc); return rc; } static int bnxt_tc_del_flow(struct bnxt *bp, struct flow_cls_offload *tc_flow_cmd) { struct bnxt_tc_info *tc_info = bp->tc_info; struct bnxt_tc_flow_node *flow_node; flow_node = rhashtable_lookup_fast(&tc_info->flow_table, &tc_flow_cmd->cookie, tc_info->flow_ht_params); if (!flow_node) return -EINVAL; return __bnxt_tc_del_flow(bp, flow_node); } static int bnxt_tc_get_flow_stats(struct bnxt *bp, struct flow_cls_offload *tc_flow_cmd) { struct bnxt_tc_flow_stats stats, *curr_stats, *prev_stats; struct bnxt_tc_info *tc_info = bp->tc_info; struct bnxt_tc_flow_node *flow_node; struct bnxt_tc_flow *flow; unsigned long lastused; flow_node = rhashtable_lookup_fast(&tc_info->flow_table, &tc_flow_cmd->cookie, tc_info->flow_ht_params); if (!flow_node) return -1; flow = &flow_node->flow; curr_stats = &flow->stats; prev_stats = &flow->prev_stats; spin_lock(&flow->stats_lock); stats.packets = curr_stats->packets - prev_stats->packets; stats.bytes = curr_stats->bytes - prev_stats->bytes; *prev_stats = *curr_stats; lastused = flow->lastused; spin_unlock(&flow->stats_lock); flow_stats_update(&tc_flow_cmd->stats, stats.bytes, stats.packets, 0, lastused, FLOW_ACTION_HW_STATS_DELAYED); return 0; } static void bnxt_fill_cfa_stats_req(struct bnxt *bp, struct bnxt_tc_flow_node *flow_node, __le16 *flow_handle, __le32 *flow_id) { u16 handle; if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) { *flow_id = flow_node->flow_id; /* If flow_id is used to fetch flow stats then: * 1. lower 12 bits of flow_handle must be set to all 1s. * 2. 15th bit of flow_handle must specify the flow * direction (TX/RX). */ if (flow_node->flow.l2_key.dir == BNXT_DIR_RX) handle = CFA_FLOW_INFO_REQ_FLOW_HANDLE_DIR_RX | CFA_FLOW_INFO_REQ_FLOW_HANDLE_MAX_MASK; else handle = CFA_FLOW_INFO_REQ_FLOW_HANDLE_MAX_MASK; *flow_handle = cpu_to_le16(handle); } else { *flow_handle = flow_node->flow_handle; } } static int bnxt_hwrm_cfa_flow_stats_get(struct bnxt *bp, int num_flows, struct bnxt_tc_stats_batch stats_batch[]) { struct hwrm_cfa_flow_stats_input req = { 0 }; struct hwrm_cfa_flow_stats_output *resp; __le16 *req_flow_handles = &req.flow_handle_0; __le32 *req_flow_ids = &req.flow_id_0; int rc, i; bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_FLOW_STATS, -1, -1); req.num_flows = cpu_to_le16(num_flows); for (i = 0; i < num_flows; i++) { struct bnxt_tc_flow_node *flow_node = stats_batch[i].flow_node; bnxt_fill_cfa_stats_req(bp, flow_node, &req_flow_handles[i], &req_flow_ids[i]); } mutex_lock(&bp->hwrm_cmd_lock); rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); if (!rc) { __le64 *resp_packets; __le64 *resp_bytes; resp = bnxt_get_hwrm_resp_addr(bp, &req); resp_packets = &resp->packet_0; resp_bytes = &resp->byte_0; for (i = 0; i < num_flows; i++) { stats_batch[i].hw_stats.packets = le64_to_cpu(resp_packets[i]); stats_batch[i].hw_stats.bytes = le64_to_cpu(resp_bytes[i]); } } else { netdev_info(bp->dev, "error rc=%d\n", rc); } mutex_unlock(&bp->hwrm_cmd_lock); return rc; } /* Add val to accum while handling a possible wraparound * of val. Eventhough val is of type u64, its actual width * is denoted by mask and will wrap-around beyond that width. */ static void accumulate_val(u64 *accum, u64 val, u64 mask) { #define low_bits(x, mask) ((x) & (mask)) #define high_bits(x, mask) ((x) & ~(mask)) bool wrapped = val < low_bits(*accum, mask); *accum = high_bits(*accum, mask) + val; if (wrapped) *accum += (mask + 1); } /* The HW counters' width is much less than 64bits. * Handle possible wrap-around while updating the stat counters */ static void bnxt_flow_stats_accum(struct bnxt_tc_info *tc_info, struct bnxt_tc_flow_stats *acc_stats, struct bnxt_tc_flow_stats *hw_stats) { accumulate_val(&acc_stats->bytes, hw_stats->bytes, tc_info->bytes_mask); accumulate_val(&acc_stats->packets, hw_stats->packets, tc_info->packets_mask); } static int bnxt_tc_flow_stats_batch_update(struct bnxt *bp, int num_flows, struct bnxt_tc_stats_batch stats_batch[]) { struct bnxt_tc_info *tc_info = bp->tc_info; int rc, i; rc = bnxt_hwrm_cfa_flow_stats_get(bp, num_flows, stats_batch); if (rc) return rc; for (i = 0; i < num_flows; i++) { struct bnxt_tc_flow_node *flow_node = stats_batch[i].flow_node; struct bnxt_tc_flow *flow = &flow_node->flow; spin_lock(&flow->stats_lock); bnxt_flow_stats_accum(tc_info, &flow->stats, &stats_batch[i].hw_stats); if (flow->stats.packets != flow->prev_stats.packets) flow->lastused = jiffies; spin_unlock(&flow->stats_lock); } return 0; } static int bnxt_tc_flow_stats_batch_prep(struct bnxt *bp, struct bnxt_tc_stats_batch stats_batch[], int *num_flows) { struct bnxt_tc_info *tc_info = bp->tc_info; struct rhashtable_iter *iter = &tc_info->iter; void *flow_node; int rc, i; rhashtable_walk_start(iter); rc = 0; for (i = 0; i < BNXT_FLOW_STATS_BATCH_MAX; i++) { flow_node = rhashtable_walk_next(iter); if (IS_ERR(flow_node)) { i = 0; if (PTR_ERR(flow_node) == -EAGAIN) { continue; } else { rc = PTR_ERR(flow_node); goto done; } } /* No more flows */ if (!flow_node) goto done; stats_batch[i].flow_node = flow_node; } done: rhashtable_walk_stop(iter); *num_flows = i; return rc; } void bnxt_tc_flow_stats_work(struct bnxt *bp) { struct bnxt_tc_info *tc_info = bp->tc_info; int num_flows, rc; num_flows = atomic_read(&tc_info->flow_table.nelems); if (!num_flows) return; rhashtable_walk_enter(&tc_info->flow_table, &tc_info->iter); for (;;) { rc = bnxt_tc_flow_stats_batch_prep(bp, tc_info->stats_batch, &num_flows); if (rc) { if (rc == -EAGAIN) continue; break; } if (!num_flows) break; bnxt_tc_flow_stats_batch_update(bp, num_flows, tc_info->stats_batch); } rhashtable_walk_exit(&tc_info->iter); } int bnxt_tc_setup_flower(struct bnxt *bp, u16 src_fid, struct flow_cls_offload *cls_flower) { switch (cls_flower->command) { case FLOW_CLS_REPLACE: return bnxt_tc_add_flow(bp, src_fid, cls_flower); case FLOW_CLS_DESTROY: return bnxt_tc_del_flow(bp, cls_flower); case FLOW_CLS_STATS: return bnxt_tc_get_flow_stats(bp, cls_flower); default: return -EOPNOTSUPP; } } static int bnxt_tc_setup_indr_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) { struct bnxt_flower_indr_block_cb_priv *priv = cb_priv; struct flow_cls_offload *flower = type_data; struct bnxt *bp = priv->bp; if (flower->common.chain_index) return -EOPNOTSUPP; switch (type) { case TC_SETUP_CLSFLOWER: return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, flower); default: return -EOPNOTSUPP; } } static struct bnxt_flower_indr_block_cb_priv * bnxt_tc_indr_block_cb_lookup(struct bnxt *bp, struct net_device *netdev) { struct bnxt_flower_indr_block_cb_priv *cb_priv; /* All callback list access should be protected by RTNL. */ ASSERT_RTNL(); list_for_each_entry(cb_priv, &bp->tc_indr_block_list, list) if (cb_priv->tunnel_netdev == netdev) return cb_priv; return NULL; } static void bnxt_tc_setup_indr_rel(void *cb_priv) { struct bnxt_flower_indr_block_cb_priv *priv = cb_priv; list_del(&priv->list); kfree(priv); } static int bnxt_tc_setup_indr_block(struct net_device *netdev, struct Qdisc *sch, struct bnxt *bp, struct flow_block_offload *f, void *data, void (*cleanup)(struct flow_block_cb *block_cb)) { struct bnxt_flower_indr_block_cb_priv *cb_priv; struct flow_block_cb *block_cb; if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) return -EOPNOTSUPP; switch (f->command) { case FLOW_BLOCK_BIND: cb_priv = kmalloc(sizeof(*cb_priv), GFP_KERNEL); if (!cb_priv) return -ENOMEM; cb_priv->tunnel_netdev = netdev; cb_priv->bp = bp; list_add(&cb_priv->list, &bp->tc_indr_block_list); block_cb = flow_indr_block_cb_alloc(bnxt_tc_setup_indr_block_cb, cb_priv, cb_priv, bnxt_tc_setup_indr_rel, f, netdev, sch, data, bp, cleanup); if (IS_ERR(block_cb)) { list_del(&cb_priv->list); kfree(cb_priv); return PTR_ERR(block_cb); } flow_block_cb_add(block_cb, f); list_add_tail(&block_cb->driver_list, &bnxt_block_cb_list); break; case FLOW_BLOCK_UNBIND: cb_priv = bnxt_tc_indr_block_cb_lookup(bp, netdev); if (!cb_priv) return -ENOENT; block_cb = flow_block_cb_lookup(f->block, bnxt_tc_setup_indr_block_cb, cb_priv); if (!block_cb) return -ENOENT; flow_indr_block_cb_remove(block_cb, f); list_del(&block_cb->driver_list); break; default: return -EOPNOTSUPP; } return 0; } static bool bnxt_is_netdev_indr_offload(struct net_device *netdev) { return netif_is_vxlan(netdev); } static int bnxt_tc_setup_indr_cb(struct net_device *netdev, struct Qdisc *sch, void *cb_priv, enum tc_setup_type type, void *type_data, void *data, void (*cleanup)(struct flow_block_cb *block_cb)) { if (!bnxt_is_netdev_indr_offload(netdev)) return -EOPNOTSUPP; switch (type) { case TC_SETUP_BLOCK: return bnxt_tc_setup_indr_block(netdev, sch, cb_priv, type_data, data, cleanup); default: break; } return -EOPNOTSUPP; } static const struct rhashtable_params bnxt_tc_flow_ht_params = { .head_offset = offsetof(struct bnxt_tc_flow_node, node), .key_offset = offsetof(struct bnxt_tc_flow_node, cookie), .key_len = sizeof(((struct bnxt_tc_flow_node *)0)->cookie), .automatic_shrinking = true }; static const struct rhashtable_params bnxt_tc_l2_ht_params = { .head_offset = offsetof(struct bnxt_tc_l2_node, node), .key_offset = offsetof(struct bnxt_tc_l2_node, key), .key_len = BNXT_TC_L2_KEY_LEN, .automatic_shrinking = true }; static const struct rhashtable_params bnxt_tc_decap_l2_ht_params = { .head_offset = offsetof(struct bnxt_tc_l2_node, node), .key_offset = offsetof(struct bnxt_tc_l2_node, key), .key_len = BNXT_TC_L2_KEY_LEN, .automatic_shrinking = true }; static const struct rhashtable_params bnxt_tc_tunnel_ht_params = { .head_offset = offsetof(struct bnxt_tc_tunnel_node, node), .key_offset = offsetof(struct bnxt_tc_tunnel_node, key), .key_len = sizeof(struct ip_tunnel_key), .automatic_shrinking = true }; /* convert counter width in bits to a mask */ #define mask(width) ((u64)~0 >> (64 - (width))) int bnxt_init_tc(struct bnxt *bp) { struct bnxt_tc_info *tc_info; int rc; if (bp->hwrm_spec_code < 0x10803) return 0; tc_info = kzalloc(sizeof(*tc_info), GFP_KERNEL); if (!tc_info) return -ENOMEM; mutex_init(&tc_info->lock); /* Counter widths are programmed by FW */ tc_info->bytes_mask = mask(36); tc_info->packets_mask = mask(28); tc_info->flow_ht_params = bnxt_tc_flow_ht_params; rc = rhashtable_init(&tc_info->flow_table, &tc_info->flow_ht_params); if (rc) goto free_tc_info; tc_info->l2_ht_params = bnxt_tc_l2_ht_params; rc = rhashtable_init(&tc_info->l2_table, &tc_info->l2_ht_params); if (rc) goto destroy_flow_table; tc_info->decap_l2_ht_params = bnxt_tc_decap_l2_ht_params; rc = rhashtable_init(&tc_info->decap_l2_table, &tc_info->decap_l2_ht_params); if (rc) goto destroy_l2_table; tc_info->decap_ht_params = bnxt_tc_tunnel_ht_params; rc = rhashtable_init(&tc_info->decap_table, &tc_info->decap_ht_params); if (rc) goto destroy_decap_l2_table; tc_info->encap_ht_params = bnxt_tc_tunnel_ht_params; rc = rhashtable_init(&tc_info->encap_table, &tc_info->encap_ht_params); if (rc) goto destroy_decap_table; tc_info->enabled = true; bp->dev->hw_features |= NETIF_F_HW_TC; bp->dev->features |= NETIF_F_HW_TC; bp->tc_info = tc_info; /* init indirect block notifications */ INIT_LIST_HEAD(&bp->tc_indr_block_list); rc = flow_indr_dev_register(bnxt_tc_setup_indr_cb, bp); if (!rc) return 0; rhashtable_destroy(&tc_info->encap_table); destroy_decap_table: rhashtable_destroy(&tc_info->decap_table); destroy_decap_l2_table: rhashtable_destroy(&tc_info->decap_l2_table); destroy_l2_table: rhashtable_destroy(&tc_info->l2_table); destroy_flow_table: rhashtable_destroy(&tc_info->flow_table); free_tc_info: kfree(tc_info); return rc; } void bnxt_shutdown_tc(struct bnxt *bp) { struct bnxt_tc_info *tc_info = bp->tc_info; if (!bnxt_tc_flower_enabled(bp)) return; flow_indr_dev_unregister(bnxt_tc_setup_indr_cb, bp, bnxt_tc_setup_indr_rel); rhashtable_destroy(&tc_info->flow_table); rhashtable_destroy(&tc_info->l2_table); rhashtable_destroy(&tc_info->decap_l2_table); rhashtable_destroy(&tc_info->decap_table); rhashtable_destroy(&tc_info->encap_table); kfree(tc_info); bp->tc_info = NULL; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1