Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Linus Walleij | 13022 | 99.39% | 6 | 30.00% |
Navid Emamdoost | 21 | 0.16% | 1 | 5.00% |
Dan Carpenter | 18 | 0.14% | 1 | 5.00% |
Andrew Lunn | 8 | 0.06% | 2 | 10.00% |
Jakub Kiciński | 7 | 0.05% | 1 | 5.00% |
Wang Hai | 5 | 0.04% | 1 | 5.00% |
Igor Pylypiv | 5 | 0.04% | 1 | 5.00% |
Michael S. Tsirkin | 4 | 0.03% | 1 | 5.00% |
Matthew Wilcox | 4 | 0.03% | 1 | 5.00% |
Yue haibing | 3 | 0.02% | 1 | 5.00% |
Kees Cook | 2 | 0.02% | 1 | 5.00% |
wangyunjian | 1 | 0.01% | 1 | 5.00% |
Andreas Fiedler | 1 | 0.01% | 1 | 5.00% |
Joe Perches | 1 | 0.01% | 1 | 5.00% |
Total | 13102 | 20 |
// SPDX-License-Identifier: GPL-2.0 /* Ethernet device driver for Cortina Systems Gemini SoC * Also known as the StorLink SL3512 and SL3516 (SL351x) or Lepus * Net Engine and Gigabit Ethernet MAC (GMAC) * This hardware contains a TCP Offload Engine (TOE) but currently the * driver does not make use of it. * * Authors: * Linus Walleij <linus.walleij@linaro.org> * Tobias Waldvogel <tobias.waldvogel@gmail.com> (OpenWRT) * Michał Mirosław <mirq-linux@rere.qmqm.pl> * Paulius Zaleckas <paulius.zaleckas@gmail.com> * Giuseppe De Robertis <Giuseppe.DeRobertis@ba.infn.it> * Gary Chen & Ch Hsu Storlink Semiconductor */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/spinlock.h> #include <linux/slab.h> #include <linux/dma-mapping.h> #include <linux/cache.h> #include <linux/interrupt.h> #include <linux/reset.h> #include <linux/clk.h> #include <linux/of.h> #include <linux/of_mdio.h> #include <linux/of_net.h> #include <linux/of_platform.h> #include <linux/etherdevice.h> #include <linux/if_vlan.h> #include <linux/skbuff.h> #include <linux/phy.h> #include <linux/crc32.h> #include <linux/ethtool.h> #include <linux/tcp.h> #include <linux/u64_stats_sync.h> #include <linux/in.h> #include <linux/ip.h> #include <linux/ipv6.h> #include "gemini.h" #define DRV_NAME "gmac-gemini" #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK) static int debug = -1; module_param(debug, int, 0); MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); #define HSIZE_8 0x00 #define HSIZE_16 0x01 #define HSIZE_32 0x02 #define HBURST_SINGLE 0x00 #define HBURST_INCR 0x01 #define HBURST_INCR4 0x02 #define HBURST_INCR8 0x03 #define HPROT_DATA_CACHE BIT(0) #define HPROT_PRIVILIGED BIT(1) #define HPROT_BUFFERABLE BIT(2) #define HPROT_CACHABLE BIT(3) #define DEFAULT_RX_COALESCE_NSECS 0 #define DEFAULT_GMAC_RXQ_ORDER 9 #define DEFAULT_GMAC_TXQ_ORDER 8 #define DEFAULT_RX_BUF_ORDER 11 #define DEFAULT_NAPI_WEIGHT 64 #define TX_MAX_FRAGS 16 #define TX_QUEUE_NUM 1 /* max: 6 */ #define RX_MAX_ALLOC_ORDER 2 #define GMAC0_IRQ0_2 (GMAC0_TXDERR_INT_BIT | GMAC0_TXPERR_INT_BIT | \ GMAC0_RXDERR_INT_BIT | GMAC0_RXPERR_INT_BIT) #define GMAC0_IRQ0_TXQ0_INTS (GMAC0_SWTQ00_EOF_INT_BIT | \ GMAC0_SWTQ00_FIN_INT_BIT) #define GMAC0_IRQ4_8 (GMAC0_MIB_INT_BIT | GMAC0_RX_OVERRUN_INT_BIT) #define GMAC_OFFLOAD_FEATURES (NETIF_F_SG | NETIF_F_IP_CSUM | \ NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM | \ NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6) /** * struct gmac_queue_page - page buffer per-page info */ struct gmac_queue_page { struct page *page; dma_addr_t mapping; }; struct gmac_txq { struct gmac_txdesc *ring; struct sk_buff **skb; unsigned int cptr; unsigned int noirq_packets; }; struct gemini_ethernet; struct gemini_ethernet_port { u8 id; /* 0 or 1 */ struct gemini_ethernet *geth; struct net_device *netdev; struct device *dev; void __iomem *dma_base; void __iomem *gmac_base; struct clk *pclk; struct reset_control *reset; int irq; __le32 mac_addr[3]; void __iomem *rxq_rwptr; struct gmac_rxdesc *rxq_ring; unsigned int rxq_order; struct napi_struct napi; struct hrtimer rx_coalesce_timer; unsigned int rx_coalesce_nsecs; unsigned int freeq_refill; struct gmac_txq txq[TX_QUEUE_NUM]; unsigned int txq_order; unsigned int irq_every_tx_packets; dma_addr_t rxq_dma_base; dma_addr_t txq_dma_base; unsigned int msg_enable; spinlock_t config_lock; /* Locks config register */ struct u64_stats_sync tx_stats_syncp; struct u64_stats_sync rx_stats_syncp; struct u64_stats_sync ir_stats_syncp; struct rtnl_link_stats64 stats; u64 hw_stats[RX_STATS_NUM]; u64 rx_stats[RX_STATUS_NUM]; u64 rx_csum_stats[RX_CHKSUM_NUM]; u64 rx_napi_exits; u64 tx_frag_stats[TX_MAX_FRAGS]; u64 tx_frags_linearized; u64 tx_hw_csummed; }; struct gemini_ethernet { struct device *dev; void __iomem *base; struct gemini_ethernet_port *port0; struct gemini_ethernet_port *port1; bool initialized; spinlock_t irq_lock; /* Locks IRQ-related registers */ unsigned int freeq_order; unsigned int freeq_frag_order; struct gmac_rxdesc *freeq_ring; dma_addr_t freeq_dma_base; struct gmac_queue_page *freeq_pages; unsigned int num_freeq_pages; spinlock_t freeq_lock; /* Locks queue from reentrance */ }; #define GMAC_STATS_NUM ( \ RX_STATS_NUM + RX_STATUS_NUM + RX_CHKSUM_NUM + 1 + \ TX_MAX_FRAGS + 2) static const char gmac_stats_strings[GMAC_STATS_NUM][ETH_GSTRING_LEN] = { "GMAC_IN_DISCARDS", "GMAC_IN_ERRORS", "GMAC_IN_MCAST", "GMAC_IN_BCAST", "GMAC_IN_MAC1", "GMAC_IN_MAC2", "RX_STATUS_GOOD_FRAME", "RX_STATUS_TOO_LONG_GOOD_CRC", "RX_STATUS_RUNT_FRAME", "RX_STATUS_SFD_NOT_FOUND", "RX_STATUS_CRC_ERROR", "RX_STATUS_TOO_LONG_BAD_CRC", "RX_STATUS_ALIGNMENT_ERROR", "RX_STATUS_TOO_LONG_BAD_ALIGN", "RX_STATUS_RX_ERR", "RX_STATUS_DA_FILTERED", "RX_STATUS_BUFFER_FULL", "RX_STATUS_11", "RX_STATUS_12", "RX_STATUS_13", "RX_STATUS_14", "RX_STATUS_15", "RX_CHKSUM_IP_UDP_TCP_OK", "RX_CHKSUM_IP_OK_ONLY", "RX_CHKSUM_NONE", "RX_CHKSUM_3", "RX_CHKSUM_IP_ERR_UNKNOWN", "RX_CHKSUM_IP_ERR", "RX_CHKSUM_TCP_UDP_ERR", "RX_CHKSUM_7", "RX_NAPI_EXITS", "TX_FRAGS[1]", "TX_FRAGS[2]", "TX_FRAGS[3]", "TX_FRAGS[4]", "TX_FRAGS[5]", "TX_FRAGS[6]", "TX_FRAGS[7]", "TX_FRAGS[8]", "TX_FRAGS[9]", "TX_FRAGS[10]", "TX_FRAGS[11]", "TX_FRAGS[12]", "TX_FRAGS[13]", "TX_FRAGS[14]", "TX_FRAGS[15]", "TX_FRAGS[16+]", "TX_FRAGS_LINEARIZED", "TX_HW_CSUMMED", }; static void gmac_dump_dma_state(struct net_device *netdev); static void gmac_update_config0_reg(struct net_device *netdev, u32 val, u32 vmask) { struct gemini_ethernet_port *port = netdev_priv(netdev); unsigned long flags; u32 reg; spin_lock_irqsave(&port->config_lock, flags); reg = readl(port->gmac_base + GMAC_CONFIG0); reg = (reg & ~vmask) | val; writel(reg, port->gmac_base + GMAC_CONFIG0); spin_unlock_irqrestore(&port->config_lock, flags); } static void gmac_enable_tx_rx(struct net_device *netdev) { struct gemini_ethernet_port *port = netdev_priv(netdev); unsigned long flags; u32 reg; spin_lock_irqsave(&port->config_lock, flags); reg = readl(port->gmac_base + GMAC_CONFIG0); reg &= ~CONFIG0_TX_RX_DISABLE; writel(reg, port->gmac_base + GMAC_CONFIG0); spin_unlock_irqrestore(&port->config_lock, flags); } static void gmac_disable_tx_rx(struct net_device *netdev) { struct gemini_ethernet_port *port = netdev_priv(netdev); unsigned long flags; u32 val; spin_lock_irqsave(&port->config_lock, flags); val = readl(port->gmac_base + GMAC_CONFIG0); val |= CONFIG0_TX_RX_DISABLE; writel(val, port->gmac_base + GMAC_CONFIG0); spin_unlock_irqrestore(&port->config_lock, flags); mdelay(10); /* let GMAC consume packet */ } static void gmac_set_flow_control(struct net_device *netdev, bool tx, bool rx) { struct gemini_ethernet_port *port = netdev_priv(netdev); unsigned long flags; u32 val; spin_lock_irqsave(&port->config_lock, flags); val = readl(port->gmac_base + GMAC_CONFIG0); val &= ~CONFIG0_FLOW_CTL; if (tx) val |= CONFIG0_FLOW_TX; if (rx) val |= CONFIG0_FLOW_RX; writel(val, port->gmac_base + GMAC_CONFIG0); spin_unlock_irqrestore(&port->config_lock, flags); } static void gmac_speed_set(struct net_device *netdev) { struct gemini_ethernet_port *port = netdev_priv(netdev); struct phy_device *phydev = netdev->phydev; union gmac_status status, old_status; int pause_tx = 0; int pause_rx = 0; status.bits32 = readl(port->gmac_base + GMAC_STATUS); old_status.bits32 = status.bits32; status.bits.link = phydev->link; status.bits.duplex = phydev->duplex; switch (phydev->speed) { case 1000: status.bits.speed = GMAC_SPEED_1000; if (phydev->interface == PHY_INTERFACE_MODE_RGMII) status.bits.mii_rmii = GMAC_PHY_RGMII_1000; netdev_dbg(netdev, "connect %s to RGMII @ 1Gbit\n", phydev_name(phydev)); break; case 100: status.bits.speed = GMAC_SPEED_100; if (phydev->interface == PHY_INTERFACE_MODE_RGMII) status.bits.mii_rmii = GMAC_PHY_RGMII_100_10; netdev_dbg(netdev, "connect %s to RGMII @ 100 Mbit\n", phydev_name(phydev)); break; case 10: status.bits.speed = GMAC_SPEED_10; if (phydev->interface == PHY_INTERFACE_MODE_RGMII) status.bits.mii_rmii = GMAC_PHY_RGMII_100_10; netdev_dbg(netdev, "connect %s to RGMII @ 10 Mbit\n", phydev_name(phydev)); break; default: netdev_warn(netdev, "Unsupported PHY speed (%d) on %s\n", phydev->speed, phydev_name(phydev)); } if (phydev->duplex == DUPLEX_FULL) { u16 lcladv = phy_read(phydev, MII_ADVERTISE); u16 rmtadv = phy_read(phydev, MII_LPA); u8 cap = mii_resolve_flowctrl_fdx(lcladv, rmtadv); if (cap & FLOW_CTRL_RX) pause_rx = 1; if (cap & FLOW_CTRL_TX) pause_tx = 1; } gmac_set_flow_control(netdev, pause_tx, pause_rx); if (old_status.bits32 == status.bits32) return; if (netif_msg_link(port)) { phy_print_status(phydev); netdev_info(netdev, "link flow control: %s\n", phydev->pause ? (phydev->asym_pause ? "tx" : "both") : (phydev->asym_pause ? "rx" : "none") ); } gmac_disable_tx_rx(netdev); writel(status.bits32, port->gmac_base + GMAC_STATUS); gmac_enable_tx_rx(netdev); } static int gmac_setup_phy(struct net_device *netdev) { struct gemini_ethernet_port *port = netdev_priv(netdev); union gmac_status status = { .bits32 = 0 }; struct device *dev = port->dev; struct phy_device *phy; phy = of_phy_get_and_connect(netdev, dev->of_node, gmac_speed_set); if (!phy) return -ENODEV; netdev->phydev = phy; phy_set_max_speed(phy, SPEED_1000); phy_support_asym_pause(phy); /* set PHY interface type */ switch (phy->interface) { case PHY_INTERFACE_MODE_MII: netdev_dbg(netdev, "MII: set GMAC0 to GMII mode, GMAC1 disabled\n"); status.bits.mii_rmii = GMAC_PHY_MII; break; case PHY_INTERFACE_MODE_GMII: netdev_dbg(netdev, "GMII: set GMAC0 to GMII mode, GMAC1 disabled\n"); status.bits.mii_rmii = GMAC_PHY_GMII; break; case PHY_INTERFACE_MODE_RGMII: netdev_dbg(netdev, "RGMII: set GMAC0 and GMAC1 to MII/RGMII mode\n"); status.bits.mii_rmii = GMAC_PHY_RGMII_100_10; break; default: netdev_err(netdev, "Unsupported MII interface\n"); phy_disconnect(phy); netdev->phydev = NULL; return -EINVAL; } writel(status.bits32, port->gmac_base + GMAC_STATUS); if (netif_msg_link(port)) phy_attached_info(phy); return 0; } /* The maximum frame length is not logically enumerated in the * hardware, so we do a table lookup to find the applicable max * frame length. */ struct gmac_max_framelen { unsigned int max_l3_len; u8 val; }; static const struct gmac_max_framelen gmac_maxlens[] = { { .max_l3_len = 1518, .val = CONFIG0_MAXLEN_1518, }, { .max_l3_len = 1522, .val = CONFIG0_MAXLEN_1522, }, { .max_l3_len = 1536, .val = CONFIG0_MAXLEN_1536, }, { .max_l3_len = 1542, .val = CONFIG0_MAXLEN_1542, }, { .max_l3_len = 9212, .val = CONFIG0_MAXLEN_9k, }, { .max_l3_len = 10236, .val = CONFIG0_MAXLEN_10k, }, }; static int gmac_pick_rx_max_len(unsigned int max_l3_len) { const struct gmac_max_framelen *maxlen; int maxtot; int i; maxtot = max_l3_len + ETH_HLEN + VLAN_HLEN; for (i = 0; i < ARRAY_SIZE(gmac_maxlens); i++) { maxlen = &gmac_maxlens[i]; if (maxtot <= maxlen->max_l3_len) return maxlen->val; } return -1; } static int gmac_init(struct net_device *netdev) { struct gemini_ethernet_port *port = netdev_priv(netdev); union gmac_config0 config0 = { .bits = { .dis_tx = 1, .dis_rx = 1, .ipv4_rx_chksum = 1, .ipv6_rx_chksum = 1, .rx_err_detect = 1, .rgmm_edge = 1, .port0_chk_hwq = 1, .port1_chk_hwq = 1, .port0_chk_toeq = 1, .port1_chk_toeq = 1, .port0_chk_classq = 1, .port1_chk_classq = 1, } }; union gmac_ahb_weight ahb_weight = { .bits = { .rx_weight = 1, .tx_weight = 1, .hash_weight = 1, .pre_req = 0x1f, .tq_dv_threshold = 0, } }; union gmac_tx_wcr0 hw_weigh = { .bits = { .hw_tq3 = 1, .hw_tq2 = 1, .hw_tq1 = 1, .hw_tq0 = 1, } }; union gmac_tx_wcr1 sw_weigh = { .bits = { .sw_tq5 = 1, .sw_tq4 = 1, .sw_tq3 = 1, .sw_tq2 = 1, .sw_tq1 = 1, .sw_tq0 = 1, } }; union gmac_config1 config1 = { .bits = { .set_threshold = 16, .rel_threshold = 24, } }; union gmac_config2 config2 = { .bits = { .set_threshold = 16, .rel_threshold = 32, } }; union gmac_config3 config3 = { .bits = { .set_threshold = 0, .rel_threshold = 0, } }; union gmac_config0 tmp; u32 val; config0.bits.max_len = gmac_pick_rx_max_len(netdev->mtu); tmp.bits32 = readl(port->gmac_base + GMAC_CONFIG0); config0.bits.reserved = tmp.bits.reserved; writel(config0.bits32, port->gmac_base + GMAC_CONFIG0); writel(config1.bits32, port->gmac_base + GMAC_CONFIG1); writel(config2.bits32, port->gmac_base + GMAC_CONFIG2); writel(config3.bits32, port->gmac_base + GMAC_CONFIG3); val = readl(port->dma_base + GMAC_AHB_WEIGHT_REG); writel(ahb_weight.bits32, port->dma_base + GMAC_AHB_WEIGHT_REG); writel(hw_weigh.bits32, port->dma_base + GMAC_TX_WEIGHTING_CTRL_0_REG); writel(sw_weigh.bits32, port->dma_base + GMAC_TX_WEIGHTING_CTRL_1_REG); port->rxq_order = DEFAULT_GMAC_RXQ_ORDER; port->txq_order = DEFAULT_GMAC_TXQ_ORDER; port->rx_coalesce_nsecs = DEFAULT_RX_COALESCE_NSECS; /* Mark every quarter of the queue a packet for interrupt * in order to be able to wake up the queue if it was stopped */ port->irq_every_tx_packets = 1 << (port->txq_order - 2); return 0; } static void gmac_uninit(struct net_device *netdev) { if (netdev->phydev) phy_disconnect(netdev->phydev); } static int gmac_setup_txqs(struct net_device *netdev) { struct gemini_ethernet_port *port = netdev_priv(netdev); unsigned int n_txq = netdev->num_tx_queues; struct gemini_ethernet *geth = port->geth; size_t entries = 1 << port->txq_order; struct gmac_txq *txq = port->txq; struct gmac_txdesc *desc_ring; size_t len = n_txq * entries; struct sk_buff **skb_tab; void __iomem *rwptr_reg; unsigned int r; int i; rwptr_reg = port->dma_base + GMAC_SW_TX_QUEUE0_PTR_REG; skb_tab = kcalloc(len, sizeof(*skb_tab), GFP_KERNEL); if (!skb_tab) return -ENOMEM; desc_ring = dma_alloc_coherent(geth->dev, len * sizeof(*desc_ring), &port->txq_dma_base, GFP_KERNEL); if (!desc_ring) { kfree(skb_tab); return -ENOMEM; } if (port->txq_dma_base & ~DMA_Q_BASE_MASK) { dev_warn(geth->dev, "TX queue base is not aligned\n"); dma_free_coherent(geth->dev, len * sizeof(*desc_ring), desc_ring, port->txq_dma_base); kfree(skb_tab); return -ENOMEM; } writel(port->txq_dma_base | port->txq_order, port->dma_base + GMAC_SW_TX_QUEUE_BASE_REG); for (i = 0; i < n_txq; i++) { txq->ring = desc_ring; txq->skb = skb_tab; txq->noirq_packets = 0; r = readw(rwptr_reg); rwptr_reg += 2; writew(r, rwptr_reg); rwptr_reg += 2; txq->cptr = r; txq++; desc_ring += entries; skb_tab += entries; } return 0; } static void gmac_clean_txq(struct net_device *netdev, struct gmac_txq *txq, unsigned int r) { struct gemini_ethernet_port *port = netdev_priv(netdev); unsigned int m = (1 << port->txq_order) - 1; struct gemini_ethernet *geth = port->geth; unsigned int c = txq->cptr; union gmac_txdesc_0 word0; union gmac_txdesc_1 word1; unsigned int hwchksum = 0; unsigned long bytes = 0; struct gmac_txdesc *txd; unsigned short nfrags; unsigned int errs = 0; unsigned int pkts = 0; unsigned int word3; dma_addr_t mapping; if (c == r) return; while (c != r) { txd = txq->ring + c; word0 = txd->word0; word1 = txd->word1; mapping = txd->word2.buf_adr; word3 = txd->word3.bits32; dma_unmap_single(geth->dev, mapping, word0.bits.buffer_size, DMA_TO_DEVICE); if (word3 & EOF_BIT) dev_kfree_skb(txq->skb[c]); c++; c &= m; if (!(word3 & SOF_BIT)) continue; if (!word0.bits.status_tx_ok) { errs++; continue; } pkts++; bytes += txd->word1.bits.byte_count; if (word1.bits32 & TSS_CHECKUM_ENABLE) hwchksum++; nfrags = word0.bits.desc_count - 1; if (nfrags) { if (nfrags >= TX_MAX_FRAGS) nfrags = TX_MAX_FRAGS - 1; u64_stats_update_begin(&port->tx_stats_syncp); port->tx_frag_stats[nfrags]++; u64_stats_update_end(&port->tx_stats_syncp); } } u64_stats_update_begin(&port->ir_stats_syncp); port->stats.tx_errors += errs; port->stats.tx_packets += pkts; port->stats.tx_bytes += bytes; port->tx_hw_csummed += hwchksum; u64_stats_update_end(&port->ir_stats_syncp); txq->cptr = c; } static void gmac_cleanup_txqs(struct net_device *netdev) { struct gemini_ethernet_port *port = netdev_priv(netdev); unsigned int n_txq = netdev->num_tx_queues; struct gemini_ethernet *geth = port->geth; void __iomem *rwptr_reg; unsigned int r, i; rwptr_reg = port->dma_base + GMAC_SW_TX_QUEUE0_PTR_REG; for (i = 0; i < n_txq; i++) { r = readw(rwptr_reg); rwptr_reg += 2; writew(r, rwptr_reg); rwptr_reg += 2; gmac_clean_txq(netdev, port->txq + i, r); } writel(0, port->dma_base + GMAC_SW_TX_QUEUE_BASE_REG); kfree(port->txq->skb); dma_free_coherent(geth->dev, n_txq * sizeof(*port->txq->ring) << port->txq_order, port->txq->ring, port->txq_dma_base); } static int gmac_setup_rxq(struct net_device *netdev) { struct gemini_ethernet_port *port = netdev_priv(netdev); struct gemini_ethernet *geth = port->geth; struct nontoe_qhdr __iomem *qhdr; qhdr = geth->base + TOE_DEFAULT_Q_HDR_BASE(netdev->dev_id); port->rxq_rwptr = &qhdr->word1; /* Remap a slew of memory to use for the RX queue */ port->rxq_ring = dma_alloc_coherent(geth->dev, sizeof(*port->rxq_ring) << port->rxq_order, &port->rxq_dma_base, GFP_KERNEL); if (!port->rxq_ring) return -ENOMEM; if (port->rxq_dma_base & ~NONTOE_QHDR0_BASE_MASK) { dev_warn(geth->dev, "RX queue base is not aligned\n"); return -ENOMEM; } writel(port->rxq_dma_base | port->rxq_order, &qhdr->word0); writel(0, port->rxq_rwptr); return 0; } static struct gmac_queue_page * gmac_get_queue_page(struct gemini_ethernet *geth, struct gemini_ethernet_port *port, dma_addr_t addr) { struct gmac_queue_page *gpage; dma_addr_t mapping; int i; /* Only look for even pages */ mapping = addr & PAGE_MASK; if (!geth->freeq_pages) { dev_err(geth->dev, "try to get page with no page list\n"); return NULL; } /* Look up a ring buffer page from virtual mapping */ for (i = 0; i < geth->num_freeq_pages; i++) { gpage = &geth->freeq_pages[i]; if (gpage->mapping == mapping) return gpage; } return NULL; } static void gmac_cleanup_rxq(struct net_device *netdev) { struct gemini_ethernet_port *port = netdev_priv(netdev); struct gemini_ethernet *geth = port->geth; struct gmac_rxdesc *rxd = port->rxq_ring; static struct gmac_queue_page *gpage; struct nontoe_qhdr __iomem *qhdr; void __iomem *dma_reg; void __iomem *ptr_reg; dma_addr_t mapping; union dma_rwptr rw; unsigned int r, w; qhdr = geth->base + TOE_DEFAULT_Q_HDR_BASE(netdev->dev_id); dma_reg = &qhdr->word0; ptr_reg = &qhdr->word1; rw.bits32 = readl(ptr_reg); r = rw.bits.rptr; w = rw.bits.wptr; writew(r, ptr_reg + 2); writel(0, dma_reg); /* Loop from read pointer to write pointer of the RX queue * and free up all pages by the queue. */ while (r != w) { mapping = rxd[r].word2.buf_adr; r++; r &= ((1 << port->rxq_order) - 1); if (!mapping) continue; /* Freeq pointers are one page off */ gpage = gmac_get_queue_page(geth, port, mapping + PAGE_SIZE); if (!gpage) { dev_err(geth->dev, "could not find page\n"); continue; } /* Release the RX queue reference to the page */ put_page(gpage->page); } dma_free_coherent(geth->dev, sizeof(*port->rxq_ring) << port->rxq_order, port->rxq_ring, port->rxq_dma_base); } static struct page *geth_freeq_alloc_map_page(struct gemini_ethernet *geth, int pn) { struct gmac_rxdesc *freeq_entry; struct gmac_queue_page *gpage; unsigned int fpp_order; unsigned int frag_len; dma_addr_t mapping; struct page *page; int i; /* First allocate and DMA map a single page */ page = alloc_page(GFP_ATOMIC); if (!page) return NULL; mapping = dma_map_single(geth->dev, page_address(page), PAGE_SIZE, DMA_FROM_DEVICE); if (dma_mapping_error(geth->dev, mapping)) { put_page(page); return NULL; } /* The assign the page mapping (physical address) to the buffer address * in the hardware queue. PAGE_SHIFT on ARM is 12 (1 page is 4096 bytes, * 4k), and the default RX frag order is 11 (fragments are up 20 2048 * bytes, 2k) so fpp_order (fragments per page order) is default 1. Thus * each page normally needs two entries in the queue. */ frag_len = 1 << geth->freeq_frag_order; /* Usually 2048 */ fpp_order = PAGE_SHIFT - geth->freeq_frag_order; freeq_entry = geth->freeq_ring + (pn << fpp_order); dev_dbg(geth->dev, "allocate page %d fragment length %d fragments per page %d, freeq entry %p\n", pn, frag_len, (1 << fpp_order), freeq_entry); for (i = (1 << fpp_order); i > 0; i--) { freeq_entry->word2.buf_adr = mapping; freeq_entry++; mapping += frag_len; } /* If the freeq entry already has a page mapped, then unmap it. */ gpage = &geth->freeq_pages[pn]; if (gpage->page) { mapping = geth->freeq_ring[pn << fpp_order].word2.buf_adr; dma_unmap_single(geth->dev, mapping, frag_len, DMA_FROM_DEVICE); /* This should be the last reference to the page so it gets * released */ put_page(gpage->page); } /* Then put our new mapping into the page table */ dev_dbg(geth->dev, "page %d, DMA addr: %08x, page %p\n", pn, (unsigned int)mapping, page); gpage->mapping = mapping; gpage->page = page; return page; } /** * geth_fill_freeq() - Fill the freeq with empty fragments to use * @geth: the ethernet adapter * @refill: whether to reset the queue by filling in all freeq entries or * just refill it, usually the interrupt to refill the queue happens when * the queue is half empty. */ static unsigned int geth_fill_freeq(struct gemini_ethernet *geth, bool refill) { unsigned int fpp_order = PAGE_SHIFT - geth->freeq_frag_order; unsigned int count = 0; unsigned int pn, epn; unsigned long flags; union dma_rwptr rw; unsigned int m_pn; /* Mask for page */ m_pn = (1 << (geth->freeq_order - fpp_order)) - 1; spin_lock_irqsave(&geth->freeq_lock, flags); rw.bits32 = readl(geth->base + GLOBAL_SWFQ_RWPTR_REG); pn = (refill ? rw.bits.wptr : rw.bits.rptr) >> fpp_order; epn = (rw.bits.rptr >> fpp_order) - 1; epn &= m_pn; /* Loop over the freeq ring buffer entries */ while (pn != epn) { struct gmac_queue_page *gpage; struct page *page; gpage = &geth->freeq_pages[pn]; page = gpage->page; dev_dbg(geth->dev, "fill entry %d page ref count %d add %d refs\n", pn, page_ref_count(page), 1 << fpp_order); if (page_ref_count(page) > 1) { unsigned int fl = (pn - epn) & m_pn; if (fl > 64 >> fpp_order) break; page = geth_freeq_alloc_map_page(geth, pn); if (!page) break; } /* Add one reference per fragment in the page */ page_ref_add(page, 1 << fpp_order); count += 1 << fpp_order; pn++; pn &= m_pn; } writew(pn << fpp_order, geth->base + GLOBAL_SWFQ_RWPTR_REG + 2); spin_unlock_irqrestore(&geth->freeq_lock, flags); return count; } static int geth_setup_freeq(struct gemini_ethernet *geth) { unsigned int fpp_order = PAGE_SHIFT - geth->freeq_frag_order; unsigned int frag_len = 1 << geth->freeq_frag_order; unsigned int len = 1 << geth->freeq_order; unsigned int pages = len >> fpp_order; union queue_threshold qt; union dma_skb_size skbsz; unsigned int filled; unsigned int pn; geth->freeq_ring = dma_alloc_coherent(geth->dev, sizeof(*geth->freeq_ring) << geth->freeq_order, &geth->freeq_dma_base, GFP_KERNEL); if (!geth->freeq_ring) return -ENOMEM; if (geth->freeq_dma_base & ~DMA_Q_BASE_MASK) { dev_warn(geth->dev, "queue ring base is not aligned\n"); goto err_freeq; } /* Allocate a mapping to page look-up index */ geth->freeq_pages = kcalloc(pages, sizeof(*geth->freeq_pages), GFP_KERNEL); if (!geth->freeq_pages) goto err_freeq; geth->num_freeq_pages = pages; dev_info(geth->dev, "allocate %d pages for queue\n", pages); for (pn = 0; pn < pages; pn++) if (!geth_freeq_alloc_map_page(geth, pn)) goto err_freeq_alloc; filled = geth_fill_freeq(geth, false); if (!filled) goto err_freeq_alloc; qt.bits32 = readl(geth->base + GLOBAL_QUEUE_THRESHOLD_REG); qt.bits.swfq_empty = 32; writel(qt.bits32, geth->base + GLOBAL_QUEUE_THRESHOLD_REG); skbsz.bits.sw_skb_size = 1 << geth->freeq_frag_order; writel(skbsz.bits32, geth->base + GLOBAL_DMA_SKB_SIZE_REG); writel(geth->freeq_dma_base | geth->freeq_order, geth->base + GLOBAL_SW_FREEQ_BASE_SIZE_REG); return 0; err_freeq_alloc: while (pn > 0) { struct gmac_queue_page *gpage; dma_addr_t mapping; --pn; mapping = geth->freeq_ring[pn << fpp_order].word2.buf_adr; dma_unmap_single(geth->dev, mapping, frag_len, DMA_FROM_DEVICE); gpage = &geth->freeq_pages[pn]; put_page(gpage->page); } kfree(geth->freeq_pages); err_freeq: dma_free_coherent(geth->dev, sizeof(*geth->freeq_ring) << geth->freeq_order, geth->freeq_ring, geth->freeq_dma_base); geth->freeq_ring = NULL; return -ENOMEM; } /** * geth_cleanup_freeq() - cleanup the DMA mappings and free the queue * @geth: the Gemini global ethernet state */ static void geth_cleanup_freeq(struct gemini_ethernet *geth) { unsigned int fpp_order = PAGE_SHIFT - geth->freeq_frag_order; unsigned int frag_len = 1 << geth->freeq_frag_order; unsigned int len = 1 << geth->freeq_order; unsigned int pages = len >> fpp_order; unsigned int pn; writew(readw(geth->base + GLOBAL_SWFQ_RWPTR_REG), geth->base + GLOBAL_SWFQ_RWPTR_REG + 2); writel(0, geth->base + GLOBAL_SW_FREEQ_BASE_SIZE_REG); for (pn = 0; pn < pages; pn++) { struct gmac_queue_page *gpage; dma_addr_t mapping; mapping = geth->freeq_ring[pn << fpp_order].word2.buf_adr; dma_unmap_single(geth->dev, mapping, frag_len, DMA_FROM_DEVICE); gpage = &geth->freeq_pages[pn]; while (page_ref_count(gpage->page) > 0) put_page(gpage->page); } kfree(geth->freeq_pages); dma_free_coherent(geth->dev, sizeof(*geth->freeq_ring) << geth->freeq_order, geth->freeq_ring, geth->freeq_dma_base); } /** * geth_resize_freeq() - resize the software queue depth * @port: the port requesting the change * * This gets called at least once during probe() so the device queue gets * "resized" from the hardware defaults. Since both ports/net devices share * the same hardware queue, some synchronization between the ports is * needed. */ static int geth_resize_freeq(struct gemini_ethernet_port *port) { struct gemini_ethernet *geth = port->geth; struct net_device *netdev = port->netdev; struct gemini_ethernet_port *other_port; struct net_device *other_netdev; unsigned int new_size = 0; unsigned int new_order; unsigned long flags; u32 en; int ret; if (netdev->dev_id == 0) other_netdev = geth->port1->netdev; else other_netdev = geth->port0->netdev; if (other_netdev && netif_running(other_netdev)) return -EBUSY; new_size = 1 << (port->rxq_order + 1); netdev_dbg(netdev, "port %d size: %d order %d\n", netdev->dev_id, new_size, port->rxq_order); if (other_netdev) { other_port = netdev_priv(other_netdev); new_size += 1 << (other_port->rxq_order + 1); netdev_dbg(other_netdev, "port %d size: %d order %d\n", other_netdev->dev_id, (1 << (other_port->rxq_order + 1)), other_port->rxq_order); } new_order = min(15, ilog2(new_size - 1) + 1); dev_dbg(geth->dev, "set shared queue to size %d order %d\n", new_size, new_order); if (geth->freeq_order == new_order) return 0; spin_lock_irqsave(&geth->irq_lock, flags); /* Disable the software queue IRQs */ en = readl(geth->base + GLOBAL_INTERRUPT_ENABLE_4_REG); en &= ~SWFQ_EMPTY_INT_BIT; writel(en, geth->base + GLOBAL_INTERRUPT_ENABLE_4_REG); spin_unlock_irqrestore(&geth->irq_lock, flags); /* Drop the old queue */ if (geth->freeq_ring) geth_cleanup_freeq(geth); /* Allocate a new queue with the desired order */ geth->freeq_order = new_order; ret = geth_setup_freeq(geth); /* Restart the interrupts - NOTE if this is the first resize * after probe(), this is where the interrupts get turned on * in the first place. */ spin_lock_irqsave(&geth->irq_lock, flags); en |= SWFQ_EMPTY_INT_BIT; writel(en, geth->base + GLOBAL_INTERRUPT_ENABLE_4_REG); spin_unlock_irqrestore(&geth->irq_lock, flags); return ret; } static void gmac_tx_irq_enable(struct net_device *netdev, unsigned int txq, int en) { struct gemini_ethernet_port *port = netdev_priv(netdev); struct gemini_ethernet *geth = port->geth; u32 val, mask; netdev_dbg(netdev, "%s device %d\n", __func__, netdev->dev_id); mask = GMAC0_IRQ0_TXQ0_INTS << (6 * netdev->dev_id + txq); if (en) writel(mask, geth->base + GLOBAL_INTERRUPT_STATUS_0_REG); val = readl(geth->base + GLOBAL_INTERRUPT_ENABLE_0_REG); val = en ? val | mask : val & ~mask; writel(val, geth->base + GLOBAL_INTERRUPT_ENABLE_0_REG); } static void gmac_tx_irq(struct net_device *netdev, unsigned int txq_num) { struct netdev_queue *ntxq = netdev_get_tx_queue(netdev, txq_num); gmac_tx_irq_enable(netdev, txq_num, 0); netif_tx_wake_queue(ntxq); } static int gmac_map_tx_bufs(struct net_device *netdev, struct sk_buff *skb, struct gmac_txq *txq, unsigned short *desc) { struct gemini_ethernet_port *port = netdev_priv(netdev); struct skb_shared_info *skb_si = skb_shinfo(skb); unsigned short m = (1 << port->txq_order) - 1; short frag, last_frag = skb_si->nr_frags - 1; struct gemini_ethernet *geth = port->geth; unsigned int word1, word3, buflen; unsigned short w = *desc; struct gmac_txdesc *txd; skb_frag_t *skb_frag; dma_addr_t mapping; unsigned short mtu; void *buffer; mtu = ETH_HLEN; mtu += netdev->mtu; if (skb->protocol == htons(ETH_P_8021Q)) mtu += VLAN_HLEN; word1 = skb->len; word3 = SOF_BIT; if (word1 > mtu) { word1 |= TSS_MTU_ENABLE_BIT; word3 |= mtu; } if (skb->ip_summed != CHECKSUM_NONE) { int tcp = 0; if (skb->protocol == htons(ETH_P_IP)) { word1 |= TSS_IP_CHKSUM_BIT; tcp = ip_hdr(skb)->protocol == IPPROTO_TCP; } else { /* IPv6 */ word1 |= TSS_IPV6_ENABLE_BIT; tcp = ipv6_hdr(skb)->nexthdr == IPPROTO_TCP; } word1 |= tcp ? TSS_TCP_CHKSUM_BIT : TSS_UDP_CHKSUM_BIT; } frag = -1; while (frag <= last_frag) { if (frag == -1) { buffer = skb->data; buflen = skb_headlen(skb); } else { skb_frag = skb_si->frags + frag; buffer = skb_frag_address(skb_frag); buflen = skb_frag_size(skb_frag); } if (frag == last_frag) { word3 |= EOF_BIT; txq->skb[w] = skb; } mapping = dma_map_single(geth->dev, buffer, buflen, DMA_TO_DEVICE); if (dma_mapping_error(geth->dev, mapping)) goto map_error; txd = txq->ring + w; txd->word0.bits32 = buflen; txd->word1.bits32 = word1; txd->word2.buf_adr = mapping; txd->word3.bits32 = word3; word3 &= MTU_SIZE_BIT_MASK; w++; w &= m; frag++; } *desc = w; return 0; map_error: while (w != *desc) { w--; w &= m; dma_unmap_page(geth->dev, txq->ring[w].word2.buf_adr, txq->ring[w].word0.bits.buffer_size, DMA_TO_DEVICE); } return -ENOMEM; } static netdev_tx_t gmac_start_xmit(struct sk_buff *skb, struct net_device *netdev) { struct gemini_ethernet_port *port = netdev_priv(netdev); unsigned short m = (1 << port->txq_order) - 1; struct netdev_queue *ntxq; unsigned short r, w, d; void __iomem *ptr_reg; struct gmac_txq *txq; int txq_num, nfrags; union dma_rwptr rw; if (skb->len >= 0x10000) goto out_drop_free; txq_num = skb_get_queue_mapping(skb); ptr_reg = port->dma_base + GMAC_SW_TX_QUEUE_PTR_REG(txq_num); txq = &port->txq[txq_num]; ntxq = netdev_get_tx_queue(netdev, txq_num); nfrags = skb_shinfo(skb)->nr_frags; rw.bits32 = readl(ptr_reg); r = rw.bits.rptr; w = rw.bits.wptr; d = txq->cptr - w - 1; d &= m; if (d < nfrags + 2) { gmac_clean_txq(netdev, txq, r); d = txq->cptr - w - 1; d &= m; if (d < nfrags + 2) { netif_tx_stop_queue(ntxq); d = txq->cptr + nfrags + 16; d &= m; txq->ring[d].word3.bits.eofie = 1; gmac_tx_irq_enable(netdev, txq_num, 1); u64_stats_update_begin(&port->tx_stats_syncp); netdev->stats.tx_fifo_errors++; u64_stats_update_end(&port->tx_stats_syncp); return NETDEV_TX_BUSY; } } if (gmac_map_tx_bufs(netdev, skb, txq, &w)) { if (skb_linearize(skb)) goto out_drop; u64_stats_update_begin(&port->tx_stats_syncp); port->tx_frags_linearized++; u64_stats_update_end(&port->tx_stats_syncp); if (gmac_map_tx_bufs(netdev, skb, txq, &w)) goto out_drop_free; } writew(w, ptr_reg + 2); gmac_clean_txq(netdev, txq, r); return NETDEV_TX_OK; out_drop_free: dev_kfree_skb(skb); out_drop: u64_stats_update_begin(&port->tx_stats_syncp); port->stats.tx_dropped++; u64_stats_update_end(&port->tx_stats_syncp); return NETDEV_TX_OK; } static void gmac_tx_timeout(struct net_device *netdev, unsigned int txqueue) { netdev_err(netdev, "Tx timeout\n"); gmac_dump_dma_state(netdev); } static void gmac_enable_irq(struct net_device *netdev, int enable) { struct gemini_ethernet_port *port = netdev_priv(netdev); struct gemini_ethernet *geth = port->geth; unsigned long flags; u32 val, mask; netdev_dbg(netdev, "%s device %d %s\n", __func__, netdev->dev_id, enable ? "enable" : "disable"); spin_lock_irqsave(&geth->irq_lock, flags); mask = GMAC0_IRQ0_2 << (netdev->dev_id * 2); val = readl(geth->base + GLOBAL_INTERRUPT_ENABLE_0_REG); val = enable ? (val | mask) : (val & ~mask); writel(val, geth->base + GLOBAL_INTERRUPT_ENABLE_0_REG); mask = DEFAULT_Q0_INT_BIT << netdev->dev_id; val = readl(geth->base + GLOBAL_INTERRUPT_ENABLE_1_REG); val = enable ? (val | mask) : (val & ~mask); writel(val, geth->base + GLOBAL_INTERRUPT_ENABLE_1_REG); mask = GMAC0_IRQ4_8 << (netdev->dev_id * 8); val = readl(geth->base + GLOBAL_INTERRUPT_ENABLE_4_REG); val = enable ? (val | mask) : (val & ~mask); writel(val, geth->base + GLOBAL_INTERRUPT_ENABLE_4_REG); spin_unlock_irqrestore(&geth->irq_lock, flags); } static void gmac_enable_rx_irq(struct net_device *netdev, int enable) { struct gemini_ethernet_port *port = netdev_priv(netdev); struct gemini_ethernet *geth = port->geth; unsigned long flags; u32 val, mask; netdev_dbg(netdev, "%s device %d %s\n", __func__, netdev->dev_id, enable ? "enable" : "disable"); spin_lock_irqsave(&geth->irq_lock, flags); mask = DEFAULT_Q0_INT_BIT << netdev->dev_id; val = readl(geth->base + GLOBAL_INTERRUPT_ENABLE_1_REG); val = enable ? (val | mask) : (val & ~mask); writel(val, geth->base + GLOBAL_INTERRUPT_ENABLE_1_REG); spin_unlock_irqrestore(&geth->irq_lock, flags); } static struct sk_buff *gmac_skb_if_good_frame(struct gemini_ethernet_port *port, union gmac_rxdesc_0 word0, unsigned int frame_len) { unsigned int rx_csum = word0.bits.chksum_status; unsigned int rx_status = word0.bits.status; struct sk_buff *skb = NULL; port->rx_stats[rx_status]++; port->rx_csum_stats[rx_csum]++; if (word0.bits.derr || word0.bits.perr || rx_status || frame_len < ETH_ZLEN || rx_csum >= RX_CHKSUM_IP_ERR_UNKNOWN) { port->stats.rx_errors++; if (frame_len < ETH_ZLEN || RX_ERROR_LENGTH(rx_status)) port->stats.rx_length_errors++; if (RX_ERROR_OVER(rx_status)) port->stats.rx_over_errors++; if (RX_ERROR_CRC(rx_status)) port->stats.rx_crc_errors++; if (RX_ERROR_FRAME(rx_status)) port->stats.rx_frame_errors++; return NULL; } skb = napi_get_frags(&port->napi); if (!skb) goto update_exit; if (rx_csum == RX_CHKSUM_IP_UDP_TCP_OK) skb->ip_summed = CHECKSUM_UNNECESSARY; update_exit: port->stats.rx_bytes += frame_len; port->stats.rx_packets++; return skb; } static unsigned int gmac_rx(struct net_device *netdev, unsigned int budget) { struct gemini_ethernet_port *port = netdev_priv(netdev); unsigned short m = (1 << port->rxq_order) - 1; struct gemini_ethernet *geth = port->geth; void __iomem *ptr_reg = port->rxq_rwptr; unsigned int frame_len, frag_len; struct gmac_rxdesc *rx = NULL; struct gmac_queue_page *gpage; static struct sk_buff *skb; union gmac_rxdesc_0 word0; union gmac_rxdesc_1 word1; union gmac_rxdesc_3 word3; struct page *page = NULL; unsigned int page_offs; unsigned short r, w; union dma_rwptr rw; dma_addr_t mapping; int frag_nr = 0; rw.bits32 = readl(ptr_reg); /* Reset interrupt as all packages until here are taken into account */ writel(DEFAULT_Q0_INT_BIT << netdev->dev_id, geth->base + GLOBAL_INTERRUPT_STATUS_1_REG); r = rw.bits.rptr; w = rw.bits.wptr; while (budget && w != r) { rx = port->rxq_ring + r; word0 = rx->word0; word1 = rx->word1; mapping = rx->word2.buf_adr; word3 = rx->word3; r++; r &= m; frag_len = word0.bits.buffer_size; frame_len = word1.bits.byte_count; page_offs = mapping & ~PAGE_MASK; if (!mapping) { netdev_err(netdev, "rxq[%u]: HW BUG: zero DMA desc\n", r); goto err_drop; } /* Freeq pointers are one page off */ gpage = gmac_get_queue_page(geth, port, mapping + PAGE_SIZE); if (!gpage) { dev_err(geth->dev, "could not find mapping\n"); continue; } page = gpage->page; if (word3.bits32 & SOF_BIT) { if (skb) { napi_free_frags(&port->napi); port->stats.rx_dropped++; } skb = gmac_skb_if_good_frame(port, word0, frame_len); if (!skb) goto err_drop; page_offs += NET_IP_ALIGN; frag_len -= NET_IP_ALIGN; frag_nr = 0; } else if (!skb) { put_page(page); continue; } if (word3.bits32 & EOF_BIT) frag_len = frame_len - skb->len; /* append page frag to skb */ if (frag_nr == MAX_SKB_FRAGS) goto err_drop; if (frag_len == 0) netdev_err(netdev, "Received fragment with len = 0\n"); skb_fill_page_desc(skb, frag_nr, page, page_offs, frag_len); skb->len += frag_len; skb->data_len += frag_len; skb->truesize += frag_len; frag_nr++; if (word3.bits32 & EOF_BIT) { napi_gro_frags(&port->napi); skb = NULL; --budget; } continue; err_drop: if (skb) { napi_free_frags(&port->napi); skb = NULL; } if (mapping) put_page(page); port->stats.rx_dropped++; } writew(r, ptr_reg); return budget; } static int gmac_napi_poll(struct napi_struct *napi, int budget) { struct gemini_ethernet_port *port = netdev_priv(napi->dev); struct gemini_ethernet *geth = port->geth; unsigned int freeq_threshold; unsigned int received; freeq_threshold = 1 << (geth->freeq_order - 1); u64_stats_update_begin(&port->rx_stats_syncp); received = gmac_rx(napi->dev, budget); if (received < budget) { napi_gro_flush(napi, false); napi_complete_done(napi, received); gmac_enable_rx_irq(napi->dev, 1); ++port->rx_napi_exits; } port->freeq_refill += (budget - received); if (port->freeq_refill > freeq_threshold) { port->freeq_refill -= freeq_threshold; geth_fill_freeq(geth, true); } u64_stats_update_end(&port->rx_stats_syncp); return received; } static void gmac_dump_dma_state(struct net_device *netdev) { struct gemini_ethernet_port *port = netdev_priv(netdev); struct gemini_ethernet *geth = port->geth; void __iomem *ptr_reg; u32 reg[5]; /* Interrupt status */ reg[0] = readl(geth->base + GLOBAL_INTERRUPT_STATUS_0_REG); reg[1] = readl(geth->base + GLOBAL_INTERRUPT_STATUS_1_REG); reg[2] = readl(geth->base + GLOBAL_INTERRUPT_STATUS_2_REG); reg[3] = readl(geth->base + GLOBAL_INTERRUPT_STATUS_3_REG); reg[4] = readl(geth->base + GLOBAL_INTERRUPT_STATUS_4_REG); netdev_err(netdev, "IRQ status: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", reg[0], reg[1], reg[2], reg[3], reg[4]); /* Interrupt enable */ reg[0] = readl(geth->base + GLOBAL_INTERRUPT_ENABLE_0_REG); reg[1] = readl(geth->base + GLOBAL_INTERRUPT_ENABLE_1_REG); reg[2] = readl(geth->base + GLOBAL_INTERRUPT_ENABLE_2_REG); reg[3] = readl(geth->base + GLOBAL_INTERRUPT_ENABLE_3_REG); reg[4] = readl(geth->base + GLOBAL_INTERRUPT_ENABLE_4_REG); netdev_err(netdev, "IRQ enable: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", reg[0], reg[1], reg[2], reg[3], reg[4]); /* RX DMA status */ reg[0] = readl(port->dma_base + GMAC_DMA_RX_FIRST_DESC_REG); reg[1] = readl(port->dma_base + GMAC_DMA_RX_CURR_DESC_REG); reg[2] = GET_RPTR(port->rxq_rwptr); reg[3] = GET_WPTR(port->rxq_rwptr); netdev_err(netdev, "RX DMA regs: 0x%08x 0x%08x, ptr: %u %u\n", reg[0], reg[1], reg[2], reg[3]); reg[0] = readl(port->dma_base + GMAC_DMA_RX_DESC_WORD0_REG); reg[1] = readl(port->dma_base + GMAC_DMA_RX_DESC_WORD1_REG); reg[2] = readl(port->dma_base + GMAC_DMA_RX_DESC_WORD2_REG); reg[3] = readl(port->dma_base + GMAC_DMA_RX_DESC_WORD3_REG); netdev_err(netdev, "RX DMA descriptor: 0x%08x 0x%08x 0x%08x 0x%08x\n", reg[0], reg[1], reg[2], reg[3]); /* TX DMA status */ ptr_reg = port->dma_base + GMAC_SW_TX_QUEUE0_PTR_REG; reg[0] = readl(port->dma_base + GMAC_DMA_TX_FIRST_DESC_REG); reg[1] = readl(port->dma_base + GMAC_DMA_TX_CURR_DESC_REG); reg[2] = GET_RPTR(ptr_reg); reg[3] = GET_WPTR(ptr_reg); netdev_err(netdev, "TX DMA regs: 0x%08x 0x%08x, ptr: %u %u\n", reg[0], reg[1], reg[2], reg[3]); reg[0] = readl(port->dma_base + GMAC_DMA_TX_DESC_WORD0_REG); reg[1] = readl(port->dma_base + GMAC_DMA_TX_DESC_WORD1_REG); reg[2] = readl(port->dma_base + GMAC_DMA_TX_DESC_WORD2_REG); reg[3] = readl(port->dma_base + GMAC_DMA_TX_DESC_WORD3_REG); netdev_err(netdev, "TX DMA descriptor: 0x%08x 0x%08x 0x%08x 0x%08x\n", reg[0], reg[1], reg[2], reg[3]); /* FREE queues status */ ptr_reg = geth->base + GLOBAL_SWFQ_RWPTR_REG; reg[0] = GET_RPTR(ptr_reg); reg[1] = GET_WPTR(ptr_reg); ptr_reg = geth->base + GLOBAL_HWFQ_RWPTR_REG; reg[2] = GET_RPTR(ptr_reg); reg[3] = GET_WPTR(ptr_reg); netdev_err(netdev, "FQ SW ptr: %u %u, HW ptr: %u %u\n", reg[0], reg[1], reg[2], reg[3]); } static void gmac_update_hw_stats(struct net_device *netdev) { struct gemini_ethernet_port *port = netdev_priv(netdev); unsigned int rx_discards, rx_mcast, rx_bcast; struct gemini_ethernet *geth = port->geth; unsigned long flags; spin_lock_irqsave(&geth->irq_lock, flags); u64_stats_update_begin(&port->ir_stats_syncp); rx_discards = readl(port->gmac_base + GMAC_IN_DISCARDS); port->hw_stats[0] += rx_discards; port->hw_stats[1] += readl(port->gmac_base + GMAC_IN_ERRORS); rx_mcast = readl(port->gmac_base + GMAC_IN_MCAST); port->hw_stats[2] += rx_mcast; rx_bcast = readl(port->gmac_base + GMAC_IN_BCAST); port->hw_stats[3] += rx_bcast; port->hw_stats[4] += readl(port->gmac_base + GMAC_IN_MAC1); port->hw_stats[5] += readl(port->gmac_base + GMAC_IN_MAC2); port->stats.rx_missed_errors += rx_discards; port->stats.multicast += rx_mcast; port->stats.multicast += rx_bcast; writel(GMAC0_MIB_INT_BIT << (netdev->dev_id * 8), geth->base + GLOBAL_INTERRUPT_STATUS_4_REG); u64_stats_update_end(&port->ir_stats_syncp); spin_unlock_irqrestore(&geth->irq_lock, flags); } /** * gmac_get_intr_flags() - get interrupt status flags for a port from * @netdev: the net device for the port to get flags from * @i: the interrupt status register 0..4 */ static u32 gmac_get_intr_flags(struct net_device *netdev, int i) { struct gemini_ethernet_port *port = netdev_priv(netdev); struct gemini_ethernet *geth = port->geth; void __iomem *irqif_reg, *irqen_reg; unsigned int offs, val; /* Calculate the offset using the stride of the status registers */ offs = i * (GLOBAL_INTERRUPT_STATUS_1_REG - GLOBAL_INTERRUPT_STATUS_0_REG); irqif_reg = geth->base + GLOBAL_INTERRUPT_STATUS_0_REG + offs; irqen_reg = geth->base + GLOBAL_INTERRUPT_ENABLE_0_REG + offs; val = readl(irqif_reg) & readl(irqen_reg); return val; } static enum hrtimer_restart gmac_coalesce_delay_expired(struct hrtimer *timer) { struct gemini_ethernet_port *port = container_of(timer, struct gemini_ethernet_port, rx_coalesce_timer); napi_schedule(&port->napi); return HRTIMER_NORESTART; } static irqreturn_t gmac_irq(int irq, void *data) { struct gemini_ethernet_port *port; struct net_device *netdev = data; struct gemini_ethernet *geth; u32 val, orr = 0; port = netdev_priv(netdev); geth = port->geth; val = gmac_get_intr_flags(netdev, 0); orr |= val; if (val & (GMAC0_IRQ0_2 << (netdev->dev_id * 2))) { /* Oh, crap */ netdev_err(netdev, "hw failure/sw bug\n"); gmac_dump_dma_state(netdev); /* don't know how to recover, just reduce losses */ gmac_enable_irq(netdev, 0); return IRQ_HANDLED; } if (val & (GMAC0_IRQ0_TXQ0_INTS << (netdev->dev_id * 6))) gmac_tx_irq(netdev, 0); val = gmac_get_intr_flags(netdev, 1); orr |= val; if (val & (DEFAULT_Q0_INT_BIT << netdev->dev_id)) { gmac_enable_rx_irq(netdev, 0); if (!port->rx_coalesce_nsecs) { napi_schedule(&port->napi); } else { ktime_t ktime; ktime = ktime_set(0, port->rx_coalesce_nsecs); hrtimer_start(&port->rx_coalesce_timer, ktime, HRTIMER_MODE_REL); } } val = gmac_get_intr_flags(netdev, 4); orr |= val; if (val & (GMAC0_MIB_INT_BIT << (netdev->dev_id * 8))) gmac_update_hw_stats(netdev); if (val & (GMAC0_RX_OVERRUN_INT_BIT << (netdev->dev_id * 8))) { writel(GMAC0_RXDERR_INT_BIT << (netdev->dev_id * 8), geth->base + GLOBAL_INTERRUPT_STATUS_4_REG); spin_lock(&geth->irq_lock); u64_stats_update_begin(&port->ir_stats_syncp); ++port->stats.rx_fifo_errors; u64_stats_update_end(&port->ir_stats_syncp); spin_unlock(&geth->irq_lock); } return orr ? IRQ_HANDLED : IRQ_NONE; } static void gmac_start_dma(struct gemini_ethernet_port *port) { void __iomem *dma_ctrl_reg = port->dma_base + GMAC_DMA_CTRL_REG; union gmac_dma_ctrl dma_ctrl; dma_ctrl.bits32 = readl(dma_ctrl_reg); dma_ctrl.bits.rd_enable = 1; dma_ctrl.bits.td_enable = 1; dma_ctrl.bits.loopback = 0; dma_ctrl.bits.drop_small_ack = 0; dma_ctrl.bits.rd_insert_bytes = NET_IP_ALIGN; dma_ctrl.bits.rd_prot = HPROT_DATA_CACHE | HPROT_PRIVILIGED; dma_ctrl.bits.rd_burst_size = HBURST_INCR8; dma_ctrl.bits.rd_bus = HSIZE_8; dma_ctrl.bits.td_prot = HPROT_DATA_CACHE; dma_ctrl.bits.td_burst_size = HBURST_INCR8; dma_ctrl.bits.td_bus = HSIZE_8; writel(dma_ctrl.bits32, dma_ctrl_reg); } static void gmac_stop_dma(struct gemini_ethernet_port *port) { void __iomem *dma_ctrl_reg = port->dma_base + GMAC_DMA_CTRL_REG; union gmac_dma_ctrl dma_ctrl; dma_ctrl.bits32 = readl(dma_ctrl_reg); dma_ctrl.bits.rd_enable = 0; dma_ctrl.bits.td_enable = 0; writel(dma_ctrl.bits32, dma_ctrl_reg); } static int gmac_open(struct net_device *netdev) { struct gemini_ethernet_port *port = netdev_priv(netdev); int err; if (!netdev->phydev) { err = gmac_setup_phy(netdev); if (err) { netif_err(port, ifup, netdev, "PHY init failed: %d\n", err); return err; } } err = request_irq(netdev->irq, gmac_irq, IRQF_SHARED, netdev->name, netdev); if (err) { netdev_err(netdev, "no IRQ\n"); return err; } netif_carrier_off(netdev); phy_start(netdev->phydev); err = geth_resize_freeq(port); /* It's fine if it's just busy, the other port has set up * the freeq in that case. */ if (err && (err != -EBUSY)) { netdev_err(netdev, "could not resize freeq\n"); goto err_stop_phy; } err = gmac_setup_rxq(netdev); if (err) { netdev_err(netdev, "could not setup RXQ\n"); goto err_stop_phy; } err = gmac_setup_txqs(netdev); if (err) { netdev_err(netdev, "could not setup TXQs\n"); gmac_cleanup_rxq(netdev); goto err_stop_phy; } napi_enable(&port->napi); gmac_start_dma(port); gmac_enable_irq(netdev, 1); gmac_enable_tx_rx(netdev); netif_tx_start_all_queues(netdev); hrtimer_init(&port->rx_coalesce_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); port->rx_coalesce_timer.function = &gmac_coalesce_delay_expired; netdev_dbg(netdev, "opened\n"); return 0; err_stop_phy: phy_stop(netdev->phydev); free_irq(netdev->irq, netdev); return err; } static int gmac_stop(struct net_device *netdev) { struct gemini_ethernet_port *port = netdev_priv(netdev); hrtimer_cancel(&port->rx_coalesce_timer); netif_tx_stop_all_queues(netdev); gmac_disable_tx_rx(netdev); gmac_stop_dma(port); napi_disable(&port->napi); gmac_enable_irq(netdev, 0); gmac_cleanup_rxq(netdev); gmac_cleanup_txqs(netdev); phy_stop(netdev->phydev); free_irq(netdev->irq, netdev); gmac_update_hw_stats(netdev); return 0; } static void gmac_set_rx_mode(struct net_device *netdev) { struct gemini_ethernet_port *port = netdev_priv(netdev); union gmac_rx_fltr filter = { .bits = { .broadcast = 1, .multicast = 1, .unicast = 1, } }; struct netdev_hw_addr *ha; unsigned int bit_nr; u32 mc_filter[2]; mc_filter[1] = 0; mc_filter[0] = 0; if (netdev->flags & IFF_PROMISC) { filter.bits.error = 1; filter.bits.promiscuous = 1; mc_filter[1] = ~0; mc_filter[0] = ~0; } else if (netdev->flags & IFF_ALLMULTI) { mc_filter[1] = ~0; mc_filter[0] = ~0; } else { netdev_for_each_mc_addr(ha, netdev) { bit_nr = ~crc32_le(~0, ha->addr, ETH_ALEN) & 0x3f; mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 0x1f); } } writel(mc_filter[0], port->gmac_base + GMAC_MCAST_FIL0); writel(mc_filter[1], port->gmac_base + GMAC_MCAST_FIL1); writel(filter.bits32, port->gmac_base + GMAC_RX_FLTR); } static void gmac_write_mac_address(struct net_device *netdev) { struct gemini_ethernet_port *port = netdev_priv(netdev); __le32 addr[3]; memset(addr, 0, sizeof(addr)); memcpy(addr, netdev->dev_addr, ETH_ALEN); writel(le32_to_cpu(addr[0]), port->gmac_base + GMAC_STA_ADD0); writel(le32_to_cpu(addr[1]), port->gmac_base + GMAC_STA_ADD1); writel(le32_to_cpu(addr[2]), port->gmac_base + GMAC_STA_ADD2); } static int gmac_set_mac_address(struct net_device *netdev, void *addr) { struct sockaddr *sa = addr; memcpy(netdev->dev_addr, sa->sa_data, ETH_ALEN); gmac_write_mac_address(netdev); return 0; } static void gmac_clear_hw_stats(struct net_device *netdev) { struct gemini_ethernet_port *port = netdev_priv(netdev); readl(port->gmac_base + GMAC_IN_DISCARDS); readl(port->gmac_base + GMAC_IN_ERRORS); readl(port->gmac_base + GMAC_IN_MCAST); readl(port->gmac_base + GMAC_IN_BCAST); readl(port->gmac_base + GMAC_IN_MAC1); readl(port->gmac_base + GMAC_IN_MAC2); } static void gmac_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) { struct gemini_ethernet_port *port = netdev_priv(netdev); unsigned int start; gmac_update_hw_stats(netdev); /* Racing with RX NAPI */ do { start = u64_stats_fetch_begin(&port->rx_stats_syncp); stats->rx_packets = port->stats.rx_packets; stats->rx_bytes = port->stats.rx_bytes; stats->rx_errors = port->stats.rx_errors; stats->rx_dropped = port->stats.rx_dropped; stats->rx_length_errors = port->stats.rx_length_errors; stats->rx_over_errors = port->stats.rx_over_errors; stats->rx_crc_errors = port->stats.rx_crc_errors; stats->rx_frame_errors = port->stats.rx_frame_errors; } while (u64_stats_fetch_retry(&port->rx_stats_syncp, start)); /* Racing with MIB and TX completion interrupts */ do { start = u64_stats_fetch_begin(&port->ir_stats_syncp); stats->tx_errors = port->stats.tx_errors; stats->tx_packets = port->stats.tx_packets; stats->tx_bytes = port->stats.tx_bytes; stats->multicast = port->stats.multicast; stats->rx_missed_errors = port->stats.rx_missed_errors; stats->rx_fifo_errors = port->stats.rx_fifo_errors; } while (u64_stats_fetch_retry(&port->ir_stats_syncp, start)); /* Racing with hard_start_xmit */ do { start = u64_stats_fetch_begin(&port->tx_stats_syncp); stats->tx_dropped = port->stats.tx_dropped; } while (u64_stats_fetch_retry(&port->tx_stats_syncp, start)); stats->rx_dropped += stats->rx_missed_errors; } static int gmac_change_mtu(struct net_device *netdev, int new_mtu) { int max_len = gmac_pick_rx_max_len(new_mtu); if (max_len < 0) return -EINVAL; gmac_disable_tx_rx(netdev); netdev->mtu = new_mtu; gmac_update_config0_reg(netdev, max_len << CONFIG0_MAXLEN_SHIFT, CONFIG0_MAXLEN_MASK); netdev_update_features(netdev); gmac_enable_tx_rx(netdev); return 0; } static netdev_features_t gmac_fix_features(struct net_device *netdev, netdev_features_t features) { if (netdev->mtu + ETH_HLEN + VLAN_HLEN > MTU_SIZE_BIT_MASK) features &= ~GMAC_OFFLOAD_FEATURES; return features; } static int gmac_set_features(struct net_device *netdev, netdev_features_t features) { struct gemini_ethernet_port *port = netdev_priv(netdev); int enable = features & NETIF_F_RXCSUM; unsigned long flags; u32 reg; spin_lock_irqsave(&port->config_lock, flags); reg = readl(port->gmac_base + GMAC_CONFIG0); reg = enable ? reg | CONFIG0_RX_CHKSUM : reg & ~CONFIG0_RX_CHKSUM; writel(reg, port->gmac_base + GMAC_CONFIG0); spin_unlock_irqrestore(&port->config_lock, flags); return 0; } static int gmac_get_sset_count(struct net_device *netdev, int sset) { return sset == ETH_SS_STATS ? GMAC_STATS_NUM : 0; } static void gmac_get_strings(struct net_device *netdev, u32 stringset, u8 *data) { if (stringset != ETH_SS_STATS) return; memcpy(data, gmac_stats_strings, sizeof(gmac_stats_strings)); } static void gmac_get_ethtool_stats(struct net_device *netdev, struct ethtool_stats *estats, u64 *values) { struct gemini_ethernet_port *port = netdev_priv(netdev); unsigned int start; u64 *p; int i; gmac_update_hw_stats(netdev); /* Racing with MIB interrupt */ do { p = values; start = u64_stats_fetch_begin(&port->ir_stats_syncp); for (i = 0; i < RX_STATS_NUM; i++) *p++ = port->hw_stats[i]; } while (u64_stats_fetch_retry(&port->ir_stats_syncp, start)); values = p; /* Racing with RX NAPI */ do { p = values; start = u64_stats_fetch_begin(&port->rx_stats_syncp); for (i = 0; i < RX_STATUS_NUM; i++) *p++ = port->rx_stats[i]; for (i = 0; i < RX_CHKSUM_NUM; i++) *p++ = port->rx_csum_stats[i]; *p++ = port->rx_napi_exits; } while (u64_stats_fetch_retry(&port->rx_stats_syncp, start)); values = p; /* Racing with TX start_xmit */ do { p = values; start = u64_stats_fetch_begin(&port->tx_stats_syncp); for (i = 0; i < TX_MAX_FRAGS; i++) { *values++ = port->tx_frag_stats[i]; port->tx_frag_stats[i] = 0; } *values++ = port->tx_frags_linearized; *values++ = port->tx_hw_csummed; } while (u64_stats_fetch_retry(&port->tx_stats_syncp, start)); } static int gmac_get_ksettings(struct net_device *netdev, struct ethtool_link_ksettings *cmd) { if (!netdev->phydev) return -ENXIO; phy_ethtool_ksettings_get(netdev->phydev, cmd); return 0; } static int gmac_set_ksettings(struct net_device *netdev, const struct ethtool_link_ksettings *cmd) { if (!netdev->phydev) return -ENXIO; return phy_ethtool_ksettings_set(netdev->phydev, cmd); } static int gmac_nway_reset(struct net_device *netdev) { if (!netdev->phydev) return -ENXIO; return phy_start_aneg(netdev->phydev); } static void gmac_get_pauseparam(struct net_device *netdev, struct ethtool_pauseparam *pparam) { struct gemini_ethernet_port *port = netdev_priv(netdev); union gmac_config0 config0; config0.bits32 = readl(port->gmac_base + GMAC_CONFIG0); pparam->rx_pause = config0.bits.rx_fc_en; pparam->tx_pause = config0.bits.tx_fc_en; pparam->autoneg = true; } static void gmac_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *rp) { struct gemini_ethernet_port *port = netdev_priv(netdev); union gmac_config0 config0; config0.bits32 = readl(port->gmac_base + GMAC_CONFIG0); rp->rx_max_pending = 1 << 15; rp->rx_mini_max_pending = 0; rp->rx_jumbo_max_pending = 0; rp->tx_max_pending = 1 << 15; rp->rx_pending = 1 << port->rxq_order; rp->rx_mini_pending = 0; rp->rx_jumbo_pending = 0; rp->tx_pending = 1 << port->txq_order; } static int gmac_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *rp) { struct gemini_ethernet_port *port = netdev_priv(netdev); int err = 0; if (netif_running(netdev)) return -EBUSY; if (rp->rx_pending) { port->rxq_order = min(15, ilog2(rp->rx_pending - 1) + 1); err = geth_resize_freeq(port); } if (rp->tx_pending) { port->txq_order = min(15, ilog2(rp->tx_pending - 1) + 1); port->irq_every_tx_packets = 1 << (port->txq_order - 2); } return err; } static int gmac_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecmd) { struct gemini_ethernet_port *port = netdev_priv(netdev); ecmd->rx_max_coalesced_frames = 1; ecmd->tx_max_coalesced_frames = port->irq_every_tx_packets; ecmd->rx_coalesce_usecs = port->rx_coalesce_nsecs / 1000; return 0; } static int gmac_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecmd) { struct gemini_ethernet_port *port = netdev_priv(netdev); if (ecmd->tx_max_coalesced_frames < 1) return -EINVAL; if (ecmd->tx_max_coalesced_frames >= 1 << port->txq_order) return -EINVAL; port->irq_every_tx_packets = ecmd->tx_max_coalesced_frames; port->rx_coalesce_nsecs = ecmd->rx_coalesce_usecs * 1000; return 0; } static u32 gmac_get_msglevel(struct net_device *netdev) { struct gemini_ethernet_port *port = netdev_priv(netdev); return port->msg_enable; } static void gmac_set_msglevel(struct net_device *netdev, u32 level) { struct gemini_ethernet_port *port = netdev_priv(netdev); port->msg_enable = level; } static void gmac_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *info) { strcpy(info->driver, DRV_NAME); strcpy(info->bus_info, netdev->dev_id ? "1" : "0"); } static const struct net_device_ops gmac_351x_ops = { .ndo_init = gmac_init, .ndo_uninit = gmac_uninit, .ndo_open = gmac_open, .ndo_stop = gmac_stop, .ndo_start_xmit = gmac_start_xmit, .ndo_tx_timeout = gmac_tx_timeout, .ndo_set_rx_mode = gmac_set_rx_mode, .ndo_set_mac_address = gmac_set_mac_address, .ndo_get_stats64 = gmac_get_stats64, .ndo_change_mtu = gmac_change_mtu, .ndo_fix_features = gmac_fix_features, .ndo_set_features = gmac_set_features, }; static const struct ethtool_ops gmac_351x_ethtool_ops = { .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS | ETHTOOL_COALESCE_MAX_FRAMES, .get_sset_count = gmac_get_sset_count, .get_strings = gmac_get_strings, .get_ethtool_stats = gmac_get_ethtool_stats, .get_link = ethtool_op_get_link, .get_link_ksettings = gmac_get_ksettings, .set_link_ksettings = gmac_set_ksettings, .nway_reset = gmac_nway_reset, .get_pauseparam = gmac_get_pauseparam, .get_ringparam = gmac_get_ringparam, .set_ringparam = gmac_set_ringparam, .get_coalesce = gmac_get_coalesce, .set_coalesce = gmac_set_coalesce, .get_msglevel = gmac_get_msglevel, .set_msglevel = gmac_set_msglevel, .get_drvinfo = gmac_get_drvinfo, }; static irqreturn_t gemini_port_irq_thread(int irq, void *data) { unsigned long irqmask = SWFQ_EMPTY_INT_BIT; struct gemini_ethernet_port *port = data; struct gemini_ethernet *geth; unsigned long flags; geth = port->geth; /* The queue is half empty so refill it */ geth_fill_freeq(geth, true); spin_lock_irqsave(&geth->irq_lock, flags); /* ACK queue interrupt */ writel(irqmask, geth->base + GLOBAL_INTERRUPT_STATUS_4_REG); /* Enable queue interrupt again */ irqmask |= readl(geth->base + GLOBAL_INTERRUPT_ENABLE_4_REG); writel(irqmask, geth->base + GLOBAL_INTERRUPT_ENABLE_4_REG); spin_unlock_irqrestore(&geth->irq_lock, flags); return IRQ_HANDLED; } static irqreturn_t gemini_port_irq(int irq, void *data) { struct gemini_ethernet_port *port = data; struct gemini_ethernet *geth; irqreturn_t ret = IRQ_NONE; u32 val, en; geth = port->geth; spin_lock(&geth->irq_lock); val = readl(geth->base + GLOBAL_INTERRUPT_STATUS_4_REG); en = readl(geth->base + GLOBAL_INTERRUPT_ENABLE_4_REG); if (val & en & SWFQ_EMPTY_INT_BIT) { /* Disable the queue empty interrupt while we work on * processing the queue. Also disable overrun interrupts * as there is not much we can do about it here. */ en &= ~(SWFQ_EMPTY_INT_BIT | GMAC0_RX_OVERRUN_INT_BIT | GMAC1_RX_OVERRUN_INT_BIT); writel(en, geth->base + GLOBAL_INTERRUPT_ENABLE_4_REG); ret = IRQ_WAKE_THREAD; } spin_unlock(&geth->irq_lock); return ret; } static void gemini_port_remove(struct gemini_ethernet_port *port) { if (port->netdev) unregister_netdev(port->netdev); clk_disable_unprepare(port->pclk); geth_cleanup_freeq(port->geth); } static void gemini_ethernet_init(struct gemini_ethernet *geth) { /* Only do this once both ports are online */ if (geth->initialized) return; if (geth->port0 && geth->port1) geth->initialized = true; else return; writel(0, geth->base + GLOBAL_INTERRUPT_ENABLE_0_REG); writel(0, geth->base + GLOBAL_INTERRUPT_ENABLE_1_REG); writel(0, geth->base + GLOBAL_INTERRUPT_ENABLE_2_REG); writel(0, geth->base + GLOBAL_INTERRUPT_ENABLE_3_REG); writel(0, geth->base + GLOBAL_INTERRUPT_ENABLE_4_REG); /* Interrupt config: * * GMAC0 intr bits ------> int0 ----> eth0 * GMAC1 intr bits ------> int1 ----> eth1 * TOE intr -------------> int1 ----> eth1 * Classification Intr --> int0 ----> eth0 * Default Q0 -----------> int0 ----> eth0 * Default Q1 -----------> int1 ----> eth1 * FreeQ intr -----------> int1 ----> eth1 */ writel(0xCCFC0FC0, geth->base + GLOBAL_INTERRUPT_SELECT_0_REG); writel(0x00F00002, geth->base + GLOBAL_INTERRUPT_SELECT_1_REG); writel(0xFFFFFFFF, geth->base + GLOBAL_INTERRUPT_SELECT_2_REG); writel(0xFFFFFFFF, geth->base + GLOBAL_INTERRUPT_SELECT_3_REG); writel(0xFF000003, geth->base + GLOBAL_INTERRUPT_SELECT_4_REG); /* edge-triggered interrupts packed to level-triggered one... */ writel(~0, geth->base + GLOBAL_INTERRUPT_STATUS_0_REG); writel(~0, geth->base + GLOBAL_INTERRUPT_STATUS_1_REG); writel(~0, geth->base + GLOBAL_INTERRUPT_STATUS_2_REG); writel(~0, geth->base + GLOBAL_INTERRUPT_STATUS_3_REG); writel(~0, geth->base + GLOBAL_INTERRUPT_STATUS_4_REG); /* Set up queue */ writel(0, geth->base + GLOBAL_SW_FREEQ_BASE_SIZE_REG); writel(0, geth->base + GLOBAL_HW_FREEQ_BASE_SIZE_REG); writel(0, geth->base + GLOBAL_SWFQ_RWPTR_REG); writel(0, geth->base + GLOBAL_HWFQ_RWPTR_REG); geth->freeq_frag_order = DEFAULT_RX_BUF_ORDER; /* This makes the queue resize on probe() so that we * set up and enable the queue IRQ. FIXME: fragile. */ geth->freeq_order = 1; } static void gemini_port_save_mac_addr(struct gemini_ethernet_port *port) { port->mac_addr[0] = cpu_to_le32(readl(port->gmac_base + GMAC_STA_ADD0)); port->mac_addr[1] = cpu_to_le32(readl(port->gmac_base + GMAC_STA_ADD1)); port->mac_addr[2] = cpu_to_le32(readl(port->gmac_base + GMAC_STA_ADD2)); } static int gemini_ethernet_port_probe(struct platform_device *pdev) { char *port_names[2] = { "ethernet0", "ethernet1" }; struct gemini_ethernet_port *port; struct device *dev = &pdev->dev; struct gemini_ethernet *geth; struct net_device *netdev; struct resource *gmacres; struct resource *dmares; struct device *parent; unsigned int id; int irq; int ret; parent = dev->parent; geth = dev_get_drvdata(parent); if (!strcmp(dev_name(dev), "60008000.ethernet-port")) id = 0; else if (!strcmp(dev_name(dev), "6000c000.ethernet-port")) id = 1; else return -ENODEV; dev_info(dev, "probe %s ID %d\n", dev_name(dev), id); netdev = devm_alloc_etherdev_mqs(dev, sizeof(*port), TX_QUEUE_NUM, TX_QUEUE_NUM); if (!netdev) { dev_err(dev, "Can't allocate ethernet device #%d\n", id); return -ENOMEM; } port = netdev_priv(netdev); SET_NETDEV_DEV(netdev, dev); port->netdev = netdev; port->id = id; port->geth = geth; port->dev = dev; port->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); /* DMA memory */ dmares = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!dmares) { dev_err(dev, "no DMA resource\n"); return -ENODEV; } port->dma_base = devm_ioremap_resource(dev, dmares); if (IS_ERR(port->dma_base)) return PTR_ERR(port->dma_base); /* GMAC config memory */ gmacres = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (!gmacres) { dev_err(dev, "no GMAC resource\n"); return -ENODEV; } port->gmac_base = devm_ioremap_resource(dev, gmacres); if (IS_ERR(port->gmac_base)) return PTR_ERR(port->gmac_base); /* Interrupt */ irq = platform_get_irq(pdev, 0); if (irq <= 0) return irq ? irq : -ENODEV; port->irq = irq; /* Clock the port */ port->pclk = devm_clk_get(dev, "PCLK"); if (IS_ERR(port->pclk)) { dev_err(dev, "no PCLK\n"); return PTR_ERR(port->pclk); } ret = clk_prepare_enable(port->pclk); if (ret) return ret; /* Maybe there is a nice ethernet address we should use */ gemini_port_save_mac_addr(port); /* Reset the port */ port->reset = devm_reset_control_get_exclusive(dev, NULL); if (IS_ERR(port->reset)) { dev_err(dev, "no reset\n"); ret = PTR_ERR(port->reset); goto unprepare; } reset_control_reset(port->reset); usleep_range(100, 500); /* Assign pointer in the main state container */ if (!id) geth->port0 = port; else geth->port1 = port; /* This will just be done once both ports are up and reset */ gemini_ethernet_init(geth); platform_set_drvdata(pdev, port); /* Set up and register the netdev */ netdev->dev_id = port->id; netdev->irq = irq; netdev->netdev_ops = &gmac_351x_ops; netdev->ethtool_ops = &gmac_351x_ethtool_ops; spin_lock_init(&port->config_lock); gmac_clear_hw_stats(netdev); netdev->hw_features = GMAC_OFFLOAD_FEATURES; netdev->features |= GMAC_OFFLOAD_FEATURES | NETIF_F_GRO; /* We can handle jumbo frames up to 10236 bytes so, let's accept * payloads of 10236 bytes minus VLAN and ethernet header */ netdev->min_mtu = ETH_MIN_MTU; netdev->max_mtu = 10236 - VLAN_ETH_HLEN; port->freeq_refill = 0; netif_napi_add(netdev, &port->napi, gmac_napi_poll, DEFAULT_NAPI_WEIGHT); if (is_valid_ether_addr((void *)port->mac_addr)) { memcpy(netdev->dev_addr, port->mac_addr, ETH_ALEN); } else { dev_dbg(dev, "ethernet address 0x%08x%08x%08x invalid\n", port->mac_addr[0], port->mac_addr[1], port->mac_addr[2]); dev_info(dev, "using a random ethernet address\n"); eth_random_addr(netdev->dev_addr); } gmac_write_mac_address(netdev); ret = devm_request_threaded_irq(port->dev, port->irq, gemini_port_irq, gemini_port_irq_thread, IRQF_SHARED, port_names[port->id], port); if (ret) goto unprepare; ret = register_netdev(netdev); if (ret) goto unprepare; netdev_info(netdev, "irq %d, DMA @ 0x%pap, GMAC @ 0x%pap\n", port->irq, &dmares->start, &gmacres->start); ret = gmac_setup_phy(netdev); if (ret) netdev_info(netdev, "PHY init failed, deferring to ifup time\n"); return 0; unprepare: clk_disable_unprepare(port->pclk); return ret; } static int gemini_ethernet_port_remove(struct platform_device *pdev) { struct gemini_ethernet_port *port = platform_get_drvdata(pdev); gemini_port_remove(port); return 0; } static const struct of_device_id gemini_ethernet_port_of_match[] = { { .compatible = "cortina,gemini-ethernet-port", }, {}, }; MODULE_DEVICE_TABLE(of, gemini_ethernet_port_of_match); static struct platform_driver gemini_ethernet_port_driver = { .driver = { .name = "gemini-ethernet-port", .of_match_table = of_match_ptr(gemini_ethernet_port_of_match), }, .probe = gemini_ethernet_port_probe, .remove = gemini_ethernet_port_remove, }; static int gemini_ethernet_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct gemini_ethernet *geth; unsigned int retry = 5; struct resource *res; u32 val; /* Global registers */ geth = devm_kzalloc(dev, sizeof(*geth), GFP_KERNEL); if (!geth) return -ENOMEM; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) return -ENODEV; geth->base = devm_ioremap_resource(dev, res); if (IS_ERR(geth->base)) return PTR_ERR(geth->base); geth->dev = dev; /* Wait for ports to stabilize */ do { udelay(2); val = readl(geth->base + GLOBAL_TOE_VERSION_REG); barrier(); } while (!val && --retry); if (!retry) { dev_err(dev, "failed to reset ethernet\n"); return -EIO; } dev_info(dev, "Ethernet device ID: 0x%03x, revision 0x%01x\n", (val >> 4) & 0xFFFU, val & 0xFU); spin_lock_init(&geth->irq_lock); spin_lock_init(&geth->freeq_lock); /* The children will use this */ platform_set_drvdata(pdev, geth); /* Spawn child devices for the two ports */ return devm_of_platform_populate(dev); } static int gemini_ethernet_remove(struct platform_device *pdev) { struct gemini_ethernet *geth = platform_get_drvdata(pdev); geth_cleanup_freeq(geth); geth->initialized = false; return 0; } static const struct of_device_id gemini_ethernet_of_match[] = { { .compatible = "cortina,gemini-ethernet", }, {}, }; MODULE_DEVICE_TABLE(of, gemini_ethernet_of_match); static struct platform_driver gemini_ethernet_driver = { .driver = { .name = DRV_NAME, .of_match_table = of_match_ptr(gemini_ethernet_of_match), }, .probe = gemini_ethernet_probe, .remove = gemini_ethernet_remove, }; static int __init gemini_ethernet_module_init(void) { int ret; ret = platform_driver_register(&gemini_ethernet_port_driver); if (ret) return ret; ret = platform_driver_register(&gemini_ethernet_driver); if (ret) { platform_driver_unregister(&gemini_ethernet_port_driver); return ret; } return 0; } module_init(gemini_ethernet_module_init); static void __exit gemini_ethernet_module_exit(void) { platform_driver_unregister(&gemini_ethernet_driver); platform_driver_unregister(&gemini_ethernet_port_driver); } module_exit(gemini_ethernet_module_exit); MODULE_AUTHOR("Linus Walleij <linus.walleij@linaro.org>"); MODULE_DESCRIPTION("StorLink SL351x (Gemini) ethernet driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:" DRV_NAME);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1