Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Igal Liberman | 12299 | 97.63% | 4 | 18.18% |
Madalin Bucur | 213 | 1.69% | 9 | 40.91% |
Florinel Iordache | 39 | 0.31% | 2 | 9.09% |
Tudor Laurentiu | 35 | 0.28% | 1 | 4.55% |
Colin Ian King | 4 | 0.03% | 1 | 4.55% |
Rob Herring | 3 | 0.02% | 1 | 4.55% |
Nicolas Saenz Julienne | 2 | 0.02% | 1 | 4.55% |
Masanari Iida | 1 | 0.01% | 1 | 4.55% |
Chris Packham | 1 | 0.01% | 1 | 4.55% |
Yangbo Lu | 1 | 0.01% | 1 | 4.55% |
Total | 12598 | 22 |
/* * Copyright 2008-2015 Freescale Semiconductor Inc. * Copyright 2020 NXP * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Freescale Semiconductor nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * * ALTERNATIVELY, this software may be distributed under the terms of the * GNU General Public License ("GPL") as published by the Free Software * Foundation, either version 2 of that License or (at your option) any * later version. * * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/fsl/guts.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/module.h> #include <linux/of_platform.h> #include <linux/clk.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/interrupt.h> #include <linux/libfdt_env.h> #include "fman.h" #include "fman_muram.h" #include "fman_keygen.h" /* General defines */ #define FMAN_LIODN_TBL 64 /* size of LIODN table */ #define MAX_NUM_OF_MACS 10 #define FM_NUM_OF_FMAN_CTRL_EVENT_REGS 4 #define BASE_RX_PORTID 0x08 #define BASE_TX_PORTID 0x28 /* Modules registers offsets */ #define BMI_OFFSET 0x00080000 #define QMI_OFFSET 0x00080400 #define KG_OFFSET 0x000C1000 #define DMA_OFFSET 0x000C2000 #define FPM_OFFSET 0x000C3000 #define IMEM_OFFSET 0x000C4000 #define HWP_OFFSET 0x000C7000 #define CGP_OFFSET 0x000DB000 /* Exceptions bit map */ #define EX_DMA_BUS_ERROR 0x80000000 #define EX_DMA_READ_ECC 0x40000000 #define EX_DMA_SYSTEM_WRITE_ECC 0x20000000 #define EX_DMA_FM_WRITE_ECC 0x10000000 #define EX_FPM_STALL_ON_TASKS 0x08000000 #define EX_FPM_SINGLE_ECC 0x04000000 #define EX_FPM_DOUBLE_ECC 0x02000000 #define EX_QMI_SINGLE_ECC 0x01000000 #define EX_QMI_DEQ_FROM_UNKNOWN_PORTID 0x00800000 #define EX_QMI_DOUBLE_ECC 0x00400000 #define EX_BMI_LIST_RAM_ECC 0x00200000 #define EX_BMI_STORAGE_PROFILE_ECC 0x00100000 #define EX_BMI_STATISTICS_RAM_ECC 0x00080000 #define EX_IRAM_ECC 0x00040000 #define EX_MURAM_ECC 0x00020000 #define EX_BMI_DISPATCH_RAM_ECC 0x00010000 #define EX_DMA_SINGLE_PORT_ECC 0x00008000 /* DMA defines */ /* masks */ #define DMA_MODE_BER 0x00200000 #define DMA_MODE_ECC 0x00000020 #define DMA_MODE_SECURE_PROT 0x00000800 #define DMA_MODE_AXI_DBG_MASK 0x0F000000 #define DMA_TRANSFER_PORTID_MASK 0xFF000000 #define DMA_TRANSFER_TNUM_MASK 0x00FF0000 #define DMA_TRANSFER_LIODN_MASK 0x00000FFF #define DMA_STATUS_BUS_ERR 0x08000000 #define DMA_STATUS_READ_ECC 0x04000000 #define DMA_STATUS_SYSTEM_WRITE_ECC 0x02000000 #define DMA_STATUS_FM_WRITE_ECC 0x01000000 #define DMA_STATUS_FM_SPDAT_ECC 0x00080000 #define DMA_MODE_CACHE_OR_SHIFT 30 #define DMA_MODE_AXI_DBG_SHIFT 24 #define DMA_MODE_CEN_SHIFT 13 #define DMA_MODE_CEN_MASK 0x00000007 #define DMA_MODE_DBG_SHIFT 7 #define DMA_MODE_AID_MODE_SHIFT 4 #define DMA_THRESH_COMMQ_SHIFT 24 #define DMA_THRESH_READ_INT_BUF_SHIFT 16 #define DMA_THRESH_READ_INT_BUF_MASK 0x0000003f #define DMA_THRESH_WRITE_INT_BUF_MASK 0x0000003f #define DMA_TRANSFER_PORTID_SHIFT 24 #define DMA_TRANSFER_TNUM_SHIFT 16 #define DMA_CAM_SIZEOF_ENTRY 0x40 #define DMA_CAM_UNITS 8 #define DMA_LIODN_SHIFT 16 #define DMA_LIODN_BASE_MASK 0x00000FFF /* FPM defines */ #define FPM_EV_MASK_DOUBLE_ECC 0x80000000 #define FPM_EV_MASK_STALL 0x40000000 #define FPM_EV_MASK_SINGLE_ECC 0x20000000 #define FPM_EV_MASK_RELEASE_FM 0x00010000 #define FPM_EV_MASK_DOUBLE_ECC_EN 0x00008000 #define FPM_EV_MASK_STALL_EN 0x00004000 #define FPM_EV_MASK_SINGLE_ECC_EN 0x00002000 #define FPM_EV_MASK_EXTERNAL_HALT 0x00000008 #define FPM_EV_MASK_ECC_ERR_HALT 0x00000004 #define FPM_RAM_MURAM_ECC 0x00008000 #define FPM_RAM_IRAM_ECC 0x00004000 #define FPM_IRAM_ECC_ERR_EX_EN 0x00020000 #define FPM_MURAM_ECC_ERR_EX_EN 0x00040000 #define FPM_RAM_IRAM_ECC_EN 0x40000000 #define FPM_RAM_RAMS_ECC_EN 0x80000000 #define FPM_RAM_RAMS_ECC_EN_SRC_SEL 0x08000000 #define FPM_REV1_MAJOR_MASK 0x0000FF00 #define FPM_REV1_MINOR_MASK 0x000000FF #define FPM_DISP_LIMIT_SHIFT 24 #define FPM_PRT_FM_CTL1 0x00000001 #define FPM_PRT_FM_CTL2 0x00000002 #define FPM_PORT_FM_CTL_PORTID_SHIFT 24 #define FPM_PRC_ORA_FM_CTL_SEL_SHIFT 16 #define FPM_THR1_PRS_SHIFT 24 #define FPM_THR1_KG_SHIFT 16 #define FPM_THR1_PLCR_SHIFT 8 #define FPM_THR1_BMI_SHIFT 0 #define FPM_THR2_QMI_ENQ_SHIFT 24 #define FPM_THR2_QMI_DEQ_SHIFT 0 #define FPM_THR2_FM_CTL1_SHIFT 16 #define FPM_THR2_FM_CTL2_SHIFT 8 #define FPM_EV_MASK_CAT_ERR_SHIFT 1 #define FPM_EV_MASK_DMA_ERR_SHIFT 0 #define FPM_REV1_MAJOR_SHIFT 8 #define FPM_RSTC_FM_RESET 0x80000000 #define FPM_RSTC_MAC0_RESET 0x40000000 #define FPM_RSTC_MAC1_RESET 0x20000000 #define FPM_RSTC_MAC2_RESET 0x10000000 #define FPM_RSTC_MAC3_RESET 0x08000000 #define FPM_RSTC_MAC8_RESET 0x04000000 #define FPM_RSTC_MAC4_RESET 0x02000000 #define FPM_RSTC_MAC5_RESET 0x01000000 #define FPM_RSTC_MAC6_RESET 0x00800000 #define FPM_RSTC_MAC7_RESET 0x00400000 #define FPM_RSTC_MAC9_RESET 0x00200000 #define FPM_TS_INT_SHIFT 16 #define FPM_TS_CTL_EN 0x80000000 /* BMI defines */ #define BMI_INIT_START 0x80000000 #define BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC 0x80000000 #define BMI_ERR_INTR_EN_LIST_RAM_ECC 0x40000000 #define BMI_ERR_INTR_EN_STATISTICS_RAM_ECC 0x20000000 #define BMI_ERR_INTR_EN_DISPATCH_RAM_ECC 0x10000000 #define BMI_NUM_OF_TASKS_MASK 0x3F000000 #define BMI_NUM_OF_EXTRA_TASKS_MASK 0x000F0000 #define BMI_NUM_OF_DMAS_MASK 0x00000F00 #define BMI_NUM_OF_EXTRA_DMAS_MASK 0x0000000F #define BMI_FIFO_SIZE_MASK 0x000003FF #define BMI_EXTRA_FIFO_SIZE_MASK 0x03FF0000 #define BMI_CFG2_DMAS_MASK 0x0000003F #define BMI_CFG2_TASKS_MASK 0x0000003F #define BMI_CFG2_TASKS_SHIFT 16 #define BMI_CFG2_DMAS_SHIFT 0 #define BMI_CFG1_FIFO_SIZE_SHIFT 16 #define BMI_NUM_OF_TASKS_SHIFT 24 #define BMI_EXTRA_NUM_OF_TASKS_SHIFT 16 #define BMI_NUM_OF_DMAS_SHIFT 8 #define BMI_EXTRA_NUM_OF_DMAS_SHIFT 0 #define BMI_FIFO_ALIGN 0x100 #define BMI_EXTRA_FIFO_SIZE_SHIFT 16 /* QMI defines */ #define QMI_CFG_ENQ_EN 0x80000000 #define QMI_CFG_DEQ_EN 0x40000000 #define QMI_CFG_EN_COUNTERS 0x10000000 #define QMI_CFG_DEQ_MASK 0x0000003F #define QMI_CFG_ENQ_MASK 0x00003F00 #define QMI_CFG_ENQ_SHIFT 8 #define QMI_ERR_INTR_EN_DOUBLE_ECC 0x80000000 #define QMI_ERR_INTR_EN_DEQ_FROM_DEF 0x40000000 #define QMI_INTR_EN_SINGLE_ECC 0x80000000 #define QMI_GS_HALT_NOT_BUSY 0x00000002 /* HWP defines */ #define HWP_RPIMAC_PEN 0x00000001 /* IRAM defines */ #define IRAM_IADD_AIE 0x80000000 #define IRAM_READY 0x80000000 /* Default values */ #define DEFAULT_CATASTROPHIC_ERR 0 #define DEFAULT_DMA_ERR 0 #define DEFAULT_AID_MODE FMAN_DMA_AID_OUT_TNUM #define DEFAULT_DMA_COMM_Q_LOW 0x2A #define DEFAULT_DMA_COMM_Q_HIGH 0x3F #define DEFAULT_CACHE_OVERRIDE 0 #define DEFAULT_DMA_CAM_NUM_OF_ENTRIES 64 #define DEFAULT_DMA_DBG_CNT_MODE 0 #define DEFAULT_DMA_SOS_EMERGENCY 0 #define DEFAULT_DMA_WATCHDOG 0 #define DEFAULT_DISP_LIMIT 0 #define DEFAULT_PRS_DISP_TH 16 #define DEFAULT_PLCR_DISP_TH 16 #define DEFAULT_KG_DISP_TH 16 #define DEFAULT_BMI_DISP_TH 16 #define DEFAULT_QMI_ENQ_DISP_TH 16 #define DEFAULT_QMI_DEQ_DISP_TH 16 #define DEFAULT_FM_CTL1_DISP_TH 16 #define DEFAULT_FM_CTL2_DISP_TH 16 #define DFLT_AXI_DBG_NUM_OF_BEATS 1 #define DFLT_DMA_READ_INT_BUF_LOW(dma_thresh_max_buf) \ ((dma_thresh_max_buf + 1) / 2) #define DFLT_DMA_READ_INT_BUF_HIGH(dma_thresh_max_buf) \ ((dma_thresh_max_buf + 1) * 3 / 4) #define DFLT_DMA_WRITE_INT_BUF_LOW(dma_thresh_max_buf) \ ((dma_thresh_max_buf + 1) / 2) #define DFLT_DMA_WRITE_INT_BUF_HIGH(dma_thresh_max_buf)\ ((dma_thresh_max_buf + 1) * 3 / 4) #define DMA_COMM_Q_LOW_FMAN_V3 0x2A #define DMA_COMM_Q_LOW_FMAN_V2(dma_thresh_max_commq) \ ((dma_thresh_max_commq + 1) / 2) #define DFLT_DMA_COMM_Q_LOW(major, dma_thresh_max_commq) \ ((major == 6) ? DMA_COMM_Q_LOW_FMAN_V3 : \ DMA_COMM_Q_LOW_FMAN_V2(dma_thresh_max_commq)) #define DMA_COMM_Q_HIGH_FMAN_V3 0x3f #define DMA_COMM_Q_HIGH_FMAN_V2(dma_thresh_max_commq) \ ((dma_thresh_max_commq + 1) * 3 / 4) #define DFLT_DMA_COMM_Q_HIGH(major, dma_thresh_max_commq) \ ((major == 6) ? DMA_COMM_Q_HIGH_FMAN_V3 : \ DMA_COMM_Q_HIGH_FMAN_V2(dma_thresh_max_commq)) #define TOTAL_NUM_OF_TASKS_FMAN_V3L 59 #define TOTAL_NUM_OF_TASKS_FMAN_V3H 124 #define DFLT_TOTAL_NUM_OF_TASKS(major, minor, bmi_max_num_of_tasks) \ ((major == 6) ? ((minor == 1 || minor == 4) ? \ TOTAL_NUM_OF_TASKS_FMAN_V3L : TOTAL_NUM_OF_TASKS_FMAN_V3H) : \ bmi_max_num_of_tasks) #define DMA_CAM_NUM_OF_ENTRIES_FMAN_V3 64 #define DMA_CAM_NUM_OF_ENTRIES_FMAN_V2 32 #define DFLT_DMA_CAM_NUM_OF_ENTRIES(major) \ (major == 6 ? DMA_CAM_NUM_OF_ENTRIES_FMAN_V3 : \ DMA_CAM_NUM_OF_ENTRIES_FMAN_V2) #define FM_TIMESTAMP_1_USEC_BIT 8 /* Defines used for enabling/disabling FMan interrupts */ #define ERR_INTR_EN_DMA 0x00010000 #define ERR_INTR_EN_FPM 0x80000000 #define ERR_INTR_EN_BMI 0x00800000 #define ERR_INTR_EN_QMI 0x00400000 #define ERR_INTR_EN_MURAM 0x00040000 #define ERR_INTR_EN_MAC0 0x00004000 #define ERR_INTR_EN_MAC1 0x00002000 #define ERR_INTR_EN_MAC2 0x00001000 #define ERR_INTR_EN_MAC3 0x00000800 #define ERR_INTR_EN_MAC4 0x00000400 #define ERR_INTR_EN_MAC5 0x00000200 #define ERR_INTR_EN_MAC6 0x00000100 #define ERR_INTR_EN_MAC7 0x00000080 #define ERR_INTR_EN_MAC8 0x00008000 #define ERR_INTR_EN_MAC9 0x00000040 #define INTR_EN_QMI 0x40000000 #define INTR_EN_MAC0 0x00080000 #define INTR_EN_MAC1 0x00040000 #define INTR_EN_MAC2 0x00020000 #define INTR_EN_MAC3 0x00010000 #define INTR_EN_MAC4 0x00000040 #define INTR_EN_MAC5 0x00000020 #define INTR_EN_MAC6 0x00000008 #define INTR_EN_MAC7 0x00000002 #define INTR_EN_MAC8 0x00200000 #define INTR_EN_MAC9 0x00100000 #define INTR_EN_REV0 0x00008000 #define INTR_EN_REV1 0x00004000 #define INTR_EN_REV2 0x00002000 #define INTR_EN_REV3 0x00001000 #define INTR_EN_TMR 0x01000000 enum fman_dma_aid_mode { FMAN_DMA_AID_OUT_PORT_ID = 0, /* 4 LSB of PORT_ID */ FMAN_DMA_AID_OUT_TNUM /* 4 LSB of TNUM */ }; struct fman_iram_regs { u32 iadd; /* FM IRAM instruction address register */ u32 idata; /* FM IRAM instruction data register */ u32 itcfg; /* FM IRAM timing config register */ u32 iready; /* FM IRAM ready register */ }; struct fman_fpm_regs { u32 fmfp_tnc; /* FPM TNUM Control 0x00 */ u32 fmfp_prc; /* FPM Port_ID FmCtl Association 0x04 */ u32 fmfp_brkc; /* FPM Breakpoint Control 0x08 */ u32 fmfp_mxd; /* FPM Flush Control 0x0c */ u32 fmfp_dist1; /* FPM Dispatch Thresholds1 0x10 */ u32 fmfp_dist2; /* FPM Dispatch Thresholds2 0x14 */ u32 fm_epi; /* FM Error Pending Interrupts 0x18 */ u32 fm_rie; /* FM Error Interrupt Enable 0x1c */ u32 fmfp_fcev[4]; /* FPM FMan-Controller Event 1-4 0x20-0x2f */ u32 res0030[4]; /* res 0x30 - 0x3f */ u32 fmfp_cee[4]; /* PM FMan-Controller Event 1-4 0x40-0x4f */ u32 res0050[4]; /* res 0x50-0x5f */ u32 fmfp_tsc1; /* FPM TimeStamp Control1 0x60 */ u32 fmfp_tsc2; /* FPM TimeStamp Control2 0x64 */ u32 fmfp_tsp; /* FPM Time Stamp 0x68 */ u32 fmfp_tsf; /* FPM Time Stamp Fraction 0x6c */ u32 fm_rcr; /* FM Rams Control 0x70 */ u32 fmfp_extc; /* FPM External Requests Control 0x74 */ u32 fmfp_ext1; /* FPM External Requests Config1 0x78 */ u32 fmfp_ext2; /* FPM External Requests Config2 0x7c */ u32 fmfp_drd[16]; /* FPM Data_Ram Data 0-15 0x80 - 0xbf */ u32 fmfp_dra; /* FPM Data Ram Access 0xc0 */ u32 fm_ip_rev_1; /* FM IP Block Revision 1 0xc4 */ u32 fm_ip_rev_2; /* FM IP Block Revision 2 0xc8 */ u32 fm_rstc; /* FM Reset Command 0xcc */ u32 fm_cld; /* FM Classifier Debug 0xd0 */ u32 fm_npi; /* FM Normal Pending Interrupts 0xd4 */ u32 fmfp_exte; /* FPM External Requests Enable 0xd8 */ u32 fmfp_ee; /* FPM Event&Mask 0xdc */ u32 fmfp_cev[4]; /* FPM CPU Event 1-4 0xe0-0xef */ u32 res00f0[4]; /* res 0xf0-0xff */ u32 fmfp_ps[50]; /* FPM Port Status 0x100-0x1c7 */ u32 res01c8[14]; /* res 0x1c8-0x1ff */ u32 fmfp_clfabc; /* FPM CLFABC 0x200 */ u32 fmfp_clfcc; /* FPM CLFCC 0x204 */ u32 fmfp_clfaval; /* FPM CLFAVAL 0x208 */ u32 fmfp_clfbval; /* FPM CLFBVAL 0x20c */ u32 fmfp_clfcval; /* FPM CLFCVAL 0x210 */ u32 fmfp_clfamsk; /* FPM CLFAMSK 0x214 */ u32 fmfp_clfbmsk; /* FPM CLFBMSK 0x218 */ u32 fmfp_clfcmsk; /* FPM CLFCMSK 0x21c */ u32 fmfp_clfamc; /* FPM CLFAMC 0x220 */ u32 fmfp_clfbmc; /* FPM CLFBMC 0x224 */ u32 fmfp_clfcmc; /* FPM CLFCMC 0x228 */ u32 fmfp_decceh; /* FPM DECCEH 0x22c */ u32 res0230[116]; /* res 0x230 - 0x3ff */ u32 fmfp_ts[128]; /* 0x400: FPM Task Status 0x400 - 0x5ff */ u32 res0600[0x400 - 384]; }; struct fman_bmi_regs { u32 fmbm_init; /* BMI Initialization 0x00 */ u32 fmbm_cfg1; /* BMI Configuration 1 0x04 */ u32 fmbm_cfg2; /* BMI Configuration 2 0x08 */ u32 res000c[5]; /* 0x0c - 0x1f */ u32 fmbm_ievr; /* Interrupt Event Register 0x20 */ u32 fmbm_ier; /* Interrupt Enable Register 0x24 */ u32 fmbm_ifr; /* Interrupt Force Register 0x28 */ u32 res002c[5]; /* 0x2c - 0x3f */ u32 fmbm_arb[8]; /* BMI Arbitration 0x40 - 0x5f */ u32 res0060[12]; /* 0x60 - 0x8f */ u32 fmbm_dtc[3]; /* Debug Trap Counter 0x90 - 0x9b */ u32 res009c; /* 0x9c */ u32 fmbm_dcv[3][4]; /* Debug Compare val 0xa0-0xcf */ u32 fmbm_dcm[3][4]; /* Debug Compare Mask 0xd0-0xff */ u32 fmbm_gde; /* BMI Global Debug Enable 0x100 */ u32 fmbm_pp[63]; /* BMI Port Parameters 0x104 - 0x1ff */ u32 res0200; /* 0x200 */ u32 fmbm_pfs[63]; /* BMI Port FIFO Size 0x204 - 0x2ff */ u32 res0300; /* 0x300 */ u32 fmbm_spliodn[63]; /* Port Partition ID 0x304 - 0x3ff */ }; struct fman_qmi_regs { u32 fmqm_gc; /* General Configuration Register 0x00 */ u32 res0004; /* 0x04 */ u32 fmqm_eie; /* Error Interrupt Event Register 0x08 */ u32 fmqm_eien; /* Error Interrupt Enable Register 0x0c */ u32 fmqm_eif; /* Error Interrupt Force Register 0x10 */ u32 fmqm_ie; /* Interrupt Event Register 0x14 */ u32 fmqm_ien; /* Interrupt Enable Register 0x18 */ u32 fmqm_if; /* Interrupt Force Register 0x1c */ u32 fmqm_gs; /* Global Status Register 0x20 */ u32 fmqm_ts; /* Task Status Register 0x24 */ u32 fmqm_etfc; /* Enqueue Total Frame Counter 0x28 */ u32 fmqm_dtfc; /* Dequeue Total Frame Counter 0x2c */ u32 fmqm_dc0; /* Dequeue Counter 0 0x30 */ u32 fmqm_dc1; /* Dequeue Counter 1 0x34 */ u32 fmqm_dc2; /* Dequeue Counter 2 0x38 */ u32 fmqm_dc3; /* Dequeue Counter 3 0x3c */ u32 fmqm_dfdc; /* Dequeue FQID from Default Counter 0x40 */ u32 fmqm_dfcc; /* Dequeue FQID from Context Counter 0x44 */ u32 fmqm_dffc; /* Dequeue FQID from FD Counter 0x48 */ u32 fmqm_dcc; /* Dequeue Confirm Counter 0x4c */ u32 res0050[7]; /* 0x50 - 0x6b */ u32 fmqm_tapc; /* Tnum Aging Period Control 0x6c */ u32 fmqm_dmcvc; /* Dequeue MAC Command Valid Counter 0x70 */ u32 fmqm_difdcc; /* Dequeue Invalid FD Command Counter 0x74 */ u32 fmqm_da1v; /* Dequeue A1 Valid Counter 0x78 */ u32 res007c; /* 0x7c */ u32 fmqm_dtc; /* 0x80 Debug Trap Counter 0x80 */ u32 fmqm_efddd; /* 0x84 Enqueue Frame desc Dynamic dbg 0x84 */ u32 res0088[2]; /* 0x88 - 0x8f */ struct { u32 fmqm_dtcfg1; /* 0x90 dbg trap cfg 1 Register 0x00 */ u32 fmqm_dtval1; /* Debug Trap Value 1 Register 0x04 */ u32 fmqm_dtm1; /* Debug Trap Mask 1 Register 0x08 */ u32 fmqm_dtc1; /* Debug Trap Counter 1 Register 0x0c */ u32 fmqm_dtcfg2; /* dbg Trap cfg 2 Register 0x10 */ u32 fmqm_dtval2; /* Debug Trap Value 2 Register 0x14 */ u32 fmqm_dtm2; /* Debug Trap Mask 2 Register 0x18 */ u32 res001c; /* 0x1c */ } dbg_traps[3]; /* 0x90 - 0xef */ u8 res00f0[0x400 - 0xf0]; /* 0xf0 - 0x3ff */ }; struct fman_dma_regs { u32 fmdmsr; /* FM DMA status register 0x00 */ u32 fmdmmr; /* FM DMA mode register 0x04 */ u32 fmdmtr; /* FM DMA bus threshold register 0x08 */ u32 fmdmhy; /* FM DMA bus hysteresis register 0x0c */ u32 fmdmsetr; /* FM DMA SOS emergency Threshold Register 0x10 */ u32 fmdmtah; /* FM DMA transfer bus address high reg 0x14 */ u32 fmdmtal; /* FM DMA transfer bus address low reg 0x18 */ u32 fmdmtcid; /* FM DMA transfer bus communication ID reg 0x1c */ u32 fmdmra; /* FM DMA bus internal ram address register 0x20 */ u32 fmdmrd; /* FM DMA bus internal ram data register 0x24 */ u32 fmdmwcr; /* FM DMA CAM watchdog counter value 0x28 */ u32 fmdmebcr; /* FM DMA CAM base in MURAM register 0x2c */ u32 fmdmccqdr; /* FM DMA CAM and CMD Queue Debug reg 0x30 */ u32 fmdmccqvr1; /* FM DMA CAM and CMD Queue Value reg #1 0x34 */ u32 fmdmccqvr2; /* FM DMA CAM and CMD Queue Value reg #2 0x38 */ u32 fmdmcqvr3; /* FM DMA CMD Queue Value register #3 0x3c */ u32 fmdmcqvr4; /* FM DMA CMD Queue Value register #4 0x40 */ u32 fmdmcqvr5; /* FM DMA CMD Queue Value register #5 0x44 */ u32 fmdmsefrc; /* FM DMA Semaphore Entry Full Reject Cntr 0x48 */ u32 fmdmsqfrc; /* FM DMA Semaphore Queue Full Reject Cntr 0x4c */ u32 fmdmssrc; /* FM DMA Semaphore SYNC Reject Counter 0x50 */ u32 fmdmdcr; /* FM DMA Debug Counter 0x54 */ u32 fmdmemsr; /* FM DMA Emergency Smoother Register 0x58 */ u32 res005c; /* 0x5c */ u32 fmdmplr[FMAN_LIODN_TBL / 2]; /* DMA LIODN regs 0x60-0xdf */ u32 res00e0[0x400 - 56]; }; struct fman_hwp_regs { u32 res0000[0x844 / 4]; /* 0x000..0x843 */ u32 fmprrpimac; /* FM Parser Internal memory access control */ u32 res[(0x1000 - 0x848) / 4]; /* 0x848..0xFFF */ }; /* Structure that holds current FMan state. * Used for saving run time information. */ struct fman_state_struct { u8 fm_id; u16 fm_clk_freq; struct fman_rev_info rev_info; bool enabled_time_stamp; u8 count1_micro_bit; u8 total_num_of_tasks; u8 accumulated_num_of_tasks; u32 accumulated_fifo_size; u8 accumulated_num_of_open_dmas; u8 accumulated_num_of_deq_tnums; u32 exceptions; u32 extra_fifo_pool_size; u8 extra_tasks_pool_size; u8 extra_open_dmas_pool_size; u16 port_mfl[MAX_NUM_OF_MACS]; u16 mac_mfl[MAX_NUM_OF_MACS]; /* SOC specific */ u32 fm_iram_size; /* DMA */ u32 dma_thresh_max_commq; u32 dma_thresh_max_buf; u32 max_num_of_open_dmas; /* QMI */ u32 qmi_max_num_of_tnums; u32 qmi_def_tnums_thresh; /* BMI */ u32 bmi_max_num_of_tasks; u32 bmi_max_fifo_size; /* General */ u32 fm_port_num_of_cg; u32 num_of_rx_ports; u32 total_fifo_size; u32 qman_channel_base; u32 num_of_qman_channels; struct resource *res; }; /* Structure that holds FMan initial configuration */ struct fman_cfg { u8 disp_limit_tsh; u8 prs_disp_tsh; u8 plcr_disp_tsh; u8 kg_disp_tsh; u8 bmi_disp_tsh; u8 qmi_enq_disp_tsh; u8 qmi_deq_disp_tsh; u8 fm_ctl1_disp_tsh; u8 fm_ctl2_disp_tsh; int dma_cache_override; enum fman_dma_aid_mode dma_aid_mode; u32 dma_axi_dbg_num_of_beats; u32 dma_cam_num_of_entries; u32 dma_watchdog; u8 dma_comm_qtsh_asrt_emer; u32 dma_write_buf_tsh_asrt_emer; u32 dma_read_buf_tsh_asrt_emer; u8 dma_comm_qtsh_clr_emer; u32 dma_write_buf_tsh_clr_emer; u32 dma_read_buf_tsh_clr_emer; u32 dma_sos_emergency; int dma_dbg_cnt_mode; int catastrophic_err; int dma_err; u32 exceptions; u16 clk_freq; u32 cam_base_addr; u32 fifo_base_addr; u32 total_fifo_size; u32 total_num_of_tasks; u32 qmi_def_tnums_thresh; }; #ifdef CONFIG_DPAA_ERRATUM_A050385 static bool fman_has_err_a050385; #endif static irqreturn_t fman_exceptions(struct fman *fman, enum fman_exceptions exception) { dev_dbg(fman->dev, "%s: FMan[%d] exception %d\n", __func__, fman->state->fm_id, exception); return IRQ_HANDLED; } static irqreturn_t fman_bus_error(struct fman *fman, u8 __maybe_unused port_id, u64 __maybe_unused addr, u8 __maybe_unused tnum, u16 __maybe_unused liodn) { dev_dbg(fman->dev, "%s: FMan[%d] bus error: port_id[%d]\n", __func__, fman->state->fm_id, port_id); return IRQ_HANDLED; } static inline irqreturn_t call_mac_isr(struct fman *fman, u8 id) { if (fman->intr_mng[id].isr_cb) { fman->intr_mng[id].isr_cb(fman->intr_mng[id].src_handle); return IRQ_HANDLED; } return IRQ_NONE; } static inline u8 hw_port_id_to_sw_port_id(u8 major, u8 hw_port_id) { u8 sw_port_id = 0; if (hw_port_id >= BASE_TX_PORTID) sw_port_id = hw_port_id - BASE_TX_PORTID; else if (hw_port_id >= BASE_RX_PORTID) sw_port_id = hw_port_id - BASE_RX_PORTID; else sw_port_id = 0; return sw_port_id; } static void set_port_order_restoration(struct fman_fpm_regs __iomem *fpm_rg, u8 port_id) { u32 tmp = 0; tmp = port_id << FPM_PORT_FM_CTL_PORTID_SHIFT; tmp |= FPM_PRT_FM_CTL2 | FPM_PRT_FM_CTL1; /* order restoration */ if (port_id % 2) tmp |= FPM_PRT_FM_CTL1 << FPM_PRC_ORA_FM_CTL_SEL_SHIFT; else tmp |= FPM_PRT_FM_CTL2 << FPM_PRC_ORA_FM_CTL_SEL_SHIFT; iowrite32be(tmp, &fpm_rg->fmfp_prc); } static void set_port_liodn(struct fman *fman, u8 port_id, u32 liodn_base, u32 liodn_ofst) { u32 tmp; iowrite32be(liodn_ofst, &fman->bmi_regs->fmbm_spliodn[port_id - 1]); if (!IS_ENABLED(CONFIG_FSL_PAMU)) return; /* set LIODN base for this port */ tmp = ioread32be(&fman->dma_regs->fmdmplr[port_id / 2]); if (port_id % 2) { tmp &= ~DMA_LIODN_BASE_MASK; tmp |= liodn_base; } else { tmp &= ~(DMA_LIODN_BASE_MASK << DMA_LIODN_SHIFT); tmp |= liodn_base << DMA_LIODN_SHIFT; } iowrite32be(tmp, &fman->dma_regs->fmdmplr[port_id / 2]); } static void enable_rams_ecc(struct fman_fpm_regs __iomem *fpm_rg) { u32 tmp; tmp = ioread32be(&fpm_rg->fm_rcr); if (tmp & FPM_RAM_RAMS_ECC_EN_SRC_SEL) iowrite32be(tmp | FPM_RAM_IRAM_ECC_EN, &fpm_rg->fm_rcr); else iowrite32be(tmp | FPM_RAM_RAMS_ECC_EN | FPM_RAM_IRAM_ECC_EN, &fpm_rg->fm_rcr); } static void disable_rams_ecc(struct fman_fpm_regs __iomem *fpm_rg) { u32 tmp; tmp = ioread32be(&fpm_rg->fm_rcr); if (tmp & FPM_RAM_RAMS_ECC_EN_SRC_SEL) iowrite32be(tmp & ~FPM_RAM_IRAM_ECC_EN, &fpm_rg->fm_rcr); else iowrite32be(tmp & ~(FPM_RAM_RAMS_ECC_EN | FPM_RAM_IRAM_ECC_EN), &fpm_rg->fm_rcr); } static void fman_defconfig(struct fman_cfg *cfg) { memset(cfg, 0, sizeof(struct fman_cfg)); cfg->catastrophic_err = DEFAULT_CATASTROPHIC_ERR; cfg->dma_err = DEFAULT_DMA_ERR; cfg->dma_aid_mode = DEFAULT_AID_MODE; cfg->dma_comm_qtsh_clr_emer = DEFAULT_DMA_COMM_Q_LOW; cfg->dma_comm_qtsh_asrt_emer = DEFAULT_DMA_COMM_Q_HIGH; cfg->dma_cache_override = DEFAULT_CACHE_OVERRIDE; cfg->dma_cam_num_of_entries = DEFAULT_DMA_CAM_NUM_OF_ENTRIES; cfg->dma_dbg_cnt_mode = DEFAULT_DMA_DBG_CNT_MODE; cfg->dma_sos_emergency = DEFAULT_DMA_SOS_EMERGENCY; cfg->dma_watchdog = DEFAULT_DMA_WATCHDOG; cfg->disp_limit_tsh = DEFAULT_DISP_LIMIT; cfg->prs_disp_tsh = DEFAULT_PRS_DISP_TH; cfg->plcr_disp_tsh = DEFAULT_PLCR_DISP_TH; cfg->kg_disp_tsh = DEFAULT_KG_DISP_TH; cfg->bmi_disp_tsh = DEFAULT_BMI_DISP_TH; cfg->qmi_enq_disp_tsh = DEFAULT_QMI_ENQ_DISP_TH; cfg->qmi_deq_disp_tsh = DEFAULT_QMI_DEQ_DISP_TH; cfg->fm_ctl1_disp_tsh = DEFAULT_FM_CTL1_DISP_TH; cfg->fm_ctl2_disp_tsh = DEFAULT_FM_CTL2_DISP_TH; } static int dma_init(struct fman *fman) { struct fman_dma_regs __iomem *dma_rg = fman->dma_regs; struct fman_cfg *cfg = fman->cfg; u32 tmp_reg; /* Init DMA Registers */ /* clear status reg events */ tmp_reg = (DMA_STATUS_BUS_ERR | DMA_STATUS_READ_ECC | DMA_STATUS_SYSTEM_WRITE_ECC | DMA_STATUS_FM_WRITE_ECC); iowrite32be(ioread32be(&dma_rg->fmdmsr) | tmp_reg, &dma_rg->fmdmsr); /* configure mode register */ tmp_reg = 0; tmp_reg |= cfg->dma_cache_override << DMA_MODE_CACHE_OR_SHIFT; if (cfg->exceptions & EX_DMA_BUS_ERROR) tmp_reg |= DMA_MODE_BER; if ((cfg->exceptions & EX_DMA_SYSTEM_WRITE_ECC) | (cfg->exceptions & EX_DMA_READ_ECC) | (cfg->exceptions & EX_DMA_FM_WRITE_ECC)) tmp_reg |= DMA_MODE_ECC; if (cfg->dma_axi_dbg_num_of_beats) tmp_reg |= (DMA_MODE_AXI_DBG_MASK & ((cfg->dma_axi_dbg_num_of_beats - 1) << DMA_MODE_AXI_DBG_SHIFT)); tmp_reg |= (((cfg->dma_cam_num_of_entries / DMA_CAM_UNITS) - 1) & DMA_MODE_CEN_MASK) << DMA_MODE_CEN_SHIFT; tmp_reg |= DMA_MODE_SECURE_PROT; tmp_reg |= cfg->dma_dbg_cnt_mode << DMA_MODE_DBG_SHIFT; tmp_reg |= cfg->dma_aid_mode << DMA_MODE_AID_MODE_SHIFT; iowrite32be(tmp_reg, &dma_rg->fmdmmr); /* configure thresholds register */ tmp_reg = ((u32)cfg->dma_comm_qtsh_asrt_emer << DMA_THRESH_COMMQ_SHIFT); tmp_reg |= (cfg->dma_read_buf_tsh_asrt_emer & DMA_THRESH_READ_INT_BUF_MASK) << DMA_THRESH_READ_INT_BUF_SHIFT; tmp_reg |= cfg->dma_write_buf_tsh_asrt_emer & DMA_THRESH_WRITE_INT_BUF_MASK; iowrite32be(tmp_reg, &dma_rg->fmdmtr); /* configure hysteresis register */ tmp_reg = ((u32)cfg->dma_comm_qtsh_clr_emer << DMA_THRESH_COMMQ_SHIFT); tmp_reg |= (cfg->dma_read_buf_tsh_clr_emer & DMA_THRESH_READ_INT_BUF_MASK) << DMA_THRESH_READ_INT_BUF_SHIFT; tmp_reg |= cfg->dma_write_buf_tsh_clr_emer & DMA_THRESH_WRITE_INT_BUF_MASK; iowrite32be(tmp_reg, &dma_rg->fmdmhy); /* configure emergency threshold */ iowrite32be(cfg->dma_sos_emergency, &dma_rg->fmdmsetr); /* configure Watchdog */ iowrite32be((cfg->dma_watchdog * cfg->clk_freq), &dma_rg->fmdmwcr); iowrite32be(cfg->cam_base_addr, &dma_rg->fmdmebcr); /* Allocate MURAM for CAM */ fman->cam_size = (u32)(fman->cfg->dma_cam_num_of_entries * DMA_CAM_SIZEOF_ENTRY); fman->cam_offset = fman_muram_alloc(fman->muram, fman->cam_size); if (IS_ERR_VALUE(fman->cam_offset)) { dev_err(fman->dev, "%s: MURAM alloc for DMA CAM failed\n", __func__); return -ENOMEM; } if (fman->state->rev_info.major == 2) { u32 __iomem *cam_base_addr; fman_muram_free_mem(fman->muram, fman->cam_offset, fman->cam_size); fman->cam_size = fman->cfg->dma_cam_num_of_entries * 72 + 128; fman->cam_offset = fman_muram_alloc(fman->muram, fman->cam_size); if (IS_ERR_VALUE(fman->cam_offset)) { dev_err(fman->dev, "%s: MURAM alloc for DMA CAM failed\n", __func__); return -ENOMEM; } if (fman->cfg->dma_cam_num_of_entries % 8 || fman->cfg->dma_cam_num_of_entries > 32) { dev_err(fman->dev, "%s: wrong dma_cam_num_of_entries\n", __func__); return -EINVAL; } cam_base_addr = (u32 __iomem *) fman_muram_offset_to_vbase(fman->muram, fman->cam_offset); iowrite32be(~((1 << (32 - fman->cfg->dma_cam_num_of_entries)) - 1), cam_base_addr); } fman->cfg->cam_base_addr = fman->cam_offset; return 0; } static void fpm_init(struct fman_fpm_regs __iomem *fpm_rg, struct fman_cfg *cfg) { u32 tmp_reg; int i; /* Init FPM Registers */ tmp_reg = (u32)(cfg->disp_limit_tsh << FPM_DISP_LIMIT_SHIFT); iowrite32be(tmp_reg, &fpm_rg->fmfp_mxd); tmp_reg = (((u32)cfg->prs_disp_tsh << FPM_THR1_PRS_SHIFT) | ((u32)cfg->kg_disp_tsh << FPM_THR1_KG_SHIFT) | ((u32)cfg->plcr_disp_tsh << FPM_THR1_PLCR_SHIFT) | ((u32)cfg->bmi_disp_tsh << FPM_THR1_BMI_SHIFT)); iowrite32be(tmp_reg, &fpm_rg->fmfp_dist1); tmp_reg = (((u32)cfg->qmi_enq_disp_tsh << FPM_THR2_QMI_ENQ_SHIFT) | ((u32)cfg->qmi_deq_disp_tsh << FPM_THR2_QMI_DEQ_SHIFT) | ((u32)cfg->fm_ctl1_disp_tsh << FPM_THR2_FM_CTL1_SHIFT) | ((u32)cfg->fm_ctl2_disp_tsh << FPM_THR2_FM_CTL2_SHIFT)); iowrite32be(tmp_reg, &fpm_rg->fmfp_dist2); /* define exceptions and error behavior */ tmp_reg = 0; /* Clear events */ tmp_reg |= (FPM_EV_MASK_STALL | FPM_EV_MASK_DOUBLE_ECC | FPM_EV_MASK_SINGLE_ECC); /* enable interrupts */ if (cfg->exceptions & EX_FPM_STALL_ON_TASKS) tmp_reg |= FPM_EV_MASK_STALL_EN; if (cfg->exceptions & EX_FPM_SINGLE_ECC) tmp_reg |= FPM_EV_MASK_SINGLE_ECC_EN; if (cfg->exceptions & EX_FPM_DOUBLE_ECC) tmp_reg |= FPM_EV_MASK_DOUBLE_ECC_EN; tmp_reg |= (cfg->catastrophic_err << FPM_EV_MASK_CAT_ERR_SHIFT); tmp_reg |= (cfg->dma_err << FPM_EV_MASK_DMA_ERR_SHIFT); /* FMan is not halted upon external halt activation */ tmp_reg |= FPM_EV_MASK_EXTERNAL_HALT; /* Man is not halted upon Unrecoverable ECC error behavior */ tmp_reg |= FPM_EV_MASK_ECC_ERR_HALT; iowrite32be(tmp_reg, &fpm_rg->fmfp_ee); /* clear all fmCtls event registers */ for (i = 0; i < FM_NUM_OF_FMAN_CTRL_EVENT_REGS; i++) iowrite32be(0xFFFFFFFF, &fpm_rg->fmfp_cev[i]); /* RAM ECC - enable and clear events */ /* first we need to clear all parser memory, * as it is uninitialized and may cause ECC errors */ /* event bits */ tmp_reg = (FPM_RAM_MURAM_ECC | FPM_RAM_IRAM_ECC); iowrite32be(tmp_reg, &fpm_rg->fm_rcr); tmp_reg = 0; if (cfg->exceptions & EX_IRAM_ECC) { tmp_reg |= FPM_IRAM_ECC_ERR_EX_EN; enable_rams_ecc(fpm_rg); } if (cfg->exceptions & EX_MURAM_ECC) { tmp_reg |= FPM_MURAM_ECC_ERR_EX_EN; enable_rams_ecc(fpm_rg); } iowrite32be(tmp_reg, &fpm_rg->fm_rie); } static void bmi_init(struct fman_bmi_regs __iomem *bmi_rg, struct fman_cfg *cfg) { u32 tmp_reg; /* Init BMI Registers */ /* define common resources */ tmp_reg = cfg->fifo_base_addr; tmp_reg = tmp_reg / BMI_FIFO_ALIGN; tmp_reg |= ((cfg->total_fifo_size / FMAN_BMI_FIFO_UNITS - 1) << BMI_CFG1_FIFO_SIZE_SHIFT); iowrite32be(tmp_reg, &bmi_rg->fmbm_cfg1); tmp_reg = ((cfg->total_num_of_tasks - 1) & BMI_CFG2_TASKS_MASK) << BMI_CFG2_TASKS_SHIFT; /* num of DMA's will be dynamically updated when each port is set */ iowrite32be(tmp_reg, &bmi_rg->fmbm_cfg2); /* define unmaskable exceptions, enable and clear events */ tmp_reg = 0; iowrite32be(BMI_ERR_INTR_EN_LIST_RAM_ECC | BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC | BMI_ERR_INTR_EN_STATISTICS_RAM_ECC | BMI_ERR_INTR_EN_DISPATCH_RAM_ECC, &bmi_rg->fmbm_ievr); if (cfg->exceptions & EX_BMI_LIST_RAM_ECC) tmp_reg |= BMI_ERR_INTR_EN_LIST_RAM_ECC; if (cfg->exceptions & EX_BMI_STORAGE_PROFILE_ECC) tmp_reg |= BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC; if (cfg->exceptions & EX_BMI_STATISTICS_RAM_ECC) tmp_reg |= BMI_ERR_INTR_EN_STATISTICS_RAM_ECC; if (cfg->exceptions & EX_BMI_DISPATCH_RAM_ECC) tmp_reg |= BMI_ERR_INTR_EN_DISPATCH_RAM_ECC; iowrite32be(tmp_reg, &bmi_rg->fmbm_ier); } static void qmi_init(struct fman_qmi_regs __iomem *qmi_rg, struct fman_cfg *cfg) { u32 tmp_reg; /* Init QMI Registers */ /* Clear error interrupt events */ iowrite32be(QMI_ERR_INTR_EN_DOUBLE_ECC | QMI_ERR_INTR_EN_DEQ_FROM_DEF, &qmi_rg->fmqm_eie); tmp_reg = 0; if (cfg->exceptions & EX_QMI_DEQ_FROM_UNKNOWN_PORTID) tmp_reg |= QMI_ERR_INTR_EN_DEQ_FROM_DEF; if (cfg->exceptions & EX_QMI_DOUBLE_ECC) tmp_reg |= QMI_ERR_INTR_EN_DOUBLE_ECC; /* enable events */ iowrite32be(tmp_reg, &qmi_rg->fmqm_eien); tmp_reg = 0; /* Clear interrupt events */ iowrite32be(QMI_INTR_EN_SINGLE_ECC, &qmi_rg->fmqm_ie); if (cfg->exceptions & EX_QMI_SINGLE_ECC) tmp_reg |= QMI_INTR_EN_SINGLE_ECC; /* enable events */ iowrite32be(tmp_reg, &qmi_rg->fmqm_ien); } static void hwp_init(struct fman_hwp_regs __iomem *hwp_rg) { /* enable HW Parser */ iowrite32be(HWP_RPIMAC_PEN, &hwp_rg->fmprrpimac); } static int enable(struct fman *fman, struct fman_cfg *cfg) { u32 cfg_reg = 0; /* Enable all modules */ /* clear&enable global counters - calculate reg and save for later, * because it's the same reg for QMI enable */ cfg_reg = QMI_CFG_EN_COUNTERS; /* Set enqueue and dequeue thresholds */ cfg_reg |= (cfg->qmi_def_tnums_thresh << 8) | cfg->qmi_def_tnums_thresh; iowrite32be(BMI_INIT_START, &fman->bmi_regs->fmbm_init); iowrite32be(cfg_reg | QMI_CFG_ENQ_EN | QMI_CFG_DEQ_EN, &fman->qmi_regs->fmqm_gc); return 0; } static int set_exception(struct fman *fman, enum fman_exceptions exception, bool enable) { u32 tmp; switch (exception) { case FMAN_EX_DMA_BUS_ERROR: tmp = ioread32be(&fman->dma_regs->fmdmmr); if (enable) tmp |= DMA_MODE_BER; else tmp &= ~DMA_MODE_BER; /* disable bus error */ iowrite32be(tmp, &fman->dma_regs->fmdmmr); break; case FMAN_EX_DMA_READ_ECC: case FMAN_EX_DMA_SYSTEM_WRITE_ECC: case FMAN_EX_DMA_FM_WRITE_ECC: tmp = ioread32be(&fman->dma_regs->fmdmmr); if (enable) tmp |= DMA_MODE_ECC; else tmp &= ~DMA_MODE_ECC; iowrite32be(tmp, &fman->dma_regs->fmdmmr); break; case FMAN_EX_FPM_STALL_ON_TASKS: tmp = ioread32be(&fman->fpm_regs->fmfp_ee); if (enable) tmp |= FPM_EV_MASK_STALL_EN; else tmp &= ~FPM_EV_MASK_STALL_EN; iowrite32be(tmp, &fman->fpm_regs->fmfp_ee); break; case FMAN_EX_FPM_SINGLE_ECC: tmp = ioread32be(&fman->fpm_regs->fmfp_ee); if (enable) tmp |= FPM_EV_MASK_SINGLE_ECC_EN; else tmp &= ~FPM_EV_MASK_SINGLE_ECC_EN; iowrite32be(tmp, &fman->fpm_regs->fmfp_ee); break; case FMAN_EX_FPM_DOUBLE_ECC: tmp = ioread32be(&fman->fpm_regs->fmfp_ee); if (enable) tmp |= FPM_EV_MASK_DOUBLE_ECC_EN; else tmp &= ~FPM_EV_MASK_DOUBLE_ECC_EN; iowrite32be(tmp, &fman->fpm_regs->fmfp_ee); break; case FMAN_EX_QMI_SINGLE_ECC: tmp = ioread32be(&fman->qmi_regs->fmqm_ien); if (enable) tmp |= QMI_INTR_EN_SINGLE_ECC; else tmp &= ~QMI_INTR_EN_SINGLE_ECC; iowrite32be(tmp, &fman->qmi_regs->fmqm_ien); break; case FMAN_EX_QMI_DOUBLE_ECC: tmp = ioread32be(&fman->qmi_regs->fmqm_eien); if (enable) tmp |= QMI_ERR_INTR_EN_DOUBLE_ECC; else tmp &= ~QMI_ERR_INTR_EN_DOUBLE_ECC; iowrite32be(tmp, &fman->qmi_regs->fmqm_eien); break; case FMAN_EX_QMI_DEQ_FROM_UNKNOWN_PORTID: tmp = ioread32be(&fman->qmi_regs->fmqm_eien); if (enable) tmp |= QMI_ERR_INTR_EN_DEQ_FROM_DEF; else tmp &= ~QMI_ERR_INTR_EN_DEQ_FROM_DEF; iowrite32be(tmp, &fman->qmi_regs->fmqm_eien); break; case FMAN_EX_BMI_LIST_RAM_ECC: tmp = ioread32be(&fman->bmi_regs->fmbm_ier); if (enable) tmp |= BMI_ERR_INTR_EN_LIST_RAM_ECC; else tmp &= ~BMI_ERR_INTR_EN_LIST_RAM_ECC; iowrite32be(tmp, &fman->bmi_regs->fmbm_ier); break; case FMAN_EX_BMI_STORAGE_PROFILE_ECC: tmp = ioread32be(&fman->bmi_regs->fmbm_ier); if (enable) tmp |= BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC; else tmp &= ~BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC; iowrite32be(tmp, &fman->bmi_regs->fmbm_ier); break; case FMAN_EX_BMI_STATISTICS_RAM_ECC: tmp = ioread32be(&fman->bmi_regs->fmbm_ier); if (enable) tmp |= BMI_ERR_INTR_EN_STATISTICS_RAM_ECC; else tmp &= ~BMI_ERR_INTR_EN_STATISTICS_RAM_ECC; iowrite32be(tmp, &fman->bmi_regs->fmbm_ier); break; case FMAN_EX_BMI_DISPATCH_RAM_ECC: tmp = ioread32be(&fman->bmi_regs->fmbm_ier); if (enable) tmp |= BMI_ERR_INTR_EN_DISPATCH_RAM_ECC; else tmp &= ~BMI_ERR_INTR_EN_DISPATCH_RAM_ECC; iowrite32be(tmp, &fman->bmi_regs->fmbm_ier); break; case FMAN_EX_IRAM_ECC: tmp = ioread32be(&fman->fpm_regs->fm_rie); if (enable) { /* enable ECC if not enabled */ enable_rams_ecc(fman->fpm_regs); /* enable ECC interrupts */ tmp |= FPM_IRAM_ECC_ERR_EX_EN; } else { /* ECC mechanism may be disabled, * depending on driver status */ disable_rams_ecc(fman->fpm_regs); tmp &= ~FPM_IRAM_ECC_ERR_EX_EN; } iowrite32be(tmp, &fman->fpm_regs->fm_rie); break; case FMAN_EX_MURAM_ECC: tmp = ioread32be(&fman->fpm_regs->fm_rie); if (enable) { /* enable ECC if not enabled */ enable_rams_ecc(fman->fpm_regs); /* enable ECC interrupts */ tmp |= FPM_MURAM_ECC_ERR_EX_EN; } else { /* ECC mechanism may be disabled, * depending on driver status */ disable_rams_ecc(fman->fpm_regs); tmp &= ~FPM_MURAM_ECC_ERR_EX_EN; } iowrite32be(tmp, &fman->fpm_regs->fm_rie); break; default: return -EINVAL; } return 0; } static void resume(struct fman_fpm_regs __iomem *fpm_rg) { u32 tmp; tmp = ioread32be(&fpm_rg->fmfp_ee); /* clear tmp_reg event bits in order not to clear standing events */ tmp &= ~(FPM_EV_MASK_DOUBLE_ECC | FPM_EV_MASK_STALL | FPM_EV_MASK_SINGLE_ECC); tmp |= FPM_EV_MASK_RELEASE_FM; iowrite32be(tmp, &fpm_rg->fmfp_ee); } static int fill_soc_specific_params(struct fman_state_struct *state) { u8 minor = state->rev_info.minor; /* P4080 - Major 2 * P2041/P3041/P5020/P5040 - Major 3 * Tx/Bx - Major 6 */ switch (state->rev_info.major) { case 3: state->bmi_max_fifo_size = 160 * 1024; state->fm_iram_size = 64 * 1024; state->dma_thresh_max_commq = 31; state->dma_thresh_max_buf = 127; state->qmi_max_num_of_tnums = 64; state->qmi_def_tnums_thresh = 48; state->bmi_max_num_of_tasks = 128; state->max_num_of_open_dmas = 32; state->fm_port_num_of_cg = 256; state->num_of_rx_ports = 6; state->total_fifo_size = 136 * 1024; break; case 2: state->bmi_max_fifo_size = 160 * 1024; state->fm_iram_size = 64 * 1024; state->dma_thresh_max_commq = 31; state->dma_thresh_max_buf = 127; state->qmi_max_num_of_tnums = 64; state->qmi_def_tnums_thresh = 48; state->bmi_max_num_of_tasks = 128; state->max_num_of_open_dmas = 32; state->fm_port_num_of_cg = 256; state->num_of_rx_ports = 5; state->total_fifo_size = 100 * 1024; break; case 6: state->dma_thresh_max_commq = 83; state->dma_thresh_max_buf = 127; state->qmi_max_num_of_tnums = 64; state->qmi_def_tnums_thresh = 32; state->fm_port_num_of_cg = 256; /* FManV3L */ if (minor == 1 || minor == 4) { state->bmi_max_fifo_size = 192 * 1024; state->bmi_max_num_of_tasks = 64; state->max_num_of_open_dmas = 32; state->num_of_rx_ports = 5; if (minor == 1) state->fm_iram_size = 32 * 1024; else state->fm_iram_size = 64 * 1024; state->total_fifo_size = 156 * 1024; } /* FManV3H */ else if (minor == 0 || minor == 2 || minor == 3) { state->bmi_max_fifo_size = 384 * 1024; state->fm_iram_size = 64 * 1024; state->bmi_max_num_of_tasks = 128; state->max_num_of_open_dmas = 84; state->num_of_rx_ports = 8; state->total_fifo_size = 295 * 1024; } else { pr_err("Unsupported FManv3 version\n"); return -EINVAL; } break; default: pr_err("Unsupported FMan version\n"); return -EINVAL; } return 0; } static bool is_init_done(struct fman_cfg *cfg) { /* Checks if FMan driver parameters were initialized */ if (!cfg) return true; return false; } static void free_init_resources(struct fman *fman) { if (fman->cam_offset) fman_muram_free_mem(fman->muram, fman->cam_offset, fman->cam_size); if (fman->fifo_offset) fman_muram_free_mem(fman->muram, fman->fifo_offset, fman->fifo_size); } static irqreturn_t bmi_err_event(struct fman *fman) { u32 event, mask, force; struct fman_bmi_regs __iomem *bmi_rg = fman->bmi_regs; irqreturn_t ret = IRQ_NONE; event = ioread32be(&bmi_rg->fmbm_ievr); mask = ioread32be(&bmi_rg->fmbm_ier); event &= mask; /* clear the forced events */ force = ioread32be(&bmi_rg->fmbm_ifr); if (force & event) iowrite32be(force & ~event, &bmi_rg->fmbm_ifr); /* clear the acknowledged events */ iowrite32be(event, &bmi_rg->fmbm_ievr); if (event & BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC) ret = fman->exception_cb(fman, FMAN_EX_BMI_STORAGE_PROFILE_ECC); if (event & BMI_ERR_INTR_EN_LIST_RAM_ECC) ret = fman->exception_cb(fman, FMAN_EX_BMI_LIST_RAM_ECC); if (event & BMI_ERR_INTR_EN_STATISTICS_RAM_ECC) ret = fman->exception_cb(fman, FMAN_EX_BMI_STATISTICS_RAM_ECC); if (event & BMI_ERR_INTR_EN_DISPATCH_RAM_ECC) ret = fman->exception_cb(fman, FMAN_EX_BMI_DISPATCH_RAM_ECC); return ret; } static irqreturn_t qmi_err_event(struct fman *fman) { u32 event, mask, force; struct fman_qmi_regs __iomem *qmi_rg = fman->qmi_regs; irqreturn_t ret = IRQ_NONE; event = ioread32be(&qmi_rg->fmqm_eie); mask = ioread32be(&qmi_rg->fmqm_eien); event &= mask; /* clear the forced events */ force = ioread32be(&qmi_rg->fmqm_eif); if (force & event) iowrite32be(force & ~event, &qmi_rg->fmqm_eif); /* clear the acknowledged events */ iowrite32be(event, &qmi_rg->fmqm_eie); if (event & QMI_ERR_INTR_EN_DOUBLE_ECC) ret = fman->exception_cb(fman, FMAN_EX_QMI_DOUBLE_ECC); if (event & QMI_ERR_INTR_EN_DEQ_FROM_DEF) ret = fman->exception_cb(fman, FMAN_EX_QMI_DEQ_FROM_UNKNOWN_PORTID); return ret; } static irqreturn_t dma_err_event(struct fman *fman) { u32 status, mask, com_id; u8 tnum, port_id, relative_port_id; u16 liodn; struct fman_dma_regs __iomem *dma_rg = fman->dma_regs; irqreturn_t ret = IRQ_NONE; status = ioread32be(&dma_rg->fmdmsr); mask = ioread32be(&dma_rg->fmdmmr); /* clear DMA_STATUS_BUS_ERR if mask has no DMA_MODE_BER */ if ((mask & DMA_MODE_BER) != DMA_MODE_BER) status &= ~DMA_STATUS_BUS_ERR; /* clear relevant bits if mask has no DMA_MODE_ECC */ if ((mask & DMA_MODE_ECC) != DMA_MODE_ECC) status &= ~(DMA_STATUS_FM_SPDAT_ECC | DMA_STATUS_READ_ECC | DMA_STATUS_SYSTEM_WRITE_ECC | DMA_STATUS_FM_WRITE_ECC); /* clear set events */ iowrite32be(status, &dma_rg->fmdmsr); if (status & DMA_STATUS_BUS_ERR) { u64 addr; addr = (u64)ioread32be(&dma_rg->fmdmtal); addr |= ((u64)(ioread32be(&dma_rg->fmdmtah)) << 32); com_id = ioread32be(&dma_rg->fmdmtcid); port_id = (u8)(((com_id & DMA_TRANSFER_PORTID_MASK) >> DMA_TRANSFER_PORTID_SHIFT)); relative_port_id = hw_port_id_to_sw_port_id(fman->state->rev_info.major, port_id); tnum = (u8)((com_id & DMA_TRANSFER_TNUM_MASK) >> DMA_TRANSFER_TNUM_SHIFT); liodn = (u16)(com_id & DMA_TRANSFER_LIODN_MASK); ret = fman->bus_error_cb(fman, relative_port_id, addr, tnum, liodn); } if (status & DMA_STATUS_FM_SPDAT_ECC) ret = fman->exception_cb(fman, FMAN_EX_DMA_SINGLE_PORT_ECC); if (status & DMA_STATUS_READ_ECC) ret = fman->exception_cb(fman, FMAN_EX_DMA_READ_ECC); if (status & DMA_STATUS_SYSTEM_WRITE_ECC) ret = fman->exception_cb(fman, FMAN_EX_DMA_SYSTEM_WRITE_ECC); if (status & DMA_STATUS_FM_WRITE_ECC) ret = fman->exception_cb(fman, FMAN_EX_DMA_FM_WRITE_ECC); return ret; } static irqreturn_t fpm_err_event(struct fman *fman) { u32 event; struct fman_fpm_regs __iomem *fpm_rg = fman->fpm_regs; irqreturn_t ret = IRQ_NONE; event = ioread32be(&fpm_rg->fmfp_ee); /* clear the all occurred events */ iowrite32be(event, &fpm_rg->fmfp_ee); if ((event & FPM_EV_MASK_DOUBLE_ECC) && (event & FPM_EV_MASK_DOUBLE_ECC_EN)) ret = fman->exception_cb(fman, FMAN_EX_FPM_DOUBLE_ECC); if ((event & FPM_EV_MASK_STALL) && (event & FPM_EV_MASK_STALL_EN)) ret = fman->exception_cb(fman, FMAN_EX_FPM_STALL_ON_TASKS); if ((event & FPM_EV_MASK_SINGLE_ECC) && (event & FPM_EV_MASK_SINGLE_ECC_EN)) ret = fman->exception_cb(fman, FMAN_EX_FPM_SINGLE_ECC); return ret; } static irqreturn_t muram_err_intr(struct fman *fman) { u32 event, mask; struct fman_fpm_regs __iomem *fpm_rg = fman->fpm_regs; irqreturn_t ret = IRQ_NONE; event = ioread32be(&fpm_rg->fm_rcr); mask = ioread32be(&fpm_rg->fm_rie); /* clear MURAM event bit (do not clear IRAM event) */ iowrite32be(event & ~FPM_RAM_IRAM_ECC, &fpm_rg->fm_rcr); if ((mask & FPM_MURAM_ECC_ERR_EX_EN) && (event & FPM_RAM_MURAM_ECC)) ret = fman->exception_cb(fman, FMAN_EX_MURAM_ECC); return ret; } static irqreturn_t qmi_event(struct fman *fman) { u32 event, mask, force; struct fman_qmi_regs __iomem *qmi_rg = fman->qmi_regs; irqreturn_t ret = IRQ_NONE; event = ioread32be(&qmi_rg->fmqm_ie); mask = ioread32be(&qmi_rg->fmqm_ien); event &= mask; /* clear the forced events */ force = ioread32be(&qmi_rg->fmqm_if); if (force & event) iowrite32be(force & ~event, &qmi_rg->fmqm_if); /* clear the acknowledged events */ iowrite32be(event, &qmi_rg->fmqm_ie); if (event & QMI_INTR_EN_SINGLE_ECC) ret = fman->exception_cb(fman, FMAN_EX_QMI_SINGLE_ECC); return ret; } static void enable_time_stamp(struct fman *fman) { struct fman_fpm_regs __iomem *fpm_rg = fman->fpm_regs; u16 fm_clk_freq = fman->state->fm_clk_freq; u32 tmp, intgr, ts_freq, frac; ts_freq = (u32)(1 << fman->state->count1_micro_bit); /* configure timestamp so that bit 8 will count 1 microsecond * Find effective count rate at TIMESTAMP least significant bits: * Effective_Count_Rate = 1MHz x 2^8 = 256MHz * Find frequency ratio between effective count rate and the clock: * Effective_Count_Rate / CLK e.g. for 600 MHz clock: * 256/600 = 0.4266666... */ intgr = ts_freq / fm_clk_freq; /* we multiply by 2^16 to keep the fraction of the division * we do not div back, since we write this value as a fraction * see spec */ frac = ((ts_freq << 16) - (intgr << 16) * fm_clk_freq) / fm_clk_freq; /* we check remainder of the division in order to round up if not int */ if (((ts_freq << 16) - (intgr << 16) * fm_clk_freq) % fm_clk_freq) frac++; tmp = (intgr << FPM_TS_INT_SHIFT) | (u16)frac; iowrite32be(tmp, &fpm_rg->fmfp_tsc2); /* enable timestamp with original clock */ iowrite32be(FPM_TS_CTL_EN, &fpm_rg->fmfp_tsc1); fman->state->enabled_time_stamp = true; } static int clear_iram(struct fman *fman) { struct fman_iram_regs __iomem *iram; int i, count; iram = fman->base_addr + IMEM_OFFSET; /* Enable the auto-increment */ iowrite32be(IRAM_IADD_AIE, &iram->iadd); count = 100; do { udelay(1); } while ((ioread32be(&iram->iadd) != IRAM_IADD_AIE) && --count); if (count == 0) return -EBUSY; for (i = 0; i < (fman->state->fm_iram_size / 4); i++) iowrite32be(0xffffffff, &iram->idata); iowrite32be(fman->state->fm_iram_size - 4, &iram->iadd); count = 100; do { udelay(1); } while ((ioread32be(&iram->idata) != 0xffffffff) && --count); if (count == 0) return -EBUSY; return 0; } static u32 get_exception_flag(enum fman_exceptions exception) { u32 bit_mask; switch (exception) { case FMAN_EX_DMA_BUS_ERROR: bit_mask = EX_DMA_BUS_ERROR; break; case FMAN_EX_DMA_SINGLE_PORT_ECC: bit_mask = EX_DMA_SINGLE_PORT_ECC; break; case FMAN_EX_DMA_READ_ECC: bit_mask = EX_DMA_READ_ECC; break; case FMAN_EX_DMA_SYSTEM_WRITE_ECC: bit_mask = EX_DMA_SYSTEM_WRITE_ECC; break; case FMAN_EX_DMA_FM_WRITE_ECC: bit_mask = EX_DMA_FM_WRITE_ECC; break; case FMAN_EX_FPM_STALL_ON_TASKS: bit_mask = EX_FPM_STALL_ON_TASKS; break; case FMAN_EX_FPM_SINGLE_ECC: bit_mask = EX_FPM_SINGLE_ECC; break; case FMAN_EX_FPM_DOUBLE_ECC: bit_mask = EX_FPM_DOUBLE_ECC; break; case FMAN_EX_QMI_SINGLE_ECC: bit_mask = EX_QMI_SINGLE_ECC; break; case FMAN_EX_QMI_DOUBLE_ECC: bit_mask = EX_QMI_DOUBLE_ECC; break; case FMAN_EX_QMI_DEQ_FROM_UNKNOWN_PORTID: bit_mask = EX_QMI_DEQ_FROM_UNKNOWN_PORTID; break; case FMAN_EX_BMI_LIST_RAM_ECC: bit_mask = EX_BMI_LIST_RAM_ECC; break; case FMAN_EX_BMI_STORAGE_PROFILE_ECC: bit_mask = EX_BMI_STORAGE_PROFILE_ECC; break; case FMAN_EX_BMI_STATISTICS_RAM_ECC: bit_mask = EX_BMI_STATISTICS_RAM_ECC; break; case FMAN_EX_BMI_DISPATCH_RAM_ECC: bit_mask = EX_BMI_DISPATCH_RAM_ECC; break; case FMAN_EX_MURAM_ECC: bit_mask = EX_MURAM_ECC; break; default: bit_mask = 0; break; } return bit_mask; } static int get_module_event(enum fman_event_modules module, u8 mod_id, enum fman_intr_type intr_type) { int event; switch (module) { case FMAN_MOD_MAC: if (intr_type == FMAN_INTR_TYPE_ERR) event = FMAN_EV_ERR_MAC0 + mod_id; else event = FMAN_EV_MAC0 + mod_id; break; case FMAN_MOD_FMAN_CTRL: if (intr_type == FMAN_INTR_TYPE_ERR) event = FMAN_EV_CNT; else event = (FMAN_EV_FMAN_CTRL_0 + mod_id); break; case FMAN_MOD_DUMMY_LAST: event = FMAN_EV_CNT; break; default: event = FMAN_EV_CNT; break; } return event; } static int set_size_of_fifo(struct fman *fman, u8 port_id, u32 *size_of_fifo, u32 *extra_size_of_fifo) { struct fman_bmi_regs __iomem *bmi_rg = fman->bmi_regs; u32 fifo = *size_of_fifo; u32 extra_fifo = *extra_size_of_fifo; u32 tmp; /* if this is the first time a port requires extra_fifo_pool_size, * the total extra_fifo_pool_size must be initialized to 1 buffer per * port */ if (extra_fifo && !fman->state->extra_fifo_pool_size) fman->state->extra_fifo_pool_size = fman->state->num_of_rx_ports * FMAN_BMI_FIFO_UNITS; fman->state->extra_fifo_pool_size = max(fman->state->extra_fifo_pool_size, extra_fifo); /* check that there are enough uncommitted fifo size */ if ((fman->state->accumulated_fifo_size + fifo) > (fman->state->total_fifo_size - fman->state->extra_fifo_pool_size)) { dev_err(fman->dev, "%s: Requested fifo size and extra size exceed total FIFO size.\n", __func__); return -EAGAIN; } /* Read, modify and write to HW */ tmp = (fifo / FMAN_BMI_FIFO_UNITS - 1) | ((extra_fifo / FMAN_BMI_FIFO_UNITS) << BMI_EXTRA_FIFO_SIZE_SHIFT); iowrite32be(tmp, &bmi_rg->fmbm_pfs[port_id - 1]); /* update accumulated */ fman->state->accumulated_fifo_size += fifo; return 0; } static int set_num_of_tasks(struct fman *fman, u8 port_id, u8 *num_of_tasks, u8 *num_of_extra_tasks) { struct fman_bmi_regs __iomem *bmi_rg = fman->bmi_regs; u8 tasks = *num_of_tasks; u8 extra_tasks = *num_of_extra_tasks; u32 tmp; if (extra_tasks) fman->state->extra_tasks_pool_size = max(fman->state->extra_tasks_pool_size, extra_tasks); /* check that there are enough uncommitted tasks */ if ((fman->state->accumulated_num_of_tasks + tasks) > (fman->state->total_num_of_tasks - fman->state->extra_tasks_pool_size)) { dev_err(fman->dev, "%s: Requested num_of_tasks and extra tasks pool for fm%d exceed total num_of_tasks.\n", __func__, fman->state->fm_id); return -EAGAIN; } /* update accumulated */ fman->state->accumulated_num_of_tasks += tasks; /* Write to HW */ tmp = ioread32be(&bmi_rg->fmbm_pp[port_id - 1]) & ~(BMI_NUM_OF_TASKS_MASK | BMI_NUM_OF_EXTRA_TASKS_MASK); tmp |= ((u32)((tasks - 1) << BMI_NUM_OF_TASKS_SHIFT) | (u32)(extra_tasks << BMI_EXTRA_NUM_OF_TASKS_SHIFT)); iowrite32be(tmp, &bmi_rg->fmbm_pp[port_id - 1]); return 0; } static int set_num_of_open_dmas(struct fman *fman, u8 port_id, u8 *num_of_open_dmas, u8 *num_of_extra_open_dmas) { struct fman_bmi_regs __iomem *bmi_rg = fman->bmi_regs; u8 open_dmas = *num_of_open_dmas; u8 extra_open_dmas = *num_of_extra_open_dmas; u8 total_num_dmas = 0, current_val = 0, current_extra_val = 0; u32 tmp; if (!open_dmas) { /* Configuration according to values in the HW. * read the current number of open Dma's */ tmp = ioread32be(&bmi_rg->fmbm_pp[port_id - 1]); current_extra_val = (u8)((tmp & BMI_NUM_OF_EXTRA_DMAS_MASK) >> BMI_EXTRA_NUM_OF_DMAS_SHIFT); tmp = ioread32be(&bmi_rg->fmbm_pp[port_id - 1]); current_val = (u8)(((tmp & BMI_NUM_OF_DMAS_MASK) >> BMI_NUM_OF_DMAS_SHIFT) + 1); /* This is the first configuration and user did not * specify value (!open_dmas), reset values will be used * and we just save these values for resource management */ fman->state->extra_open_dmas_pool_size = (u8)max(fman->state->extra_open_dmas_pool_size, current_extra_val); fman->state->accumulated_num_of_open_dmas += current_val; *num_of_open_dmas = current_val; *num_of_extra_open_dmas = current_extra_val; return 0; } if (extra_open_dmas > current_extra_val) fman->state->extra_open_dmas_pool_size = (u8)max(fman->state->extra_open_dmas_pool_size, extra_open_dmas); if ((fman->state->rev_info.major < 6) && (fman->state->accumulated_num_of_open_dmas - current_val + open_dmas > fman->state->max_num_of_open_dmas)) { dev_err(fman->dev, "%s: Requested num_of_open_dmas for fm%d exceeds total num_of_open_dmas.\n", __func__, fman->state->fm_id); return -EAGAIN; } else if ((fman->state->rev_info.major >= 6) && !((fman->state->rev_info.major == 6) && (fman->state->rev_info.minor == 0)) && (fman->state->accumulated_num_of_open_dmas - current_val + open_dmas > fman->state->dma_thresh_max_commq + 1)) { dev_err(fman->dev, "%s: Requested num_of_open_dmas for fm%d exceeds DMA Command queue (%d)\n", __func__, fman->state->fm_id, fman->state->dma_thresh_max_commq + 1); return -EAGAIN; } WARN_ON(fman->state->accumulated_num_of_open_dmas < current_val); /* update acummulated */ fman->state->accumulated_num_of_open_dmas -= current_val; fman->state->accumulated_num_of_open_dmas += open_dmas; if (fman->state->rev_info.major < 6) total_num_dmas = (u8)(fman->state->accumulated_num_of_open_dmas + fman->state->extra_open_dmas_pool_size); /* calculate reg */ tmp = ioread32be(&bmi_rg->fmbm_pp[port_id - 1]) & ~(BMI_NUM_OF_DMAS_MASK | BMI_NUM_OF_EXTRA_DMAS_MASK); tmp |= (u32)(((open_dmas - 1) << BMI_NUM_OF_DMAS_SHIFT) | (extra_open_dmas << BMI_EXTRA_NUM_OF_DMAS_SHIFT)); iowrite32be(tmp, &bmi_rg->fmbm_pp[port_id - 1]); /* update total num of DMA's with committed number of open DMAS, * and max uncommitted pool. */ if (total_num_dmas) { tmp = ioread32be(&bmi_rg->fmbm_cfg2) & ~BMI_CFG2_DMAS_MASK; tmp |= (u32)(total_num_dmas - 1) << BMI_CFG2_DMAS_SHIFT; iowrite32be(tmp, &bmi_rg->fmbm_cfg2); } return 0; } static int fman_config(struct fman *fman) { void __iomem *base_addr; int err; base_addr = fman->dts_params.base_addr; fman->state = kzalloc(sizeof(*fman->state), GFP_KERNEL); if (!fman->state) goto err_fm_state; /* Allocate the FM driver's parameters structure */ fman->cfg = kzalloc(sizeof(*fman->cfg), GFP_KERNEL); if (!fman->cfg) goto err_fm_drv; /* Initialize MURAM block */ fman->muram = fman_muram_init(fman->dts_params.muram_res.start, resource_size(&fman->dts_params.muram_res)); if (!fman->muram) goto err_fm_soc_specific; /* Initialize FM parameters which will be kept by the driver */ fman->state->fm_id = fman->dts_params.id; fman->state->fm_clk_freq = fman->dts_params.clk_freq; fman->state->qman_channel_base = fman->dts_params.qman_channel_base; fman->state->num_of_qman_channels = fman->dts_params.num_of_qman_channels; fman->state->res = fman->dts_params.res; fman->exception_cb = fman_exceptions; fman->bus_error_cb = fman_bus_error; fman->fpm_regs = base_addr + FPM_OFFSET; fman->bmi_regs = base_addr + BMI_OFFSET; fman->qmi_regs = base_addr + QMI_OFFSET; fman->dma_regs = base_addr + DMA_OFFSET; fman->hwp_regs = base_addr + HWP_OFFSET; fman->kg_regs = base_addr + KG_OFFSET; fman->base_addr = base_addr; spin_lock_init(&fman->spinlock); fman_defconfig(fman->cfg); fman->state->extra_fifo_pool_size = 0; fman->state->exceptions = (EX_DMA_BUS_ERROR | EX_DMA_READ_ECC | EX_DMA_SYSTEM_WRITE_ECC | EX_DMA_FM_WRITE_ECC | EX_FPM_STALL_ON_TASKS | EX_FPM_SINGLE_ECC | EX_FPM_DOUBLE_ECC | EX_QMI_DEQ_FROM_UNKNOWN_PORTID | EX_BMI_LIST_RAM_ECC | EX_BMI_STORAGE_PROFILE_ECC | EX_BMI_STATISTICS_RAM_ECC | EX_MURAM_ECC | EX_BMI_DISPATCH_RAM_ECC | EX_QMI_DOUBLE_ECC | EX_QMI_SINGLE_ECC); /* Read FMan revision for future use*/ fman_get_revision(fman, &fman->state->rev_info); err = fill_soc_specific_params(fman->state); if (err) goto err_fm_soc_specific; /* FM_AID_MODE_NO_TNUM_SW005 Errata workaround */ if (fman->state->rev_info.major >= 6) fman->cfg->dma_aid_mode = FMAN_DMA_AID_OUT_PORT_ID; fman->cfg->qmi_def_tnums_thresh = fman->state->qmi_def_tnums_thresh; fman->state->total_num_of_tasks = (u8)DFLT_TOTAL_NUM_OF_TASKS(fman->state->rev_info.major, fman->state->rev_info.minor, fman->state->bmi_max_num_of_tasks); if (fman->state->rev_info.major < 6) { fman->cfg->dma_comm_qtsh_clr_emer = (u8)DFLT_DMA_COMM_Q_LOW(fman->state->rev_info.major, fman->state->dma_thresh_max_commq); fman->cfg->dma_comm_qtsh_asrt_emer = (u8)DFLT_DMA_COMM_Q_HIGH(fman->state->rev_info.major, fman->state->dma_thresh_max_commq); fman->cfg->dma_cam_num_of_entries = DFLT_DMA_CAM_NUM_OF_ENTRIES(fman->state->rev_info.major); fman->cfg->dma_read_buf_tsh_clr_emer = DFLT_DMA_READ_INT_BUF_LOW(fman->state->dma_thresh_max_buf); fman->cfg->dma_read_buf_tsh_asrt_emer = DFLT_DMA_READ_INT_BUF_HIGH(fman->state->dma_thresh_max_buf); fman->cfg->dma_write_buf_tsh_clr_emer = DFLT_DMA_WRITE_INT_BUF_LOW(fman->state->dma_thresh_max_buf); fman->cfg->dma_write_buf_tsh_asrt_emer = DFLT_DMA_WRITE_INT_BUF_HIGH(fman->state->dma_thresh_max_buf); fman->cfg->dma_axi_dbg_num_of_beats = DFLT_AXI_DBG_NUM_OF_BEATS; } return 0; err_fm_soc_specific: kfree(fman->cfg); err_fm_drv: kfree(fman->state); err_fm_state: kfree(fman); return -EINVAL; } static int fman_reset(struct fman *fman) { u32 count; int err = 0; if (fman->state->rev_info.major < 6) { iowrite32be(FPM_RSTC_FM_RESET, &fman->fpm_regs->fm_rstc); /* Wait for reset completion */ count = 100; do { udelay(1); } while (((ioread32be(&fman->fpm_regs->fm_rstc)) & FPM_RSTC_FM_RESET) && --count); if (count == 0) err = -EBUSY; goto _return; } else { #ifdef CONFIG_PPC struct device_node *guts_node; struct ccsr_guts __iomem *guts_regs; u32 devdisr2, reg; /* Errata A007273 */ guts_node = of_find_compatible_node(NULL, NULL, "fsl,qoriq-device-config-2.0"); if (!guts_node) { dev_err(fman->dev, "%s: Couldn't find guts node\n", __func__); goto guts_node; } guts_regs = of_iomap(guts_node, 0); if (!guts_regs) { dev_err(fman->dev, "%s: Couldn't map %pOF regs\n", __func__, guts_node); goto guts_regs; } #define FMAN1_ALL_MACS_MASK 0xFCC00000 #define FMAN2_ALL_MACS_MASK 0x000FCC00 /* Read current state */ devdisr2 = ioread32be(&guts_regs->devdisr2); if (fman->dts_params.id == 0) reg = devdisr2 & ~FMAN1_ALL_MACS_MASK; else reg = devdisr2 & ~FMAN2_ALL_MACS_MASK; /* Enable all MACs */ iowrite32be(reg, &guts_regs->devdisr2); #endif /* Perform FMan reset */ iowrite32be(FPM_RSTC_FM_RESET, &fman->fpm_regs->fm_rstc); /* Wait for reset completion */ count = 100; do { udelay(1); } while (((ioread32be(&fman->fpm_regs->fm_rstc)) & FPM_RSTC_FM_RESET) && --count); if (count == 0) { #ifdef CONFIG_PPC iounmap(guts_regs); of_node_put(guts_node); #endif err = -EBUSY; goto _return; } #ifdef CONFIG_PPC /* Restore devdisr2 value */ iowrite32be(devdisr2, &guts_regs->devdisr2); iounmap(guts_regs); of_node_put(guts_node); #endif goto _return; #ifdef CONFIG_PPC guts_regs: of_node_put(guts_node); guts_node: dev_dbg(fman->dev, "%s: Didn't perform FManV3 reset due to Errata A007273!\n", __func__); #endif } _return: return err; } static int fman_init(struct fman *fman) { struct fman_cfg *cfg = NULL; int err = 0, i, count; if (is_init_done(fman->cfg)) return -EINVAL; fman->state->count1_micro_bit = FM_TIMESTAMP_1_USEC_BIT; cfg = fman->cfg; /* clear revision-dependent non existing exception */ if (fman->state->rev_info.major < 6) fman->state->exceptions &= ~FMAN_EX_BMI_DISPATCH_RAM_ECC; if (fman->state->rev_info.major >= 6) fman->state->exceptions &= ~FMAN_EX_QMI_SINGLE_ECC; /* clear CPG */ memset_io((void __iomem *)(fman->base_addr + CGP_OFFSET), 0, fman->state->fm_port_num_of_cg); /* Save LIODN info before FMan reset * Skipping non-existent port 0 (i = 1) */ for (i = 1; i < FMAN_LIODN_TBL; i++) { u32 liodn_base; fman->liodn_offset[i] = ioread32be(&fman->bmi_regs->fmbm_spliodn[i - 1]); if (!IS_ENABLED(CONFIG_FSL_PAMU)) continue; liodn_base = ioread32be(&fman->dma_regs->fmdmplr[i / 2]); if (i % 2) { /* FMDM_PLR LSB holds LIODN base for odd ports */ liodn_base &= DMA_LIODN_BASE_MASK; } else { /* FMDM_PLR MSB holds LIODN base for even ports */ liodn_base >>= DMA_LIODN_SHIFT; liodn_base &= DMA_LIODN_BASE_MASK; } fman->liodn_base[i] = liodn_base; } err = fman_reset(fman); if (err) return err; if (ioread32be(&fman->qmi_regs->fmqm_gs) & QMI_GS_HALT_NOT_BUSY) { resume(fman->fpm_regs); /* Wait until QMI is not in halt not busy state */ count = 100; do { udelay(1); } while (((ioread32be(&fman->qmi_regs->fmqm_gs)) & QMI_GS_HALT_NOT_BUSY) && --count); if (count == 0) dev_warn(fman->dev, "%s: QMI is in halt not busy state\n", __func__); } if (clear_iram(fman) != 0) return -EINVAL; cfg->exceptions = fman->state->exceptions; /* Init DMA Registers */ err = dma_init(fman); if (err != 0) { free_init_resources(fman); return err; } /* Init FPM Registers */ fpm_init(fman->fpm_regs, fman->cfg); /* define common resources */ /* allocate MURAM for FIFO according to total size */ fman->fifo_offset = fman_muram_alloc(fman->muram, fman->state->total_fifo_size); if (IS_ERR_VALUE(fman->fifo_offset)) { free_init_resources(fman); dev_err(fman->dev, "%s: MURAM alloc for BMI FIFO failed\n", __func__); return -ENOMEM; } cfg->fifo_base_addr = fman->fifo_offset; cfg->total_fifo_size = fman->state->total_fifo_size; cfg->total_num_of_tasks = fman->state->total_num_of_tasks; cfg->clk_freq = fman->state->fm_clk_freq; /* Init BMI Registers */ bmi_init(fman->bmi_regs, fman->cfg); /* Init QMI Registers */ qmi_init(fman->qmi_regs, fman->cfg); /* Init HW Parser */ hwp_init(fman->hwp_regs); /* Init KeyGen */ fman->keygen = keygen_init(fman->kg_regs); if (!fman->keygen) return -EINVAL; err = enable(fman, cfg); if (err != 0) return err; enable_time_stamp(fman); kfree(fman->cfg); fman->cfg = NULL; return 0; } static int fman_set_exception(struct fman *fman, enum fman_exceptions exception, bool enable) { u32 bit_mask = 0; if (!is_init_done(fman->cfg)) return -EINVAL; bit_mask = get_exception_flag(exception); if (bit_mask) { if (enable) fman->state->exceptions |= bit_mask; else fman->state->exceptions &= ~bit_mask; } else { dev_err(fman->dev, "%s: Undefined exception (%d)\n", __func__, exception); return -EINVAL; } return set_exception(fman, exception, enable); } /** * fman_register_intr * @fman: A Pointer to FMan device * @mod: Calling module * @mod_id: Module id (if more than 1 exists, '0' if not) * @intr_type: Interrupt type (error/normal) selection. * @f_isr: The interrupt service routine. * @h_src_arg: Argument to be passed to f_isr. * * Used to register an event handler to be processed by FMan * * Return: 0 on success; Error code otherwise. */ void fman_register_intr(struct fman *fman, enum fman_event_modules module, u8 mod_id, enum fman_intr_type intr_type, void (*isr_cb)(void *src_arg), void *src_arg) { int event = 0; event = get_module_event(module, mod_id, intr_type); WARN_ON(event >= FMAN_EV_CNT); /* register in local FM structure */ fman->intr_mng[event].isr_cb = isr_cb; fman->intr_mng[event].src_handle = src_arg; } EXPORT_SYMBOL(fman_register_intr); /** * fman_unregister_intr * @fman: A Pointer to FMan device * @mod: Calling module * @mod_id: Module id (if more than 1 exists, '0' if not) * @intr_type: Interrupt type (error/normal) selection. * * Used to unregister an event handler to be processed by FMan * * Return: 0 on success; Error code otherwise. */ void fman_unregister_intr(struct fman *fman, enum fman_event_modules module, u8 mod_id, enum fman_intr_type intr_type) { int event = 0; event = get_module_event(module, mod_id, intr_type); WARN_ON(event >= FMAN_EV_CNT); fman->intr_mng[event].isr_cb = NULL; fman->intr_mng[event].src_handle = NULL; } EXPORT_SYMBOL(fman_unregister_intr); /** * fman_set_port_params * @fman: A Pointer to FMan device * @port_params: Port parameters * * Used by FMan Port to pass parameters to the FMan * * Return: 0 on success; Error code otherwise. */ int fman_set_port_params(struct fman *fman, struct fman_port_init_params *port_params) { int err; unsigned long flags; u8 port_id = port_params->port_id, mac_id; spin_lock_irqsave(&fman->spinlock, flags); err = set_num_of_tasks(fman, port_params->port_id, &port_params->num_of_tasks, &port_params->num_of_extra_tasks); if (err) goto return_err; /* TX Ports */ if (port_params->port_type != FMAN_PORT_TYPE_RX) { u32 enq_th, deq_th, reg; /* update qmi ENQ/DEQ threshold */ fman->state->accumulated_num_of_deq_tnums += port_params->deq_pipeline_depth; enq_th = (ioread32be(&fman->qmi_regs->fmqm_gc) & QMI_CFG_ENQ_MASK) >> QMI_CFG_ENQ_SHIFT; /* if enq_th is too big, we reduce it to the max value * that is still 0 */ if (enq_th >= (fman->state->qmi_max_num_of_tnums - fman->state->accumulated_num_of_deq_tnums)) { enq_th = fman->state->qmi_max_num_of_tnums - fman->state->accumulated_num_of_deq_tnums - 1; reg = ioread32be(&fman->qmi_regs->fmqm_gc); reg &= ~QMI_CFG_ENQ_MASK; reg |= (enq_th << QMI_CFG_ENQ_SHIFT); iowrite32be(reg, &fman->qmi_regs->fmqm_gc); } deq_th = ioread32be(&fman->qmi_regs->fmqm_gc) & QMI_CFG_DEQ_MASK; /* if deq_th is too small, we enlarge it to the min * value that is still 0. * depTh may not be larger than 63 * (fman->state->qmi_max_num_of_tnums-1). */ if ((deq_th <= fman->state->accumulated_num_of_deq_tnums) && (deq_th < fman->state->qmi_max_num_of_tnums - 1)) { deq_th = fman->state->accumulated_num_of_deq_tnums + 1; reg = ioread32be(&fman->qmi_regs->fmqm_gc); reg &= ~QMI_CFG_DEQ_MASK; reg |= deq_th; iowrite32be(reg, &fman->qmi_regs->fmqm_gc); } } err = set_size_of_fifo(fman, port_params->port_id, &port_params->size_of_fifo, &port_params->extra_size_of_fifo); if (err) goto return_err; err = set_num_of_open_dmas(fman, port_params->port_id, &port_params->num_of_open_dmas, &port_params->num_of_extra_open_dmas); if (err) goto return_err; set_port_liodn(fman, port_id, fman->liodn_base[port_id], fman->liodn_offset[port_id]); if (fman->state->rev_info.major < 6) set_port_order_restoration(fman->fpm_regs, port_id); mac_id = hw_port_id_to_sw_port_id(fman->state->rev_info.major, port_id); if (port_params->max_frame_length >= fman->state->mac_mfl[mac_id]) { fman->state->port_mfl[mac_id] = port_params->max_frame_length; } else { dev_warn(fman->dev, "%s: Port (%d) max_frame_length is smaller than MAC (%d) current MTU\n", __func__, port_id, mac_id); err = -EINVAL; goto return_err; } spin_unlock_irqrestore(&fman->spinlock, flags); return 0; return_err: spin_unlock_irqrestore(&fman->spinlock, flags); return err; } EXPORT_SYMBOL(fman_set_port_params); /** * fman_reset_mac * @fman: A Pointer to FMan device * @mac_id: MAC id to be reset * * Reset a specific MAC * * Return: 0 on success; Error code otherwise. */ int fman_reset_mac(struct fman *fman, u8 mac_id) { struct fman_fpm_regs __iomem *fpm_rg = fman->fpm_regs; u32 msk, timeout = 100; if (fman->state->rev_info.major >= 6) { dev_err(fman->dev, "%s: FMan MAC reset no available for FMan V3!\n", __func__); return -EINVAL; } /* Get the relevant bit mask */ switch (mac_id) { case 0: msk = FPM_RSTC_MAC0_RESET; break; case 1: msk = FPM_RSTC_MAC1_RESET; break; case 2: msk = FPM_RSTC_MAC2_RESET; break; case 3: msk = FPM_RSTC_MAC3_RESET; break; case 4: msk = FPM_RSTC_MAC4_RESET; break; case 5: msk = FPM_RSTC_MAC5_RESET; break; case 6: msk = FPM_RSTC_MAC6_RESET; break; case 7: msk = FPM_RSTC_MAC7_RESET; break; case 8: msk = FPM_RSTC_MAC8_RESET; break; case 9: msk = FPM_RSTC_MAC9_RESET; break; default: dev_warn(fman->dev, "%s: Illegal MAC Id [%d]\n", __func__, mac_id); return -EINVAL; } /* reset */ iowrite32be(msk, &fpm_rg->fm_rstc); while ((ioread32be(&fpm_rg->fm_rstc) & msk) && --timeout) udelay(10); if (!timeout) return -EIO; return 0; } EXPORT_SYMBOL(fman_reset_mac); /** * fman_set_mac_max_frame * @fman: A Pointer to FMan device * @mac_id: MAC id * @mfl: Maximum frame length * * Set maximum frame length of specific MAC in FMan driver * * Return: 0 on success; Error code otherwise. */ int fman_set_mac_max_frame(struct fman *fman, u8 mac_id, u16 mfl) { /* if port is already initialized, check that MaxFrameLength is smaller * or equal to the port's max */ if ((!fman->state->port_mfl[mac_id]) || (mfl <= fman->state->port_mfl[mac_id])) { fman->state->mac_mfl[mac_id] = mfl; } else { dev_warn(fman->dev, "%s: MAC max_frame_length is larger than Port max_frame_length\n", __func__); return -EINVAL; } return 0; } EXPORT_SYMBOL(fman_set_mac_max_frame); /** * fman_get_clock_freq * @fman: A Pointer to FMan device * * Get FMan clock frequency * * Return: FMan clock frequency */ u16 fman_get_clock_freq(struct fman *fman) { return fman->state->fm_clk_freq; } /** * fman_get_bmi_max_fifo_size * @fman: A Pointer to FMan device * * Get FMan maximum FIFO size * * Return: FMan Maximum FIFO size */ u32 fman_get_bmi_max_fifo_size(struct fman *fman) { return fman->state->bmi_max_fifo_size; } EXPORT_SYMBOL(fman_get_bmi_max_fifo_size); /** * fman_get_revision * @fman - Pointer to the FMan module * @rev_info - A structure of revision information parameters. * * Returns the FM revision * * Allowed only following fman_init(). * * Return: 0 on success; Error code otherwise. */ void fman_get_revision(struct fman *fman, struct fman_rev_info *rev_info) { u32 tmp; tmp = ioread32be(&fman->fpm_regs->fm_ip_rev_1); rev_info->major = (u8)((tmp & FPM_REV1_MAJOR_MASK) >> FPM_REV1_MAJOR_SHIFT); rev_info->minor = tmp & FPM_REV1_MINOR_MASK; } EXPORT_SYMBOL(fman_get_revision); /** * fman_get_qman_channel_id * @fman: A Pointer to FMan device * @port_id: Port id * * Get QMan channel ID associated to the Port id * * Return: QMan channel ID */ u32 fman_get_qman_channel_id(struct fman *fman, u32 port_id) { int i; if (fman->state->rev_info.major >= 6) { static const u32 port_ids[] = { 0x30, 0x31, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2, 0x3, 0x4, 0x5, 0x7, 0x7 }; for (i = 0; i < fman->state->num_of_qman_channels; i++) { if (port_ids[i] == port_id) break; } } else { static const u32 port_ids[] = { 0x30, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x1, 0x2, 0x3, 0x4, 0x5, 0x7, 0x7 }; for (i = 0; i < fman->state->num_of_qman_channels; i++) { if (port_ids[i] == port_id) break; } } if (i == fman->state->num_of_qman_channels) return 0; return fman->state->qman_channel_base + i; } EXPORT_SYMBOL(fman_get_qman_channel_id); /** * fman_get_mem_region * @fman: A Pointer to FMan device * * Get FMan memory region * * Return: A structure with FMan memory region information */ struct resource *fman_get_mem_region(struct fman *fman) { return fman->state->res; } EXPORT_SYMBOL(fman_get_mem_region); /* Bootargs defines */ /* Extra headroom for RX buffers - Default, min and max */ #define FSL_FM_RX_EXTRA_HEADROOM 64 #define FSL_FM_RX_EXTRA_HEADROOM_MIN 16 #define FSL_FM_RX_EXTRA_HEADROOM_MAX 384 /* Maximum frame length */ #define FSL_FM_MAX_FRAME_SIZE 1522 #define FSL_FM_MAX_POSSIBLE_FRAME_SIZE 9600 #define FSL_FM_MIN_POSSIBLE_FRAME_SIZE 64 /* Extra headroom for Rx buffers. * FMan is instructed to allocate, on the Rx path, this amount of * space at the beginning of a data buffer, beside the DPA private * data area and the IC fields. * Does not impact Tx buffer layout. * Configurable from bootargs. 64 by default, it's needed on * particular forwarding scenarios that add extra headers to the * forwarded frame. */ static int fsl_fm_rx_extra_headroom = FSL_FM_RX_EXTRA_HEADROOM; module_param(fsl_fm_rx_extra_headroom, int, 0); MODULE_PARM_DESC(fsl_fm_rx_extra_headroom, "Extra headroom for Rx buffers"); /* Max frame size, across all interfaces. * Configurable from bootargs, to avoid allocating oversized (socket) * buffers when not using jumbo frames. * Must be large enough to accommodate the network MTU, but small enough * to avoid wasting skb memory. */ static int fsl_fm_max_frm = FSL_FM_MAX_FRAME_SIZE; module_param(fsl_fm_max_frm, int, 0); MODULE_PARM_DESC(fsl_fm_max_frm, "Maximum frame size, across all interfaces"); /** * fman_get_max_frm * * Return: Max frame length configured in the FM driver */ u16 fman_get_max_frm(void) { static bool fm_check_mfl; if (!fm_check_mfl) { if (fsl_fm_max_frm > FSL_FM_MAX_POSSIBLE_FRAME_SIZE || fsl_fm_max_frm < FSL_FM_MIN_POSSIBLE_FRAME_SIZE) { pr_warn("Invalid fsl_fm_max_frm value (%d) in bootargs, valid range is %d-%d. Falling back to the default (%d)\n", fsl_fm_max_frm, FSL_FM_MIN_POSSIBLE_FRAME_SIZE, FSL_FM_MAX_POSSIBLE_FRAME_SIZE, FSL_FM_MAX_FRAME_SIZE); fsl_fm_max_frm = FSL_FM_MAX_FRAME_SIZE; } fm_check_mfl = true; } return fsl_fm_max_frm; } EXPORT_SYMBOL(fman_get_max_frm); /** * fman_get_rx_extra_headroom * * Return: Extra headroom size configured in the FM driver */ int fman_get_rx_extra_headroom(void) { static bool fm_check_rx_extra_headroom; if (!fm_check_rx_extra_headroom) { if (fsl_fm_rx_extra_headroom > FSL_FM_RX_EXTRA_HEADROOM_MAX || fsl_fm_rx_extra_headroom < FSL_FM_RX_EXTRA_HEADROOM_MIN) { pr_warn("Invalid fsl_fm_rx_extra_headroom value (%d) in bootargs, valid range is %d-%d. Falling back to the default (%d)\n", fsl_fm_rx_extra_headroom, FSL_FM_RX_EXTRA_HEADROOM_MIN, FSL_FM_RX_EXTRA_HEADROOM_MAX, FSL_FM_RX_EXTRA_HEADROOM); fsl_fm_rx_extra_headroom = FSL_FM_RX_EXTRA_HEADROOM; } fm_check_rx_extra_headroom = true; fsl_fm_rx_extra_headroom = ALIGN(fsl_fm_rx_extra_headroom, 16); } return fsl_fm_rx_extra_headroom; } EXPORT_SYMBOL(fman_get_rx_extra_headroom); /** * fman_bind * @dev: FMan OF device pointer * * Bind to a specific FMan device. * * Allowed only after the port was created. * * Return: A pointer to the FMan device */ struct fman *fman_bind(struct device *fm_dev) { return (struct fman *)(dev_get_drvdata(get_device(fm_dev))); } EXPORT_SYMBOL(fman_bind); #ifdef CONFIG_DPAA_ERRATUM_A050385 bool fman_has_errata_a050385(void) { return fman_has_err_a050385; } EXPORT_SYMBOL(fman_has_errata_a050385); #endif static irqreturn_t fman_err_irq(int irq, void *handle) { struct fman *fman = (struct fman *)handle; u32 pending; struct fman_fpm_regs __iomem *fpm_rg; irqreturn_t single_ret, ret = IRQ_NONE; if (!is_init_done(fman->cfg)) return IRQ_NONE; fpm_rg = fman->fpm_regs; /* error interrupts */ pending = ioread32be(&fpm_rg->fm_epi); if (!pending) return IRQ_NONE; if (pending & ERR_INTR_EN_BMI) { single_ret = bmi_err_event(fman); if (single_ret == IRQ_HANDLED) ret = IRQ_HANDLED; } if (pending & ERR_INTR_EN_QMI) { single_ret = qmi_err_event(fman); if (single_ret == IRQ_HANDLED) ret = IRQ_HANDLED; } if (pending & ERR_INTR_EN_FPM) { single_ret = fpm_err_event(fman); if (single_ret == IRQ_HANDLED) ret = IRQ_HANDLED; } if (pending & ERR_INTR_EN_DMA) { single_ret = dma_err_event(fman); if (single_ret == IRQ_HANDLED) ret = IRQ_HANDLED; } if (pending & ERR_INTR_EN_MURAM) { single_ret = muram_err_intr(fman); if (single_ret == IRQ_HANDLED) ret = IRQ_HANDLED; } /* MAC error interrupts */ if (pending & ERR_INTR_EN_MAC0) { single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 0); if (single_ret == IRQ_HANDLED) ret = IRQ_HANDLED; } if (pending & ERR_INTR_EN_MAC1) { single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 1); if (single_ret == IRQ_HANDLED) ret = IRQ_HANDLED; } if (pending & ERR_INTR_EN_MAC2) { single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 2); if (single_ret == IRQ_HANDLED) ret = IRQ_HANDLED; } if (pending & ERR_INTR_EN_MAC3) { single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 3); if (single_ret == IRQ_HANDLED) ret = IRQ_HANDLED; } if (pending & ERR_INTR_EN_MAC4) { single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 4); if (single_ret == IRQ_HANDLED) ret = IRQ_HANDLED; } if (pending & ERR_INTR_EN_MAC5) { single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 5); if (single_ret == IRQ_HANDLED) ret = IRQ_HANDLED; } if (pending & ERR_INTR_EN_MAC6) { single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 6); if (single_ret == IRQ_HANDLED) ret = IRQ_HANDLED; } if (pending & ERR_INTR_EN_MAC7) { single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 7); if (single_ret == IRQ_HANDLED) ret = IRQ_HANDLED; } if (pending & ERR_INTR_EN_MAC8) { single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 8); if (single_ret == IRQ_HANDLED) ret = IRQ_HANDLED; } if (pending & ERR_INTR_EN_MAC9) { single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 9); if (single_ret == IRQ_HANDLED) ret = IRQ_HANDLED; } return ret; } static irqreturn_t fman_irq(int irq, void *handle) { struct fman *fman = (struct fman *)handle; u32 pending; struct fman_fpm_regs __iomem *fpm_rg; irqreturn_t single_ret, ret = IRQ_NONE; if (!is_init_done(fman->cfg)) return IRQ_NONE; fpm_rg = fman->fpm_regs; /* normal interrupts */ pending = ioread32be(&fpm_rg->fm_npi); if (!pending) return IRQ_NONE; if (pending & INTR_EN_QMI) { single_ret = qmi_event(fman); if (single_ret == IRQ_HANDLED) ret = IRQ_HANDLED; } /* MAC interrupts */ if (pending & INTR_EN_MAC0) { single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 0); if (single_ret == IRQ_HANDLED) ret = IRQ_HANDLED; } if (pending & INTR_EN_MAC1) { single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 1); if (single_ret == IRQ_HANDLED) ret = IRQ_HANDLED; } if (pending & INTR_EN_MAC2) { single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 2); if (single_ret == IRQ_HANDLED) ret = IRQ_HANDLED; } if (pending & INTR_EN_MAC3) { single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 3); if (single_ret == IRQ_HANDLED) ret = IRQ_HANDLED; } if (pending & INTR_EN_MAC4) { single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 4); if (single_ret == IRQ_HANDLED) ret = IRQ_HANDLED; } if (pending & INTR_EN_MAC5) { single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 5); if (single_ret == IRQ_HANDLED) ret = IRQ_HANDLED; } if (pending & INTR_EN_MAC6) { single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 6); if (single_ret == IRQ_HANDLED) ret = IRQ_HANDLED; } if (pending & INTR_EN_MAC7) { single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 7); if (single_ret == IRQ_HANDLED) ret = IRQ_HANDLED; } if (pending & INTR_EN_MAC8) { single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 8); if (single_ret == IRQ_HANDLED) ret = IRQ_HANDLED; } if (pending & INTR_EN_MAC9) { single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 9); if (single_ret == IRQ_HANDLED) ret = IRQ_HANDLED; } return ret; } static const struct of_device_id fman_muram_match[] = { { .compatible = "fsl,fman-muram"}, {} }; MODULE_DEVICE_TABLE(of, fman_muram_match); static struct fman *read_dts_node(struct platform_device *of_dev) { struct fman *fman; struct device_node *fm_node, *muram_node; struct resource *res; u32 val, range[2]; int err, irq; struct clk *clk; u32 clk_rate; phys_addr_t phys_base_addr; resource_size_t mem_size; fman = kzalloc(sizeof(*fman), GFP_KERNEL); if (!fman) return NULL; fm_node = of_node_get(of_dev->dev.of_node); err = of_property_read_u32(fm_node, "cell-index", &val); if (err) { dev_err(&of_dev->dev, "%s: failed to read cell-index for %pOF\n", __func__, fm_node); goto fman_node_put; } fman->dts_params.id = (u8)val; /* Get the FM interrupt */ res = platform_get_resource(of_dev, IORESOURCE_IRQ, 0); if (!res) { dev_err(&of_dev->dev, "%s: Can't get FMan IRQ resource\n", __func__); goto fman_node_put; } irq = res->start; /* Get the FM error interrupt */ res = platform_get_resource(of_dev, IORESOURCE_IRQ, 1); if (!res) { dev_err(&of_dev->dev, "%s: Can't get FMan Error IRQ resource\n", __func__); goto fman_node_put; } fman->dts_params.err_irq = res->start; /* Get the FM address */ res = platform_get_resource(of_dev, IORESOURCE_MEM, 0); if (!res) { dev_err(&of_dev->dev, "%s: Can't get FMan memory resource\n", __func__); goto fman_node_put; } phys_base_addr = res->start; mem_size = resource_size(res); clk = of_clk_get(fm_node, 0); if (IS_ERR(clk)) { dev_err(&of_dev->dev, "%s: Failed to get FM%d clock structure\n", __func__, fman->dts_params.id); goto fman_node_put; } clk_rate = clk_get_rate(clk); if (!clk_rate) { dev_err(&of_dev->dev, "%s: Failed to determine FM%d clock rate\n", __func__, fman->dts_params.id); goto fman_node_put; } /* Rounding to MHz */ fman->dts_params.clk_freq = DIV_ROUND_UP(clk_rate, 1000000); err = of_property_read_u32_array(fm_node, "fsl,qman-channel-range", &range[0], 2); if (err) { dev_err(&of_dev->dev, "%s: failed to read fsl,qman-channel-range for %pOF\n", __func__, fm_node); goto fman_node_put; } fman->dts_params.qman_channel_base = range[0]; fman->dts_params.num_of_qman_channels = range[1]; /* Get the MURAM base address and size */ muram_node = of_find_matching_node(fm_node, fman_muram_match); if (!muram_node) { dev_err(&of_dev->dev, "%s: could not find MURAM node\n", __func__); goto fman_free; } err = of_address_to_resource(muram_node, 0, &fman->dts_params.muram_res); if (err) { of_node_put(muram_node); dev_err(&of_dev->dev, "%s: of_address_to_resource() = %d\n", __func__, err); goto fman_free; } of_node_put(muram_node); err = devm_request_irq(&of_dev->dev, irq, fman_irq, IRQF_SHARED, "fman", fman); if (err < 0) { dev_err(&of_dev->dev, "%s: irq %d allocation failed (error = %d)\n", __func__, irq, err); goto fman_free; } if (fman->dts_params.err_irq != 0) { err = devm_request_irq(&of_dev->dev, fman->dts_params.err_irq, fman_err_irq, IRQF_SHARED, "fman-err", fman); if (err < 0) { dev_err(&of_dev->dev, "%s: irq %d allocation failed (error = %d)\n", __func__, fman->dts_params.err_irq, err); goto fman_free; } } fman->dts_params.res = devm_request_mem_region(&of_dev->dev, phys_base_addr, mem_size, "fman"); if (!fman->dts_params.res) { dev_err(&of_dev->dev, "%s: request_mem_region() failed\n", __func__); goto fman_free; } fman->dts_params.base_addr = devm_ioremap(&of_dev->dev, phys_base_addr, mem_size); if (!fman->dts_params.base_addr) { dev_err(&of_dev->dev, "%s: devm_ioremap() failed\n", __func__); goto fman_free; } fman->dev = &of_dev->dev; err = of_platform_populate(fm_node, NULL, NULL, &of_dev->dev); if (err) { dev_err(&of_dev->dev, "%s: of_platform_populate() failed\n", __func__); goto fman_free; } #ifdef CONFIG_DPAA_ERRATUM_A050385 fman_has_err_a050385 = of_property_read_bool(fm_node, "fsl,erratum-a050385"); #endif return fman; fman_node_put: of_node_put(fm_node); fman_free: kfree(fman); return NULL; } static int fman_probe(struct platform_device *of_dev) { struct fman *fman; struct device *dev; int err; dev = &of_dev->dev; fman = read_dts_node(of_dev); if (!fman) return -EIO; err = fman_config(fman); if (err) { dev_err(dev, "%s: FMan config failed\n", __func__); return -EINVAL; } if (fman_init(fman) != 0) { dev_err(dev, "%s: FMan init failed\n", __func__); return -EINVAL; } if (fman->dts_params.err_irq == 0) { fman_set_exception(fman, FMAN_EX_DMA_BUS_ERROR, false); fman_set_exception(fman, FMAN_EX_DMA_READ_ECC, false); fman_set_exception(fman, FMAN_EX_DMA_SYSTEM_WRITE_ECC, false); fman_set_exception(fman, FMAN_EX_DMA_FM_WRITE_ECC, false); fman_set_exception(fman, FMAN_EX_DMA_SINGLE_PORT_ECC, false); fman_set_exception(fman, FMAN_EX_FPM_STALL_ON_TASKS, false); fman_set_exception(fman, FMAN_EX_FPM_SINGLE_ECC, false); fman_set_exception(fman, FMAN_EX_FPM_DOUBLE_ECC, false); fman_set_exception(fman, FMAN_EX_QMI_SINGLE_ECC, false); fman_set_exception(fman, FMAN_EX_QMI_DOUBLE_ECC, false); fman_set_exception(fman, FMAN_EX_QMI_DEQ_FROM_UNKNOWN_PORTID, false); fman_set_exception(fman, FMAN_EX_BMI_LIST_RAM_ECC, false); fman_set_exception(fman, FMAN_EX_BMI_STORAGE_PROFILE_ECC, false); fman_set_exception(fman, FMAN_EX_BMI_STATISTICS_RAM_ECC, false); fman_set_exception(fman, FMAN_EX_BMI_DISPATCH_RAM_ECC, false); } dev_set_drvdata(dev, fman); dev_dbg(dev, "FMan%d probed\n", fman->dts_params.id); return 0; } static const struct of_device_id fman_match[] = { { .compatible = "fsl,fman"}, {} }; MODULE_DEVICE_TABLE(of, fman_match); static struct platform_driver fman_driver = { .driver = { .name = "fsl-fman", .of_match_table = fman_match, }, .probe = fman_probe, }; static int __init fman_load(void) { int err; pr_debug("FSL DPAA FMan driver\n"); err = platform_driver_register(&fman_driver); if (err < 0) pr_err("Error, platform_driver_register() = %d\n", err); return err; } module_init(fman_load); static void __exit fman_unload(void) { platform_driver_unregister(&fman_driver); } module_exit(fman_unload); MODULE_LICENSE("Dual BSD/GPL"); MODULE_DESCRIPTION("Freescale DPAA Frame Manager driver");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1