Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ganesh Venkatesan | 4145 | 44.41% | 6 | 4.69% |
Jeb J. Cramer | 1194 | 12.79% | 5 | 3.91% |
Jesse Brandeburg | 717 | 7.68% | 11 | 8.59% |
Joe Perches | 663 | 7.10% | 5 | 3.91% |
Scott Feldman | 547 | 5.86% | 14 | 10.94% |
Mallikarjuna R Chilakala | 454 | 4.86% | 11 | 8.59% |
Jeff Garzik | 425 | 4.55% | 6 | 4.69% |
Jeff Kirsher | 255 | 2.73% | 15 | 11.72% |
Auke-Jan H Kok | 142 | 1.52% | 8 | 6.25% |
Philippe Reynes | 133 | 1.43% | 1 | 0.78% |
Nicholas Nunley | 92 | 0.99% | 2 | 1.56% |
Christoph Paasch | 59 | 0.63% | 1 | 0.78% |
Krzysztof Majzerowicz-Jaszcz | 55 | 0.59% | 1 | 0.78% |
Florian Westphal | 51 | 0.55% | 3 | 2.34% |
Ajit Khaparde | 51 | 0.55% | 2 | 1.56% |
Mitch A Williams | 50 | 0.54% | 1 | 0.78% |
Yan Burman | 38 | 0.41% | 1 | 0.78% |
Rafael J. Wysocki | 36 | 0.39% | 1 | 0.78% |
Vasily Averin | 30 | 0.32% | 1 | 0.78% |
John W. Linville | 29 | 0.31% | 2 | 1.56% |
Emil Tantilov | 28 | 0.30% | 2 | 1.56% |
Bo Chen | 19 | 0.20% | 2 | 1.56% |
Christopher Goldfarb | 17 | 0.18% | 2 | 1.56% |
Milind Arun Choudhary | 15 | 0.16% | 1 | 0.78% |
Rick Jones | 14 | 0.15% | 1 | 0.78% |
David Decotigny | 8 | 0.09% | 2 | 1.56% |
Colin Ian King | 8 | 0.09% | 1 | 0.78% |
Asaf Vertz | 7 | 0.08% | 1 | 0.78% |
Kees Cook | 6 | 0.06% | 1 | 0.78% |
Wenwen Wang | 5 | 0.05% | 1 | 0.78% |
Richard Cochran | 5 | 0.05% | 1 | 0.78% |
Jakub Kiciński | 5 | 0.05% | 1 | 0.78% |
Manuel Schölling | 5 | 0.05% | 1 | 0.78% |
Roel Kluin | 4 | 0.04% | 1 | 0.78% |
Wilfried Klaebe | 3 | 0.03% | 1 | 0.78% |
Stefan Assmann | 2 | 0.02% | 1 | 0.78% |
Gal Pressman | 2 | 0.02% | 1 | 0.78% |
Suraj Upadhyay | 2 | 0.02% | 1 | 0.78% |
Thomas Gleixner | 2 | 0.02% | 1 | 0.78% |
Luis R. Rodriguez | 2 | 0.02% | 1 | 0.78% |
Jiri Pirko | 2 | 0.02% | 1 | 0.78% |
Alejandro Martinez Ruiz | 1 | 0.01% | 1 | 0.78% |
Masanari Iida | 1 | 0.01% | 1 | 0.78% |
Adrian Bunk | 1 | 0.01% | 1 | 0.78% |
Cheng Renquan | 1 | 0.01% | 1 | 0.78% |
Anton Blanchard | 1 | 0.01% | 1 | 0.78% |
Chris Wright | 1 | 0.01% | 1 | 0.78% |
Total | 9333 | 128 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 1999 - 2006 Intel Corporation. */ /* ethtool support for e1000 */ #include "e1000.h" #include <linux/jiffies.h> #include <linux/uaccess.h> enum {NETDEV_STATS, E1000_STATS}; struct e1000_stats { char stat_string[ETH_GSTRING_LEN]; int type; int sizeof_stat; int stat_offset; }; #define E1000_STAT(m) E1000_STATS, \ sizeof(((struct e1000_adapter *)0)->m), \ offsetof(struct e1000_adapter, m) #define E1000_NETDEV_STAT(m) NETDEV_STATS, \ sizeof(((struct net_device *)0)->m), \ offsetof(struct net_device, m) static const struct e1000_stats e1000_gstrings_stats[] = { { "rx_packets", E1000_STAT(stats.gprc) }, { "tx_packets", E1000_STAT(stats.gptc) }, { "rx_bytes", E1000_STAT(stats.gorcl) }, { "tx_bytes", E1000_STAT(stats.gotcl) }, { "rx_broadcast", E1000_STAT(stats.bprc) }, { "tx_broadcast", E1000_STAT(stats.bptc) }, { "rx_multicast", E1000_STAT(stats.mprc) }, { "tx_multicast", E1000_STAT(stats.mptc) }, { "rx_errors", E1000_STAT(stats.rxerrc) }, { "tx_errors", E1000_STAT(stats.txerrc) }, { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) }, { "multicast", E1000_STAT(stats.mprc) }, { "collisions", E1000_STAT(stats.colc) }, { "rx_length_errors", E1000_STAT(stats.rlerrc) }, { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) }, { "rx_crc_errors", E1000_STAT(stats.crcerrs) }, { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) }, { "rx_no_buffer_count", E1000_STAT(stats.rnbc) }, { "rx_missed_errors", E1000_STAT(stats.mpc) }, { "tx_aborted_errors", E1000_STAT(stats.ecol) }, { "tx_carrier_errors", E1000_STAT(stats.tncrs) }, { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) }, { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) }, { "tx_window_errors", E1000_STAT(stats.latecol) }, { "tx_abort_late_coll", E1000_STAT(stats.latecol) }, { "tx_deferred_ok", E1000_STAT(stats.dc) }, { "tx_single_coll_ok", E1000_STAT(stats.scc) }, { "tx_multi_coll_ok", E1000_STAT(stats.mcc) }, { "tx_timeout_count", E1000_STAT(tx_timeout_count) }, { "tx_restart_queue", E1000_STAT(restart_queue) }, { "rx_long_length_errors", E1000_STAT(stats.roc) }, { "rx_short_length_errors", E1000_STAT(stats.ruc) }, { "rx_align_errors", E1000_STAT(stats.algnerrc) }, { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) }, { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) }, { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) }, { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) }, { "tx_flow_control_xon", E1000_STAT(stats.xontxc) }, { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) }, { "rx_long_byte_count", E1000_STAT(stats.gorcl) }, { "rx_csum_offload_good", E1000_STAT(hw_csum_good) }, { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) }, { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) }, { "tx_smbus", E1000_STAT(stats.mgptc) }, { "rx_smbus", E1000_STAT(stats.mgprc) }, { "dropped_smbus", E1000_STAT(stats.mgpdc) }, }; #define E1000_QUEUE_STATS_LEN 0 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN) static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { "Register test (offline)", "Eeprom test (offline)", "Interrupt test (offline)", "Loopback test (offline)", "Link test (on/offline)" }; #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) static int e1000_get_link_ksettings(struct net_device *netdev, struct ethtool_link_ksettings *cmd) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; u32 supported, advertising; if (hw->media_type == e1000_media_type_copper) { supported = (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full| SUPPORTED_Autoneg | SUPPORTED_TP); advertising = ADVERTISED_TP; if (hw->autoneg == 1) { advertising |= ADVERTISED_Autoneg; /* the e1000 autoneg seems to match ethtool nicely */ advertising |= hw->autoneg_advertised; } cmd->base.port = PORT_TP; cmd->base.phy_address = hw->phy_addr; } else { supported = (SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE | SUPPORTED_Autoneg); advertising = (ADVERTISED_1000baseT_Full | ADVERTISED_FIBRE | ADVERTISED_Autoneg); cmd->base.port = PORT_FIBRE; } if (er32(STATUS) & E1000_STATUS_LU) { e1000_get_speed_and_duplex(hw, &adapter->link_speed, &adapter->link_duplex); cmd->base.speed = adapter->link_speed; /* unfortunately FULL_DUPLEX != DUPLEX_FULL * and HALF_DUPLEX != DUPLEX_HALF */ if (adapter->link_duplex == FULL_DUPLEX) cmd->base.duplex = DUPLEX_FULL; else cmd->base.duplex = DUPLEX_HALF; } else { cmd->base.speed = SPEED_UNKNOWN; cmd->base.duplex = DUPLEX_UNKNOWN; } cmd->base.autoneg = ((hw->media_type == e1000_media_type_fiber) || hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; /* MDI-X => 1; MDI => 0 */ if ((hw->media_type == e1000_media_type_copper) && netif_carrier_ok(netdev)) cmd->base.eth_tp_mdix = (!!adapter->phy_info.mdix_mode ? ETH_TP_MDI_X : ETH_TP_MDI); else cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID; if (hw->mdix == AUTO_ALL_MODES) cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; else cmd->base.eth_tp_mdix_ctrl = hw->mdix; ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, supported); ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, advertising); return 0; } static int e1000_set_link_ksettings(struct net_device *netdev, const struct ethtool_link_ksettings *cmd) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; u32 advertising; ethtool_convert_link_mode_to_legacy_u32(&advertising, cmd->link_modes.advertising); /* MDI setting is only allowed when autoneg enabled because * some hardware doesn't allow MDI setting when speed or * duplex is forced. */ if (cmd->base.eth_tp_mdix_ctrl) { if (hw->media_type != e1000_media_type_copper) return -EOPNOTSUPP; if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && (cmd->base.autoneg != AUTONEG_ENABLE)) { e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); return -EINVAL; } } while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) msleep(1); if (cmd->base.autoneg == AUTONEG_ENABLE) { hw->autoneg = 1; if (hw->media_type == e1000_media_type_fiber) hw->autoneg_advertised = ADVERTISED_1000baseT_Full | ADVERTISED_FIBRE | ADVERTISED_Autoneg; else hw->autoneg_advertised = advertising | ADVERTISED_TP | ADVERTISED_Autoneg; } else { u32 speed = cmd->base.speed; /* calling this overrides forced MDI setting */ if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) { clear_bit(__E1000_RESETTING, &adapter->flags); return -EINVAL; } } /* MDI-X => 2; MDI => 1; Auto => 3 */ if (cmd->base.eth_tp_mdix_ctrl) { if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) hw->mdix = AUTO_ALL_MODES; else hw->mdix = cmd->base.eth_tp_mdix_ctrl; } /* reset the link */ if (netif_running(adapter->netdev)) { e1000_down(adapter); e1000_up(adapter); } else { e1000_reset(adapter); } clear_bit(__E1000_RESETTING, &adapter->flags); return 0; } static u32 e1000_get_link(struct net_device *netdev) { struct e1000_adapter *adapter = netdev_priv(netdev); /* If the link is not reported up to netdev, interrupts are disabled, * and so the physical link state may have changed since we last * looked. Set get_link_status to make sure that the true link * state is interrogated, rather than pulling a cached and possibly * stale link state from the driver. */ if (!netif_carrier_ok(netdev)) adapter->hw.get_link_status = 1; return e1000_has_link(adapter); } static void e1000_get_pauseparam(struct net_device *netdev, struct ethtool_pauseparam *pause) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; pause->autoneg = (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); if (hw->fc == E1000_FC_RX_PAUSE) { pause->rx_pause = 1; } else if (hw->fc == E1000_FC_TX_PAUSE) { pause->tx_pause = 1; } else if (hw->fc == E1000_FC_FULL) { pause->rx_pause = 1; pause->tx_pause = 1; } } static int e1000_set_pauseparam(struct net_device *netdev, struct ethtool_pauseparam *pause) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; int retval = 0; adapter->fc_autoneg = pause->autoneg; while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) msleep(1); if (pause->rx_pause && pause->tx_pause) hw->fc = E1000_FC_FULL; else if (pause->rx_pause && !pause->tx_pause) hw->fc = E1000_FC_RX_PAUSE; else if (!pause->rx_pause && pause->tx_pause) hw->fc = E1000_FC_TX_PAUSE; else if (!pause->rx_pause && !pause->tx_pause) hw->fc = E1000_FC_NONE; hw->original_fc = hw->fc; if (adapter->fc_autoneg == AUTONEG_ENABLE) { if (netif_running(adapter->netdev)) { e1000_down(adapter); e1000_up(adapter); } else { e1000_reset(adapter); } } else retval = ((hw->media_type == e1000_media_type_fiber) ? e1000_setup_link(hw) : e1000_force_mac_fc(hw)); clear_bit(__E1000_RESETTING, &adapter->flags); return retval; } static u32 e1000_get_msglevel(struct net_device *netdev) { struct e1000_adapter *adapter = netdev_priv(netdev); return adapter->msg_enable; } static void e1000_set_msglevel(struct net_device *netdev, u32 data) { struct e1000_adapter *adapter = netdev_priv(netdev); adapter->msg_enable = data; } static int e1000_get_regs_len(struct net_device *netdev) { #define E1000_REGS_LEN 32 return E1000_REGS_LEN * sizeof(u32); } static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs, void *p) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; u32 *regs_buff = p; u16 phy_data; memset(p, 0, E1000_REGS_LEN * sizeof(u32)); regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id; regs_buff[0] = er32(CTRL); regs_buff[1] = er32(STATUS); regs_buff[2] = er32(RCTL); regs_buff[3] = er32(RDLEN); regs_buff[4] = er32(RDH); regs_buff[5] = er32(RDT); regs_buff[6] = er32(RDTR); regs_buff[7] = er32(TCTL); regs_buff[8] = er32(TDLEN); regs_buff[9] = er32(TDH); regs_buff[10] = er32(TDT); regs_buff[11] = er32(TIDV); regs_buff[12] = hw->phy_type; /* PHY type (IGP=1, M88=0) */ if (hw->phy_type == e1000_phy_igp) { e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, IGP01E1000_PHY_AGC_A); e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A & IGP01E1000_PHY_PAGE_SELECT, &phy_data); regs_buff[13] = (u32)phy_data; /* cable length */ e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, IGP01E1000_PHY_AGC_B); e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B & IGP01E1000_PHY_PAGE_SELECT, &phy_data); regs_buff[14] = (u32)phy_data; /* cable length */ e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, IGP01E1000_PHY_AGC_C); e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C & IGP01E1000_PHY_PAGE_SELECT, &phy_data); regs_buff[15] = (u32)phy_data; /* cable length */ e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, IGP01E1000_PHY_AGC_D); e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D & IGP01E1000_PHY_PAGE_SELECT, &phy_data); regs_buff[16] = (u32)phy_data; /* cable length */ regs_buff[17] = 0; /* extended 10bt distance (not needed) */ e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS & IGP01E1000_PHY_PAGE_SELECT, &phy_data); regs_buff[18] = (u32)phy_data; /* cable polarity */ e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, IGP01E1000_PHY_PCS_INIT_REG); e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG & IGP01E1000_PHY_PAGE_SELECT, &phy_data); regs_buff[19] = (u32)phy_data; /* cable polarity */ regs_buff[20] = 0; /* polarity correction enabled (always) */ regs_buff[22] = 0; /* phy receive errors (unavailable) */ regs_buff[23] = regs_buff[18]; /* mdix mode */ e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); } else { e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); regs_buff[13] = (u32)phy_data; /* cable length */ regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ regs_buff[18] = regs_buff[13]; /* cable polarity */ regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ regs_buff[20] = regs_buff[17]; /* polarity correction */ /* phy receive errors */ regs_buff[22] = adapter->phy_stats.receive_errors; regs_buff[23] = regs_buff[13]; /* mdix mode */ } regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */ e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); regs_buff[24] = (u32)phy_data; /* phy local receiver status */ regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ if (hw->mac_type >= e1000_82540 && hw->media_type == e1000_media_type_copper) { regs_buff[26] = er32(MANC); } } static int e1000_get_eeprom_len(struct net_device *netdev) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; return hw->eeprom.word_size * 2; } static int e1000_get_eeprom(struct net_device *netdev, struct ethtool_eeprom *eeprom, u8 *bytes) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; u16 *eeprom_buff; int first_word, last_word; int ret_val = 0; u16 i; if (eeprom->len == 0) return -EINVAL; eeprom->magic = hw->vendor_id | (hw->device_id << 16); first_word = eeprom->offset >> 1; last_word = (eeprom->offset + eeprom->len - 1) >> 1; eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16), GFP_KERNEL); if (!eeprom_buff) return -ENOMEM; if (hw->eeprom.type == e1000_eeprom_spi) ret_val = e1000_read_eeprom(hw, first_word, last_word - first_word + 1, eeprom_buff); else { for (i = 0; i < last_word - first_word + 1; i++) { ret_val = e1000_read_eeprom(hw, first_word + i, 1, &eeprom_buff[i]); if (ret_val) break; } } /* Device's eeprom is always little-endian, word addressable */ for (i = 0; i < last_word - first_word + 1; i++) le16_to_cpus(&eeprom_buff[i]); memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len); kfree(eeprom_buff); return ret_val; } static int e1000_set_eeprom(struct net_device *netdev, struct ethtool_eeprom *eeprom, u8 *bytes) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; u16 *eeprom_buff; void *ptr; int max_len, first_word, last_word, ret_val = 0; u16 i; if (eeprom->len == 0) return -EOPNOTSUPP; if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16))) return -EFAULT; max_len = hw->eeprom.word_size * 2; first_word = eeprom->offset >> 1; last_word = (eeprom->offset + eeprom->len - 1) >> 1; eeprom_buff = kmalloc(max_len, GFP_KERNEL); if (!eeprom_buff) return -ENOMEM; ptr = (void *)eeprom_buff; if (eeprom->offset & 1) { /* need read/modify/write of first changed EEPROM word * only the second byte of the word is being modified */ ret_val = e1000_read_eeprom(hw, first_word, 1, &eeprom_buff[0]); ptr++; } if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) { /* need read/modify/write of last changed EEPROM word * only the first byte of the word is being modified */ ret_val = e1000_read_eeprom(hw, last_word, 1, &eeprom_buff[last_word - first_word]); } /* Device's eeprom is always little-endian, word addressable */ for (i = 0; i < last_word - first_word + 1; i++) le16_to_cpus(&eeprom_buff[i]); memcpy(ptr, bytes, eeprom->len); for (i = 0; i < last_word - first_word + 1; i++) eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); ret_val = e1000_write_eeprom(hw, first_word, last_word - first_word + 1, eeprom_buff); /* Update the checksum over the first part of the EEPROM if needed */ if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG)) e1000_update_eeprom_checksum(hw); kfree(eeprom_buff); return ret_val; } static void e1000_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo) { struct e1000_adapter *adapter = netdev_priv(netdev); strlcpy(drvinfo->driver, e1000_driver_name, sizeof(drvinfo->driver)); strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), sizeof(drvinfo->bus_info)); } static void e1000_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; e1000_mac_type mac_type = hw->mac_type; struct e1000_tx_ring *txdr = adapter->tx_ring; struct e1000_rx_ring *rxdr = adapter->rx_ring; ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD : E1000_MAX_82544_RXD; ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD : E1000_MAX_82544_TXD; ring->rx_pending = rxdr->count; ring->tx_pending = txdr->count; } static int e1000_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; e1000_mac_type mac_type = hw->mac_type; struct e1000_tx_ring *txdr, *tx_old; struct e1000_rx_ring *rxdr, *rx_old; int i, err; if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) return -EINVAL; while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) msleep(1); if (netif_running(adapter->netdev)) e1000_down(adapter); tx_old = adapter->tx_ring; rx_old = adapter->rx_ring; err = -ENOMEM; txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL); if (!txdr) goto err_alloc_tx; rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL); if (!rxdr) goto err_alloc_rx; adapter->tx_ring = txdr; adapter->rx_ring = rxdr; rxdr->count = max(ring->rx_pending, (u32)E1000_MIN_RXD); rxdr->count = min(rxdr->count, (u32)(mac_type < e1000_82544 ? E1000_MAX_RXD : E1000_MAX_82544_RXD)); rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE); txdr->count = max(ring->tx_pending, (u32)E1000_MIN_TXD); txdr->count = min(txdr->count, (u32)(mac_type < e1000_82544 ? E1000_MAX_TXD : E1000_MAX_82544_TXD)); txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE); for (i = 0; i < adapter->num_tx_queues; i++) txdr[i].count = txdr->count; for (i = 0; i < adapter->num_rx_queues; i++) rxdr[i].count = rxdr->count; err = 0; if (netif_running(adapter->netdev)) { /* Try to get new resources before deleting old */ err = e1000_setup_all_rx_resources(adapter); if (err) goto err_setup_rx; err = e1000_setup_all_tx_resources(adapter); if (err) goto err_setup_tx; /* save the new, restore the old in order to free it, * then restore the new back again */ adapter->rx_ring = rx_old; adapter->tx_ring = tx_old; e1000_free_all_rx_resources(adapter); e1000_free_all_tx_resources(adapter); adapter->rx_ring = rxdr; adapter->tx_ring = txdr; err = e1000_up(adapter); } kfree(tx_old); kfree(rx_old); clear_bit(__E1000_RESETTING, &adapter->flags); return err; err_setup_tx: e1000_free_all_rx_resources(adapter); err_setup_rx: adapter->rx_ring = rx_old; adapter->tx_ring = tx_old; kfree(rxdr); err_alloc_rx: kfree(txdr); err_alloc_tx: if (netif_running(adapter->netdev)) e1000_up(adapter); clear_bit(__E1000_RESETTING, &adapter->flags); return err; } static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg, u32 mask, u32 write) { struct e1000_hw *hw = &adapter->hw; static const u32 test[] = { 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF }; u8 __iomem *address = hw->hw_addr + reg; u32 read; int i; for (i = 0; i < ARRAY_SIZE(test); i++) { writel(write & test[i], address); read = readl(address); if (read != (write & test[i] & mask)) { e_err(drv, "pattern test reg %04X failed: " "got 0x%08X expected 0x%08X\n", reg, read, (write & test[i] & mask)); *data = reg; return true; } } return false; } static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg, u32 mask, u32 write) { struct e1000_hw *hw = &adapter->hw; u8 __iomem *address = hw->hw_addr + reg; u32 read; writel(write & mask, address); read = readl(address); if ((read & mask) != (write & mask)) { e_err(drv, "set/check reg %04X test failed: " "got 0x%08X expected 0x%08X\n", reg, (read & mask), (write & mask)); *data = reg; return true; } return false; } #define REG_PATTERN_TEST(reg, mask, write) \ do { \ if (reg_pattern_test(adapter, data, \ (hw->mac_type >= e1000_82543) \ ? E1000_##reg : E1000_82542_##reg, \ mask, write)) \ return 1; \ } while (0) #define REG_SET_AND_CHECK(reg, mask, write) \ do { \ if (reg_set_and_check(adapter, data, \ (hw->mac_type >= e1000_82543) \ ? E1000_##reg : E1000_82542_##reg, \ mask, write)) \ return 1; \ } while (0) static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) { u32 value, before, after; u32 i, toggle; struct e1000_hw *hw = &adapter->hw; /* The status register is Read Only, so a write should fail. * Some bits that get toggled are ignored. */ /* there are several bits on newer hardware that are r/w */ toggle = 0xFFFFF833; before = er32(STATUS); value = (er32(STATUS) & toggle); ew32(STATUS, toggle); after = er32(STATUS) & toggle; if (value != after) { e_err(drv, "failed STATUS register test got: " "0x%08X expected: 0x%08X\n", after, value); *data = 1; return 1; } /* restore previous status */ ew32(STATUS, before); REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF); REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF); REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF); REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF); REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF); REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF); REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF); REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF); REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF); REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8); REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF); REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF); REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF); REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF); REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000); before = 0x06DFB3FE; REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB); REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000); if (hw->mac_type >= e1000_82543) { REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF); REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF); REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF); REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF); REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF); value = E1000_RAR_ENTRIES; for (i = 0; i < value; i++) { REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF, 0xFFFFFFFF); } } else { REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF); REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF); REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF); REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF); } value = E1000_MC_TBL_SIZE; for (i = 0; i < value; i++) REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF); *data = 0; return 0; } static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) { struct e1000_hw *hw = &adapter->hw; u16 temp; u16 checksum = 0; u16 i; *data = 0; /* Read and add up the contents of the EEPROM */ for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) { *data = 1; break; } checksum += temp; } /* If Checksum is not Correct return error else test passed */ if ((checksum != (u16)EEPROM_SUM) && !(*data)) *data = 2; return *data; } static irqreturn_t e1000_test_intr(int irq, void *data) { struct net_device *netdev = (struct net_device *)data; struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; adapter->test_icr |= er32(ICR); return IRQ_HANDLED; } static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) { struct net_device *netdev = adapter->netdev; u32 mask, i = 0; bool shared_int = true; u32 irq = adapter->pdev->irq; struct e1000_hw *hw = &adapter->hw; *data = 0; /* NOTE: we don't test MSI interrupts here, yet * Hook up test interrupt handler just for this test */ if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, netdev)) shared_int = false; else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name, netdev)) { *data = 1; return -1; } e_info(hw, "testing %s interrupt\n", (shared_int ? "shared" : "unshared")); /* Disable all the interrupts */ ew32(IMC, 0xFFFFFFFF); E1000_WRITE_FLUSH(); msleep(10); /* Test each interrupt */ for (; i < 10; i++) { /* Interrupt to test */ mask = 1 << i; if (!shared_int) { /* Disable the interrupt to be reported in * the cause register and then force the same * interrupt and see if one gets posted. If * an interrupt was posted to the bus, the * test failed. */ adapter->test_icr = 0; ew32(IMC, mask); ew32(ICS, mask); E1000_WRITE_FLUSH(); msleep(10); if (adapter->test_icr & mask) { *data = 3; break; } } /* Enable the interrupt to be reported in * the cause register and then force the same * interrupt and see if one gets posted. If * an interrupt was not posted to the bus, the * test failed. */ adapter->test_icr = 0; ew32(IMS, mask); ew32(ICS, mask); E1000_WRITE_FLUSH(); msleep(10); if (!(adapter->test_icr & mask)) { *data = 4; break; } if (!shared_int) { /* Disable the other interrupts to be reported in * the cause register and then force the other * interrupts and see if any get posted. If * an interrupt was posted to the bus, the * test failed. */ adapter->test_icr = 0; ew32(IMC, ~mask & 0x00007FFF); ew32(ICS, ~mask & 0x00007FFF); E1000_WRITE_FLUSH(); msleep(10); if (adapter->test_icr) { *data = 5; break; } } } /* Disable all the interrupts */ ew32(IMC, 0xFFFFFFFF); E1000_WRITE_FLUSH(); msleep(10); /* Unhook test interrupt handler */ free_irq(irq, netdev); return *data; } static void e1000_free_desc_rings(struct e1000_adapter *adapter) { struct e1000_tx_ring *txdr = &adapter->test_tx_ring; struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; struct pci_dev *pdev = adapter->pdev; int i; if (txdr->desc && txdr->buffer_info) { for (i = 0; i < txdr->count; i++) { if (txdr->buffer_info[i].dma) dma_unmap_single(&pdev->dev, txdr->buffer_info[i].dma, txdr->buffer_info[i].length, DMA_TO_DEVICE); dev_kfree_skb(txdr->buffer_info[i].skb); } } if (rxdr->desc && rxdr->buffer_info) { for (i = 0; i < rxdr->count; i++) { if (rxdr->buffer_info[i].dma) dma_unmap_single(&pdev->dev, rxdr->buffer_info[i].dma, E1000_RXBUFFER_2048, DMA_FROM_DEVICE); kfree(rxdr->buffer_info[i].rxbuf.data); } } if (txdr->desc) { dma_free_coherent(&pdev->dev, txdr->size, txdr->desc, txdr->dma); txdr->desc = NULL; } if (rxdr->desc) { dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc, rxdr->dma); rxdr->desc = NULL; } kfree(txdr->buffer_info); txdr->buffer_info = NULL; kfree(rxdr->buffer_info); rxdr->buffer_info = NULL; } static int e1000_setup_desc_rings(struct e1000_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; struct e1000_tx_ring *txdr = &adapter->test_tx_ring; struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; struct pci_dev *pdev = adapter->pdev; u32 rctl; int i, ret_val; /* Setup Tx descriptor ring and Tx buffers */ if (!txdr->count) txdr->count = E1000_DEFAULT_TXD; txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_tx_buffer), GFP_KERNEL); if (!txdr->buffer_info) { ret_val = 1; goto err_nomem; } txdr->size = txdr->count * sizeof(struct e1000_tx_desc); txdr->size = ALIGN(txdr->size, 4096); txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma, GFP_KERNEL); if (!txdr->desc) { ret_val = 2; goto err_nomem; } txdr->next_to_use = txdr->next_to_clean = 0; ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF)); ew32(TDBAH, ((u64)txdr->dma >> 32)); ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc)); ew32(TDH, 0); ew32(TDT, 0); ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT); for (i = 0; i < txdr->count; i++) { struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i); struct sk_buff *skb; unsigned int size = 1024; skb = alloc_skb(size, GFP_KERNEL); if (!skb) { ret_val = 3; goto err_nomem; } skb_put(skb, size); txdr->buffer_info[i].skb = skb; txdr->buffer_info[i].length = skb->len; txdr->buffer_info[i].dma = dma_map_single(&pdev->dev, skb->data, skb->len, DMA_TO_DEVICE); if (dma_mapping_error(&pdev->dev, txdr->buffer_info[i].dma)) { ret_val = 4; goto err_nomem; } tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma); tx_desc->lower.data = cpu_to_le32(skb->len); tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS | E1000_TXD_CMD_RPS); tx_desc->upper.data = 0; } /* Setup Rx descriptor ring and Rx buffers */ if (!rxdr->count) rxdr->count = E1000_DEFAULT_RXD; rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_rx_buffer), GFP_KERNEL); if (!rxdr->buffer_info) { ret_val = 5; goto err_nomem; } rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc); rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma, GFP_KERNEL); if (!rxdr->desc) { ret_val = 6; goto err_nomem; } rxdr->next_to_use = rxdr->next_to_clean = 0; rctl = er32(RCTL); ew32(RCTL, rctl & ~E1000_RCTL_EN); ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF)); ew32(RDBAH, ((u64)rxdr->dma >> 32)); ew32(RDLEN, rxdr->size); ew32(RDH, 0); ew32(RDT, 0); rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | (hw->mc_filter_type << E1000_RCTL_MO_SHIFT); ew32(RCTL, rctl); for (i = 0; i < rxdr->count; i++) { struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i); u8 *buf; buf = kzalloc(E1000_RXBUFFER_2048 + NET_SKB_PAD + NET_IP_ALIGN, GFP_KERNEL); if (!buf) { ret_val = 7; goto err_nomem; } rxdr->buffer_info[i].rxbuf.data = buf; rxdr->buffer_info[i].dma = dma_map_single(&pdev->dev, buf + NET_SKB_PAD + NET_IP_ALIGN, E1000_RXBUFFER_2048, DMA_FROM_DEVICE); if (dma_mapping_error(&pdev->dev, rxdr->buffer_info[i].dma)) { ret_val = 8; goto err_nomem; } rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma); } return 0; err_nomem: e1000_free_desc_rings(adapter); return ret_val; } static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; /* Write out to PHY registers 29 and 30 to disable the Receiver. */ e1000_write_phy_reg(hw, 29, 0x001F); e1000_write_phy_reg(hw, 30, 0x8FFC); e1000_write_phy_reg(hw, 29, 0x001A); e1000_write_phy_reg(hw, 30, 0x8FF0); } static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u16 phy_reg; /* Because we reset the PHY above, we need to re-force TX_CLK in the * Extended PHY Specific Control Register to 25MHz clock. This * value defaults back to a 2.5MHz clock when the PHY is reset. */ e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); phy_reg |= M88E1000_EPSCR_TX_CLK_25; e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_reg); /* In addition, because of the s/w reset above, we need to enable * CRS on TX. This must be set for both full and half duplex * operation. */ e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX; e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg); } static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u32 ctrl_reg; u16 phy_reg; /* Setup the Device Control Register for PHY loopback test. */ ctrl_reg = er32(CTRL); ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */ E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */ E1000_CTRL_FD); /* Force Duplex to FULL */ ew32(CTRL, ctrl_reg); /* Read the PHY Specific Control Register (0x10) */ e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); /* Clear Auto-Crossover bits in PHY Specific Control Register * (bits 6:5). */ phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE; e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg); /* Perform software reset on the PHY */ e1000_phy_reset(hw); /* Have to setup TX_CLK and TX_CRS after software reset */ e1000_phy_reset_clk_and_crs(adapter); e1000_write_phy_reg(hw, PHY_CTRL, 0x8100); /* Wait for reset to complete. */ udelay(500); /* Have to setup TX_CLK and TX_CRS after software reset */ e1000_phy_reset_clk_and_crs(adapter); /* Write out to PHY registers 29 and 30 to disable the Receiver. */ e1000_phy_disable_receiver(adapter); /* Set the loopback bit in the PHY control register. */ e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); phy_reg |= MII_CR_LOOPBACK; e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); /* Setup TX_CLK and TX_CRS one more time. */ e1000_phy_reset_clk_and_crs(adapter); /* Check Phy Configuration */ e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); if (phy_reg != 0x4100) return 9; e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); if (phy_reg != 0x0070) return 10; e1000_read_phy_reg(hw, 29, &phy_reg); if (phy_reg != 0x001A) return 11; return 0; } static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u32 ctrl_reg = 0; u32 stat_reg = 0; hw->autoneg = false; if (hw->phy_type == e1000_phy_m88) { /* Auto-MDI/MDIX Off */ e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); /* reset to update Auto-MDI/MDIX */ e1000_write_phy_reg(hw, PHY_CTRL, 0x9140); /* autoneg off */ e1000_write_phy_reg(hw, PHY_CTRL, 0x8140); } ctrl_reg = er32(CTRL); /* force 1000, set loopback */ e1000_write_phy_reg(hw, PHY_CTRL, 0x4140); /* Now set up the MAC to the same speed/duplex as the PHY. */ ctrl_reg = er32(CTRL); ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ E1000_CTRL_FD); /* Force Duplex to FULL */ if (hw->media_type == e1000_media_type_copper && hw->phy_type == e1000_phy_m88) ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ else { /* Set the ILOS bit on the fiber Nic is half * duplex link is detected. */ stat_reg = er32(STATUS); if ((stat_reg & E1000_STATUS_FD) == 0) ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); } ew32(CTRL, ctrl_reg); /* Disable the receiver on the PHY so when a cable is plugged in, the * PHY does not begin to autoneg when a cable is reconnected to the NIC. */ if (hw->phy_type == e1000_phy_m88) e1000_phy_disable_receiver(adapter); udelay(500); return 0; } static int e1000_set_phy_loopback(struct e1000_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u16 phy_reg = 0; u16 count = 0; switch (hw->mac_type) { case e1000_82543: if (hw->media_type == e1000_media_type_copper) { /* Attempt to setup Loopback mode on Non-integrated PHY. * Some PHY registers get corrupted at random, so * attempt this 10 times. */ while (e1000_nonintegrated_phy_loopback(adapter) && count++ < 10); if (count < 11) return 0; } break; case e1000_82544: case e1000_82540: case e1000_82545: case e1000_82545_rev_3: case e1000_82546: case e1000_82546_rev_3: case e1000_82541: case e1000_82541_rev_2: case e1000_82547: case e1000_82547_rev_2: return e1000_integrated_phy_loopback(adapter); default: /* Default PHY loopback work is to read the MII * control register and assert bit 14 (loopback mode). */ e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); phy_reg |= MII_CR_LOOPBACK; e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); return 0; } return 8; } static int e1000_setup_loopback_test(struct e1000_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u32 rctl; if (hw->media_type == e1000_media_type_fiber || hw->media_type == e1000_media_type_internal_serdes) { switch (hw->mac_type) { case e1000_82545: case e1000_82546: case e1000_82545_rev_3: case e1000_82546_rev_3: return e1000_set_phy_loopback(adapter); default: rctl = er32(RCTL); rctl |= E1000_RCTL_LBM_TCVR; ew32(RCTL, rctl); return 0; } } else if (hw->media_type == e1000_media_type_copper) { return e1000_set_phy_loopback(adapter); } return 7; } static void e1000_loopback_cleanup(struct e1000_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u32 rctl; u16 phy_reg; rctl = er32(RCTL); rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); ew32(RCTL, rctl); switch (hw->mac_type) { case e1000_82545: case e1000_82546: case e1000_82545_rev_3: case e1000_82546_rev_3: default: hw->autoneg = true; e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); if (phy_reg & MII_CR_LOOPBACK) { phy_reg &= ~MII_CR_LOOPBACK; e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); e1000_phy_reset(hw); } break; } } static void e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size) { memset(skb->data, 0xFF, frame_size); frame_size &= ~1; memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); skb->data[frame_size / 2 + 10] = 0xBE; skb->data[frame_size / 2 + 12] = 0xAF; } static int e1000_check_lbtest_frame(const unsigned char *data, unsigned int frame_size) { frame_size &= ~1; if (*(data + 3) == 0xFF) { if ((*(data + frame_size / 2 + 10) == 0xBE) && (*(data + frame_size / 2 + 12) == 0xAF)) { return 0; } } return 13; } static int e1000_run_loopback_test(struct e1000_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; struct e1000_tx_ring *txdr = &adapter->test_tx_ring; struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; struct pci_dev *pdev = adapter->pdev; int i, j, k, l, lc, good_cnt, ret_val = 0; unsigned long time; ew32(RDT, rxdr->count - 1); /* Calculate the loop count based on the largest descriptor ring * The idea is to wrap the largest ring a number of times using 64 * send/receive pairs during each loop */ if (rxdr->count <= txdr->count) lc = ((txdr->count / 64) * 2) + 1; else lc = ((rxdr->count / 64) * 2) + 1; k = l = 0; for (j = 0; j <= lc; j++) { /* loop count loop */ for (i = 0; i < 64; i++) { /* send the packets */ e1000_create_lbtest_frame(txdr->buffer_info[i].skb, 1024); dma_sync_single_for_device(&pdev->dev, txdr->buffer_info[k].dma, txdr->buffer_info[k].length, DMA_TO_DEVICE); if (unlikely(++k == txdr->count)) k = 0; } ew32(TDT, k); E1000_WRITE_FLUSH(); msleep(200); time = jiffies; /* set the start time for the receive */ good_cnt = 0; do { /* receive the sent packets */ dma_sync_single_for_cpu(&pdev->dev, rxdr->buffer_info[l].dma, E1000_RXBUFFER_2048, DMA_FROM_DEVICE); ret_val = e1000_check_lbtest_frame( rxdr->buffer_info[l].rxbuf.data + NET_SKB_PAD + NET_IP_ALIGN, 1024); if (!ret_val) good_cnt++; if (unlikely(++l == rxdr->count)) l = 0; /* time + 20 msecs (200 msecs on 2.4) is more than * enough time to complete the receives, if it's * exceeded, break and error off */ } while (good_cnt < 64 && time_after(time + 20, jiffies)); if (good_cnt != 64) { ret_val = 13; /* ret_val is the same as mis-compare */ break; } if (time_after_eq(jiffies, time + 2)) { ret_val = 14; /* error code for time out error */ break; } } /* end loop count loop */ return ret_val; } static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) { *data = e1000_setup_desc_rings(adapter); if (*data) goto out; *data = e1000_setup_loopback_test(adapter); if (*data) goto err_loopback; *data = e1000_run_loopback_test(adapter); e1000_loopback_cleanup(adapter); err_loopback: e1000_free_desc_rings(adapter); out: return *data; } static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) { struct e1000_hw *hw = &adapter->hw; *data = 0; if (hw->media_type == e1000_media_type_internal_serdes) { int i = 0; hw->serdes_has_link = false; /* On some blade server designs, link establishment * could take as long as 2-3 minutes */ do { e1000_check_for_link(hw); if (hw->serdes_has_link) return *data; msleep(20); } while (i++ < 3750); *data = 1; } else { e1000_check_for_link(hw); if (hw->autoneg) /* if auto_neg is set wait for it */ msleep(4000); if (!(er32(STATUS) & E1000_STATUS_LU)) *data = 1; } return *data; } static int e1000_get_sset_count(struct net_device *netdev, int sset) { switch (sset) { case ETH_SS_TEST: return E1000_TEST_LEN; case ETH_SS_STATS: return E1000_STATS_LEN; default: return -EOPNOTSUPP; } } static void e1000_diag_test(struct net_device *netdev, struct ethtool_test *eth_test, u64 *data) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; bool if_running = netif_running(netdev); set_bit(__E1000_TESTING, &adapter->flags); if (eth_test->flags == ETH_TEST_FL_OFFLINE) { /* Offline tests */ /* save speed, duplex, autoneg settings */ u16 autoneg_advertised = hw->autoneg_advertised; u8 forced_speed_duplex = hw->forced_speed_duplex; u8 autoneg = hw->autoneg; e_info(hw, "offline testing starting\n"); /* Link test performed before hardware reset so autoneg doesn't * interfere with test result */ if (e1000_link_test(adapter, &data[4])) eth_test->flags |= ETH_TEST_FL_FAILED; if (if_running) /* indicate we're in test mode */ e1000_close(netdev); else e1000_reset(adapter); if (e1000_reg_test(adapter, &data[0])) eth_test->flags |= ETH_TEST_FL_FAILED; e1000_reset(adapter); if (e1000_eeprom_test(adapter, &data[1])) eth_test->flags |= ETH_TEST_FL_FAILED; e1000_reset(adapter); if (e1000_intr_test(adapter, &data[2])) eth_test->flags |= ETH_TEST_FL_FAILED; e1000_reset(adapter); /* make sure the phy is powered up */ e1000_power_up_phy(adapter); if (e1000_loopback_test(adapter, &data[3])) eth_test->flags |= ETH_TEST_FL_FAILED; /* restore speed, duplex, autoneg settings */ hw->autoneg_advertised = autoneg_advertised; hw->forced_speed_duplex = forced_speed_duplex; hw->autoneg = autoneg; e1000_reset(adapter); clear_bit(__E1000_TESTING, &adapter->flags); if (if_running) e1000_open(netdev); } else { e_info(hw, "online testing starting\n"); /* Online tests */ if (e1000_link_test(adapter, &data[4])) eth_test->flags |= ETH_TEST_FL_FAILED; /* Online tests aren't run; pass by default */ data[0] = 0; data[1] = 0; data[2] = 0; data[3] = 0; clear_bit(__E1000_TESTING, &adapter->flags); } msleep_interruptible(4 * 1000); } static int e1000_wol_exclusion(struct e1000_adapter *adapter, struct ethtool_wolinfo *wol) { struct e1000_hw *hw = &adapter->hw; int retval = 1; /* fail by default */ switch (hw->device_id) { case E1000_DEV_ID_82542: case E1000_DEV_ID_82543GC_FIBER: case E1000_DEV_ID_82543GC_COPPER: case E1000_DEV_ID_82544EI_FIBER: case E1000_DEV_ID_82546EB_QUAD_COPPER: case E1000_DEV_ID_82545EM_FIBER: case E1000_DEV_ID_82545EM_COPPER: case E1000_DEV_ID_82546GB_QUAD_COPPER: case E1000_DEV_ID_82546GB_PCIE: /* these don't support WoL at all */ wol->supported = 0; break; case E1000_DEV_ID_82546EB_FIBER: case E1000_DEV_ID_82546GB_FIBER: /* Wake events not supported on port B */ if (er32(STATUS) & E1000_STATUS_FUNC_1) { wol->supported = 0; break; } /* return success for non excluded adapter ports */ retval = 0; break; case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: /* quad port adapters only support WoL on port A */ if (!adapter->quad_port_a) { wol->supported = 0; break; } /* return success for non excluded adapter ports */ retval = 0; break; default: /* dual port cards only support WoL on port A from now on * unless it was enabled in the eeprom for port B * so exclude FUNC_1 ports from having WoL enabled */ if (er32(STATUS) & E1000_STATUS_FUNC_1 && !adapter->eeprom_wol) { wol->supported = 0; break; } retval = 0; } return retval; } static void e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC; wol->wolopts = 0; /* this function will set ->supported = 0 and return 1 if wol is not * supported by this hardware */ if (e1000_wol_exclusion(adapter, wol) || !device_can_wakeup(&adapter->pdev->dev)) return; /* apply any specific unsupported masks here */ switch (hw->device_id) { case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: /* KSP3 does not support UCAST wake-ups */ wol->supported &= ~WAKE_UCAST; if (adapter->wol & E1000_WUFC_EX) e_err(drv, "Interface does not support directed " "(unicast) frame wake-up packets\n"); break; default: break; } if (adapter->wol & E1000_WUFC_EX) wol->wolopts |= WAKE_UCAST; if (adapter->wol & E1000_WUFC_MC) wol->wolopts |= WAKE_MCAST; if (adapter->wol & E1000_WUFC_BC) wol->wolopts |= WAKE_BCAST; if (adapter->wol & E1000_WUFC_MAG) wol->wolopts |= WAKE_MAGIC; } static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE)) return -EOPNOTSUPP; if (e1000_wol_exclusion(adapter, wol) || !device_can_wakeup(&adapter->pdev->dev)) return wol->wolopts ? -EOPNOTSUPP : 0; switch (hw->device_id) { case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: if (wol->wolopts & WAKE_UCAST) { e_err(drv, "Interface does not support directed " "(unicast) frame wake-up packets\n"); return -EOPNOTSUPP; } break; default: break; } /* these settings will always override what we currently have */ adapter->wol = 0; if (wol->wolopts & WAKE_UCAST) adapter->wol |= E1000_WUFC_EX; if (wol->wolopts & WAKE_MCAST) adapter->wol |= E1000_WUFC_MC; if (wol->wolopts & WAKE_BCAST) adapter->wol |= E1000_WUFC_BC; if (wol->wolopts & WAKE_MAGIC) adapter->wol |= E1000_WUFC_MAG; device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); return 0; } static int e1000_set_phys_id(struct net_device *netdev, enum ethtool_phys_id_state state) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; switch (state) { case ETHTOOL_ID_ACTIVE: e1000_setup_led(hw); return 2; case ETHTOOL_ID_ON: e1000_led_on(hw); break; case ETHTOOL_ID_OFF: e1000_led_off(hw); break; case ETHTOOL_ID_INACTIVE: e1000_cleanup_led(hw); } return 0; } static int e1000_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ec) { struct e1000_adapter *adapter = netdev_priv(netdev); if (adapter->hw.mac_type < e1000_82545) return -EOPNOTSUPP; if (adapter->itr_setting <= 4) ec->rx_coalesce_usecs = adapter->itr_setting; else ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; return 0; } static int e1000_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ec) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; if (hw->mac_type < e1000_82545) return -EOPNOTSUPP; if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || ((ec->rx_coalesce_usecs > 4) && (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || (ec->rx_coalesce_usecs == 2)) return -EINVAL; if (ec->rx_coalesce_usecs == 4) { adapter->itr = adapter->itr_setting = 4; } else if (ec->rx_coalesce_usecs <= 3) { adapter->itr = 20000; adapter->itr_setting = ec->rx_coalesce_usecs; } else { adapter->itr = (1000000 / ec->rx_coalesce_usecs); adapter->itr_setting = adapter->itr & ~3; } if (adapter->itr_setting != 0) ew32(ITR, 1000000000 / (adapter->itr * 256)); else ew32(ITR, 0); return 0; } static int e1000_nway_reset(struct net_device *netdev) { struct e1000_adapter *adapter = netdev_priv(netdev); if (netif_running(netdev)) e1000_reinit_locked(adapter); return 0; } static void e1000_get_ethtool_stats(struct net_device *netdev, struct ethtool_stats *stats, u64 *data) { struct e1000_adapter *adapter = netdev_priv(netdev); int i; const struct e1000_stats *stat = e1000_gstrings_stats; e1000_update_stats(adapter); for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++, stat++) { char *p; switch (stat->type) { case NETDEV_STATS: p = (char *)netdev + stat->stat_offset; break; case E1000_STATS: p = (char *)adapter + stat->stat_offset; break; default: netdev_WARN_ONCE(netdev, "Invalid E1000 stat type: %u index %d\n", stat->type, i); continue; } if (stat->sizeof_stat == sizeof(u64)) data[i] = *(u64 *)p; else data[i] = *(u32 *)p; } /* BUG_ON(i != E1000_STATS_LEN); */ } static void e1000_get_strings(struct net_device *netdev, u32 stringset, u8 *data) { u8 *p = data; int i; switch (stringset) { case ETH_SS_TEST: memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test)); break; case ETH_SS_STATS: for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { memcpy(p, e1000_gstrings_stats[i].stat_string, ETH_GSTRING_LEN); p += ETH_GSTRING_LEN; } /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */ break; } } static const struct ethtool_ops e1000_ethtool_ops = { .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS, .get_drvinfo = e1000_get_drvinfo, .get_regs_len = e1000_get_regs_len, .get_regs = e1000_get_regs, .get_wol = e1000_get_wol, .set_wol = e1000_set_wol, .get_msglevel = e1000_get_msglevel, .set_msglevel = e1000_set_msglevel, .nway_reset = e1000_nway_reset, .get_link = e1000_get_link, .get_eeprom_len = e1000_get_eeprom_len, .get_eeprom = e1000_get_eeprom, .set_eeprom = e1000_set_eeprom, .get_ringparam = e1000_get_ringparam, .set_ringparam = e1000_set_ringparam, .get_pauseparam = e1000_get_pauseparam, .set_pauseparam = e1000_set_pauseparam, .self_test = e1000_diag_test, .get_strings = e1000_get_strings, .set_phys_id = e1000_set_phys_id, .get_ethtool_stats = e1000_get_ethtool_stats, .get_sset_count = e1000_get_sset_count, .get_coalesce = e1000_get_coalesce, .set_coalesce = e1000_set_coalesce, .get_ts_info = ethtool_op_get_ts_info, .get_link_ksettings = e1000_get_link_ksettings, .set_link_ksettings = e1000_set_link_ksettings, }; void e1000_set_ethtool_ops(struct net_device *netdev) { netdev->ethtool_ops = &e1000_ethtool_ops; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1