Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jesse Brandeburg | 12234 | 65.51% | 6 | 8.45% |
Mallikarjuna R Chilakala | 1275 | 6.83% | 2 | 2.82% |
Auke-Jan H Kok | 1128 | 6.04% | 5 | 7.04% |
Jeb J. Cramer | 841 | 4.50% | 3 | 4.23% |
Dirk Brandewie | 754 | 4.04% | 1 | 1.41% |
Jeff Kirsher | 483 | 2.59% | 16 | 22.54% |
Christopher Goldfarb | 432 | 2.31% | 1 | 1.41% |
Scott Feldman | 421 | 2.25% | 9 | 12.68% |
Adrian Bunk | 319 | 1.71% | 3 | 4.23% |
Joe Perches | 276 | 1.48% | 4 | 5.63% |
Ganesh Venkatesan | 207 | 1.11% | 7 | 9.86% |
Emil Tantilov | 112 | 0.60% | 1 | 1.41% |
Nicholas Nunley | 62 | 0.33% | 1 | 1.41% |
Maxime Bizon | 57 | 0.31% | 1 | 1.41% |
Christopher Li | 30 | 0.16% | 1 | 1.41% |
Jörn Engel | 14 | 0.07% | 1 | 1.41% |
Florian Fainelli | 11 | 0.06% | 1 | 1.41% |
Jean Sacren | 6 | 0.03% | 2 | 2.82% |
Ben Hutchings | 4 | 0.02% | 1 | 1.41% |
Jeff Garzik | 2 | 0.01% | 1 | 1.41% |
Frans Pop | 2 | 0.01% | 1 | 1.41% |
Ahmad Fatoum | 2 | 0.01% | 1 | 1.41% |
Hari | 1 | 0.01% | 1 | 1.41% |
Greg Dietsche | 1 | 0.01% | 1 | 1.41% |
Total | 18674 | 71 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 1999 - 2006 Intel Corporation. */ /* e1000_hw.c * Shared functions for accessing and configuring the MAC */ #include "e1000.h" static s32 e1000_check_downshift(struct e1000_hw *hw); static s32 e1000_check_polarity(struct e1000_hw *hw, e1000_rev_polarity *polarity); static void e1000_clear_hw_cntrs(struct e1000_hw *hw); static void e1000_clear_vfta(struct e1000_hw *hw); static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up); static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw); static s32 e1000_detect_gig_phy(struct e1000_hw *hw); static s32 e1000_get_auto_rd_done(struct e1000_hw *hw); static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length, u16 *max_length); static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw); static s32 e1000_id_led_init(struct e1000_hw *hw); static void e1000_init_rx_addrs(struct e1000_hw *hw); static s32 e1000_phy_igp_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info); static s32 e1000_phy_m88_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info); static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active); static s32 e1000_wait_autoneg(struct e1000_hw *hw); static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value); static s32 e1000_set_phy_type(struct e1000_hw *hw); static void e1000_phy_init_script(struct e1000_hw *hw); static s32 e1000_setup_copper_link(struct e1000_hw *hw); static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw); static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw); static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw); static s32 e1000_config_mac_to_phy(struct e1000_hw *hw); static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl); static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl); static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count); static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw); static s32 e1000_phy_reset_dsp(struct e1000_hw *hw); static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw); static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd); static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd); static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count); static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, u16 phy_data); static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data); static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count); static s32 e1000_acquire_eeprom(struct e1000_hw *hw); static void e1000_release_eeprom(struct e1000_hw *hw); static void e1000_standby_eeprom(struct e1000_hw *hw); static s32 e1000_set_vco_speed(struct e1000_hw *hw); static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw); static s32 e1000_set_phy_mode(struct e1000_hw *hw); static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); /* IGP cable length table */ static const u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25, 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40, 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60, 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90, 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120 }; static DEFINE_MUTEX(e1000_eeprom_lock); static DEFINE_SPINLOCK(e1000_phy_lock); /** * e1000_set_phy_type - Set the phy type member in the hw struct. * @hw: Struct containing variables accessed by shared code */ static s32 e1000_set_phy_type(struct e1000_hw *hw) { if (hw->mac_type == e1000_undefined) return -E1000_ERR_PHY_TYPE; switch (hw->phy_id) { case M88E1000_E_PHY_ID: case M88E1000_I_PHY_ID: case M88E1011_I_PHY_ID: case M88E1111_I_PHY_ID: case M88E1118_E_PHY_ID: hw->phy_type = e1000_phy_m88; break; case IGP01E1000_I_PHY_ID: if (hw->mac_type == e1000_82541 || hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) hw->phy_type = e1000_phy_igp; break; case RTL8211B_PHY_ID: hw->phy_type = e1000_phy_8211; break; case RTL8201N_PHY_ID: hw->phy_type = e1000_phy_8201; break; default: /* Should never have loaded on this device */ hw->phy_type = e1000_phy_undefined; return -E1000_ERR_PHY_TYPE; } return E1000_SUCCESS; } /** * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY * @hw: Struct containing variables accessed by shared code */ static void e1000_phy_init_script(struct e1000_hw *hw) { u32 ret_val; u16 phy_saved_data; if (hw->phy_init_script) { msleep(20); /* Save off the current value of register 0x2F5B to be restored * at the end of this routine. */ ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); /* Disabled the PHY transmitter */ e1000_write_phy_reg(hw, 0x2F5B, 0x0003); msleep(20); e1000_write_phy_reg(hw, 0x0000, 0x0140); msleep(5); switch (hw->mac_type) { case e1000_82541: case e1000_82547: e1000_write_phy_reg(hw, 0x1F95, 0x0001); e1000_write_phy_reg(hw, 0x1F71, 0xBD21); e1000_write_phy_reg(hw, 0x1F79, 0x0018); e1000_write_phy_reg(hw, 0x1F30, 0x1600); e1000_write_phy_reg(hw, 0x1F31, 0x0014); e1000_write_phy_reg(hw, 0x1F32, 0x161C); e1000_write_phy_reg(hw, 0x1F94, 0x0003); e1000_write_phy_reg(hw, 0x1F96, 0x003F); e1000_write_phy_reg(hw, 0x2010, 0x0008); break; case e1000_82541_rev_2: case e1000_82547_rev_2: e1000_write_phy_reg(hw, 0x1F73, 0x0099); break; default: break; } e1000_write_phy_reg(hw, 0x0000, 0x3300); msleep(20); /* Now enable the transmitter */ e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); if (hw->mac_type == e1000_82547) { u16 fused, fine, coarse; /* Move to analog registers page */ e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused); if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused); fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK; if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10; fine -= IGP01E1000_ANALOG_FUSE_FINE_1; } else if (coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH) fine -= IGP01E1000_ANALOG_FUSE_FINE_10; fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) | (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) | (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK); e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused); e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS, IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); } } } } /** * e1000_set_mac_type - Set the mac type member in the hw struct. * @hw: Struct containing variables accessed by shared code */ s32 e1000_set_mac_type(struct e1000_hw *hw) { switch (hw->device_id) { case E1000_DEV_ID_82542: switch (hw->revision_id) { case E1000_82542_2_0_REV_ID: hw->mac_type = e1000_82542_rev2_0; break; case E1000_82542_2_1_REV_ID: hw->mac_type = e1000_82542_rev2_1; break; default: /* Invalid 82542 revision ID */ return -E1000_ERR_MAC_TYPE; } break; case E1000_DEV_ID_82543GC_FIBER: case E1000_DEV_ID_82543GC_COPPER: hw->mac_type = e1000_82543; break; case E1000_DEV_ID_82544EI_COPPER: case E1000_DEV_ID_82544EI_FIBER: case E1000_DEV_ID_82544GC_COPPER: case E1000_DEV_ID_82544GC_LOM: hw->mac_type = e1000_82544; break; case E1000_DEV_ID_82540EM: case E1000_DEV_ID_82540EM_LOM: case E1000_DEV_ID_82540EP: case E1000_DEV_ID_82540EP_LOM: case E1000_DEV_ID_82540EP_LP: hw->mac_type = e1000_82540; break; case E1000_DEV_ID_82545EM_COPPER: case E1000_DEV_ID_82545EM_FIBER: hw->mac_type = e1000_82545; break; case E1000_DEV_ID_82545GM_COPPER: case E1000_DEV_ID_82545GM_FIBER: case E1000_DEV_ID_82545GM_SERDES: hw->mac_type = e1000_82545_rev_3; break; case E1000_DEV_ID_82546EB_COPPER: case E1000_DEV_ID_82546EB_FIBER: case E1000_DEV_ID_82546EB_QUAD_COPPER: hw->mac_type = e1000_82546; break; case E1000_DEV_ID_82546GB_COPPER: case E1000_DEV_ID_82546GB_FIBER: case E1000_DEV_ID_82546GB_SERDES: case E1000_DEV_ID_82546GB_PCIE: case E1000_DEV_ID_82546GB_QUAD_COPPER: case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: hw->mac_type = e1000_82546_rev_3; break; case E1000_DEV_ID_82541EI: case E1000_DEV_ID_82541EI_MOBILE: case E1000_DEV_ID_82541ER_LOM: hw->mac_type = e1000_82541; break; case E1000_DEV_ID_82541ER: case E1000_DEV_ID_82541GI: case E1000_DEV_ID_82541GI_LF: case E1000_DEV_ID_82541GI_MOBILE: hw->mac_type = e1000_82541_rev_2; break; case E1000_DEV_ID_82547EI: case E1000_DEV_ID_82547EI_MOBILE: hw->mac_type = e1000_82547; break; case E1000_DEV_ID_82547GI: hw->mac_type = e1000_82547_rev_2; break; case E1000_DEV_ID_INTEL_CE4100_GBE: hw->mac_type = e1000_ce4100; break; default: /* Should never have loaded on this device */ return -E1000_ERR_MAC_TYPE; } switch (hw->mac_type) { case e1000_82541: case e1000_82547: case e1000_82541_rev_2: case e1000_82547_rev_2: hw->asf_firmware_present = true; break; default: break; } /* The 82543 chip does not count tx_carrier_errors properly in * FD mode */ if (hw->mac_type == e1000_82543) hw->bad_tx_carr_stats_fd = true; if (hw->mac_type > e1000_82544) hw->has_smbus = true; return E1000_SUCCESS; } /** * e1000_set_media_type - Set media type and TBI compatibility. * @hw: Struct containing variables accessed by shared code */ void e1000_set_media_type(struct e1000_hw *hw) { u32 status; if (hw->mac_type != e1000_82543) { /* tbi_compatibility is only valid on 82543 */ hw->tbi_compatibility_en = false; } switch (hw->device_id) { case E1000_DEV_ID_82545GM_SERDES: case E1000_DEV_ID_82546GB_SERDES: hw->media_type = e1000_media_type_internal_serdes; break; default: switch (hw->mac_type) { case e1000_82542_rev2_0: case e1000_82542_rev2_1: hw->media_type = e1000_media_type_fiber; break; case e1000_ce4100: hw->media_type = e1000_media_type_copper; break; default: status = er32(STATUS); if (status & E1000_STATUS_TBIMODE) { hw->media_type = e1000_media_type_fiber; /* tbi_compatibility not valid on fiber */ hw->tbi_compatibility_en = false; } else { hw->media_type = e1000_media_type_copper; } break; } } } /** * e1000_reset_hw - reset the hardware completely * @hw: Struct containing variables accessed by shared code * * Reset the transmit and receive units; mask and clear all interrupts. */ s32 e1000_reset_hw(struct e1000_hw *hw) { u32 ctrl; u32 ctrl_ext; u32 icr; u32 manc; u32 led_ctrl; s32 ret_val; /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ if (hw->mac_type == e1000_82542_rev2_0) { e_dbg("Disabling MWI on 82542 rev 2.0\n"); e1000_pci_clear_mwi(hw); } /* Clear interrupt mask to stop board from generating interrupts */ e_dbg("Masking off all interrupts\n"); ew32(IMC, 0xffffffff); /* Disable the Transmit and Receive units. Then delay to allow * any pending transactions to complete before we hit the MAC with * the global reset. */ ew32(RCTL, 0); ew32(TCTL, E1000_TCTL_PSP); E1000_WRITE_FLUSH(); /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */ hw->tbi_compatibility_on = false; /* Delay to allow any outstanding PCI transactions to complete before * resetting the device */ msleep(10); ctrl = er32(CTRL); /* Must reset the PHY before resetting the MAC */ if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST)); E1000_WRITE_FLUSH(); msleep(5); } /* Issue a global reset to the MAC. This will reset the chip's * transmit, receive, DMA, and link units. It will not effect * the current PCI configuration. The global reset bit is self- * clearing, and should clear within a microsecond. */ e_dbg("Issuing a global reset to MAC\n"); switch (hw->mac_type) { case e1000_82544: case e1000_82540: case e1000_82545: case e1000_82546: case e1000_82541: case e1000_82541_rev_2: /* These controllers can't ack the 64-bit write when issuing the * reset, so use IO-mapping as a workaround to issue the reset */ E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST)); break; case e1000_82545_rev_3: case e1000_82546_rev_3: /* Reset is performed on a shadow of the control register */ ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST)); break; case e1000_ce4100: default: ew32(CTRL, (ctrl | E1000_CTRL_RST)); break; } /* After MAC reset, force reload of EEPROM to restore power-on settings * to device. Later controllers reload the EEPROM automatically, so * just wait for reload to complete. */ switch (hw->mac_type) { case e1000_82542_rev2_0: case e1000_82542_rev2_1: case e1000_82543: case e1000_82544: /* Wait for reset to complete */ udelay(10); ctrl_ext = er32(CTRL_EXT); ctrl_ext |= E1000_CTRL_EXT_EE_RST; ew32(CTRL_EXT, ctrl_ext); E1000_WRITE_FLUSH(); /* Wait for EEPROM reload */ msleep(2); break; case e1000_82541: case e1000_82541_rev_2: case e1000_82547: case e1000_82547_rev_2: /* Wait for EEPROM reload */ msleep(20); break; default: /* Auto read done will delay 5ms or poll based on mac type */ ret_val = e1000_get_auto_rd_done(hw); if (ret_val) return ret_val; break; } /* Disable HW ARPs on ASF enabled adapters */ if (hw->mac_type >= e1000_82540) { manc = er32(MANC); manc &= ~(E1000_MANC_ARP_EN); ew32(MANC, manc); } if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { e1000_phy_init_script(hw); /* Configure activity LED after PHY reset */ led_ctrl = er32(LEDCTL); led_ctrl &= IGP_ACTIVITY_LED_MASK; led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); ew32(LEDCTL, led_ctrl); } /* Clear interrupt mask to stop board from generating interrupts */ e_dbg("Masking off all interrupts\n"); ew32(IMC, 0xffffffff); /* Clear any pending interrupt events. */ icr = er32(ICR); /* If MWI was previously enabled, reenable it. */ if (hw->mac_type == e1000_82542_rev2_0) { if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) e1000_pci_set_mwi(hw); } return E1000_SUCCESS; } /** * e1000_init_hw - Performs basic configuration of the adapter. * @hw: Struct containing variables accessed by shared code * * Assumes that the controller has previously been reset and is in a * post-reset uninitialized state. Initializes the receive address registers, * multicast table, and VLAN filter table. Calls routines to setup link * configuration and flow control settings. Clears all on-chip counters. Leaves * the transmit and receive units disabled and uninitialized. */ s32 e1000_init_hw(struct e1000_hw *hw) { u32 ctrl; u32 i; s32 ret_val; u32 mta_size; u32 ctrl_ext; /* Initialize Identification LED */ ret_val = e1000_id_led_init(hw); if (ret_val) { e_dbg("Error Initializing Identification LED\n"); return ret_val; } /* Set the media type and TBI compatibility */ e1000_set_media_type(hw); /* Disabling VLAN filtering. */ e_dbg("Initializing the IEEE VLAN\n"); if (hw->mac_type < e1000_82545_rev_3) ew32(VET, 0); e1000_clear_vfta(hw); /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ if (hw->mac_type == e1000_82542_rev2_0) { e_dbg("Disabling MWI on 82542 rev 2.0\n"); e1000_pci_clear_mwi(hw); ew32(RCTL, E1000_RCTL_RST); E1000_WRITE_FLUSH(); msleep(5); } /* Setup the receive address. This involves initializing all of the * Receive Address Registers (RARs 0 - 15). */ e1000_init_rx_addrs(hw); /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ if (hw->mac_type == e1000_82542_rev2_0) { ew32(RCTL, 0); E1000_WRITE_FLUSH(); msleep(1); if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) e1000_pci_set_mwi(hw); } /* Zero out the Multicast HASH table */ e_dbg("Zeroing the MTA\n"); mta_size = E1000_MC_TBL_SIZE; for (i = 0; i < mta_size; i++) { E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); /* use write flush to prevent Memory Write Block (MWB) from * occurring when accessing our register space */ E1000_WRITE_FLUSH(); } /* Set the PCI priority bit correctly in the CTRL register. This * determines if the adapter gives priority to receives, or if it * gives equal priority to transmits and receives. Valid only on * 82542 and 82543 silicon. */ if (hw->dma_fairness && hw->mac_type <= e1000_82543) { ctrl = er32(CTRL); ew32(CTRL, ctrl | E1000_CTRL_PRIOR); } switch (hw->mac_type) { case e1000_82545_rev_3: case e1000_82546_rev_3: break; default: /* Workaround for PCI-X problem when BIOS sets MMRBC * incorrectly. */ if (hw->bus_type == e1000_bus_type_pcix && e1000_pcix_get_mmrbc(hw) > 2048) e1000_pcix_set_mmrbc(hw, 2048); break; } /* Call a subroutine to configure the link and setup flow control. */ ret_val = e1000_setup_link(hw); /* Set the transmit descriptor write-back policy */ if (hw->mac_type > e1000_82544) { ctrl = er32(TXDCTL); ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; ew32(TXDCTL, ctrl); } /* Clear all of the statistics registers (clear on read). It is * important that we do this after we have tried to establish link * because the symbol error count will increment wildly if there * is no link. */ e1000_clear_hw_cntrs(hw); if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER || hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) { ctrl_ext = er32(CTRL_EXT); /* Relaxed ordering must be disabled to avoid a parity * error crash in a PCI slot. */ ctrl_ext |= E1000_CTRL_EXT_RO_DIS; ew32(CTRL_EXT, ctrl_ext); } return ret_val; } /** * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting. * @hw: Struct containing variables accessed by shared code. */ static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw) { u16 eeprom_data; s32 ret_val; if (hw->media_type != e1000_media_type_internal_serdes) return E1000_SUCCESS; switch (hw->mac_type) { case e1000_82545_rev_3: case e1000_82546_rev_3: break; default: return E1000_SUCCESS; } ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data); if (ret_val) return ret_val; if (eeprom_data != EEPROM_RESERVED_WORD) { /* Adjust SERDES output amplitude only. */ eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK; ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data); if (ret_val) return ret_val; } return E1000_SUCCESS; } /** * e1000_setup_link - Configures flow control and link settings. * @hw: Struct containing variables accessed by shared code * * Determines which flow control settings to use. Calls the appropriate media- * specific link configuration function. Configures the flow control settings. * Assuming the adapter has a valid link partner, a valid link should be * established. Assumes the hardware has previously been reset and the * transmitter and receiver are not enabled. */ s32 e1000_setup_link(struct e1000_hw *hw) { u32 ctrl_ext; s32 ret_val; u16 eeprom_data; /* Read and store word 0x0F of the EEPROM. This word contains bits * that determine the hardware's default PAUSE (flow control) mode, * a bit that determines whether the HW defaults to enabling or * disabling auto-negotiation, and the direction of the * SW defined pins. If there is no SW over-ride of the flow * control setting, then the variable hw->fc will * be initialized based on a value in the EEPROM. */ if (hw->fc == E1000_FC_DEFAULT) { ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); if (ret_val) { e_dbg("EEPROM Read Error\n"); return -E1000_ERR_EEPROM; } if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) hw->fc = E1000_FC_NONE; else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == EEPROM_WORD0F_ASM_DIR) hw->fc = E1000_FC_TX_PAUSE; else hw->fc = E1000_FC_FULL; } /* We want to save off the original Flow Control configuration just * in case we get disconnected and then reconnected into a different * hub or switch with different Flow Control capabilities. */ if (hw->mac_type == e1000_82542_rev2_0) hw->fc &= (~E1000_FC_TX_PAUSE); if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1)) hw->fc &= (~E1000_FC_RX_PAUSE); hw->original_fc = hw->fc; e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc); /* Take the 4 bits from EEPROM word 0x0F that determine the initial * polarity value for the SW controlled pins, and setup the * Extended Device Control reg with that info. * This is needed because one of the SW controlled pins is used for * signal detection. So this should be done before e1000_setup_pcs_link() * or e1000_phy_setup() is called. */ if (hw->mac_type == e1000_82543) { ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); if (ret_val) { e_dbg("EEPROM Read Error\n"); return -E1000_ERR_EEPROM; } ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << SWDPIO__EXT_SHIFT); ew32(CTRL_EXT, ctrl_ext); } /* Call the necessary subroutine to configure the link. */ ret_val = (hw->media_type == e1000_media_type_copper) ? e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw); /* Initialize the flow control address, type, and PAUSE timer * registers to their default values. This is done even if flow * control is disabled, because it does not hurt anything to * initialize these registers. */ e_dbg("Initializing the Flow Control address, type and timer regs\n"); ew32(FCT, FLOW_CONTROL_TYPE); ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH); ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW); ew32(FCTTV, hw->fc_pause_time); /* Set the flow control receive threshold registers. Normally, * these registers will be set to a default threshold that may be * adjusted later by the driver's runtime code. However, if the * ability to transmit pause frames in not enabled, then these * registers will be set to 0. */ if (!(hw->fc & E1000_FC_TX_PAUSE)) { ew32(FCRTL, 0); ew32(FCRTH, 0); } else { /* We need to set up the Receive Threshold high and low water * marks as well as (optionally) enabling the transmission of * XON frames. */ if (hw->fc_send_xon) { ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE)); ew32(FCRTH, hw->fc_high_water); } else { ew32(FCRTL, hw->fc_low_water); ew32(FCRTH, hw->fc_high_water); } } return ret_val; } /** * e1000_setup_fiber_serdes_link - prepare fiber or serdes link * @hw: Struct containing variables accessed by shared code * * Manipulates Physical Coding Sublayer functions in order to configure * link. Assumes the hardware has been previously reset and the transmitter * and receiver are not enabled. */ static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw) { u32 ctrl; u32 status; u32 txcw = 0; u32 i; u32 signal = 0; s32 ret_val; /* On adapters with a MAC newer than 82544, SWDP 1 will be * set when the optics detect a signal. On older adapters, it will be * cleared when there is a signal. This applies to fiber media only. * If we're on serdes media, adjust the output amplitude to value * set in the EEPROM. */ ctrl = er32(CTRL); if (hw->media_type == e1000_media_type_fiber) signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; ret_val = e1000_adjust_serdes_amplitude(hw); if (ret_val) return ret_val; /* Take the link out of reset */ ctrl &= ~(E1000_CTRL_LRST); /* Adjust VCO speed to improve BER performance */ ret_val = e1000_set_vco_speed(hw); if (ret_val) return ret_val; e1000_config_collision_dist(hw); /* Check for a software override of the flow control settings, and setup * the device accordingly. If auto-negotiation is enabled, then * software will have to set the "PAUSE" bits to the correct value in * the Tranmsit Config Word Register (TXCW) and re-start * auto-negotiation. However, if auto-negotiation is disabled, then * software will have to manually configure the two flow control enable * bits in the CTRL register. * * The possible values of the "fc" parameter are: * 0: Flow control is completely disabled * 1: Rx flow control is enabled (we can receive pause frames, but * not send pause frames). * 2: Tx flow control is enabled (we can send pause frames but we do * not support receiving pause frames). * 3: Both Rx and TX flow control (symmetric) are enabled. */ switch (hw->fc) { case E1000_FC_NONE: /* Flow ctrl is completely disabled by a software over-ride */ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); break; case E1000_FC_RX_PAUSE: /* Rx Flow control is enabled and Tx Flow control is disabled by * a software over-ride. Since there really isn't a way to * advertise that we are capable of Rx Pause ONLY, we will * advertise that we support both symmetric and asymmetric Rx * PAUSE. Later, we will disable the adapter's ability to send * PAUSE frames. */ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); break; case E1000_FC_TX_PAUSE: /* Tx Flow control is enabled, and Rx Flow control is disabled, * by a software over-ride. */ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); break; case E1000_FC_FULL: /* Flow control (both Rx and Tx) is enabled by a software * over-ride. */ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); break; default: e_dbg("Flow control param set incorrectly\n"); return -E1000_ERR_CONFIG; } /* Since auto-negotiation is enabled, take the link out of reset (the * link will be in reset, because we previously reset the chip). This * will restart auto-negotiation. If auto-negotiation is successful * then the link-up status bit will be set and the flow control enable * bits (RFCE and TFCE) will be set according to their negotiated value. */ e_dbg("Auto-negotiation enabled\n"); ew32(TXCW, txcw); ew32(CTRL, ctrl); E1000_WRITE_FLUSH(); hw->txcw = txcw; msleep(1); /* If we have a signal (the cable is plugged in) then poll for a * "Link-Up" indication in the Device Status Register. Time-out if a * link isn't seen in 500 milliseconds seconds (Auto-negotiation should * complete in less than 500 milliseconds even if the other end is doing * it in SW). For internal serdes, we just assume a signal is present, * then poll. */ if (hw->media_type == e1000_media_type_internal_serdes || (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) { e_dbg("Looking for Link\n"); for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { msleep(10); status = er32(STATUS); if (status & E1000_STATUS_LU) break; } if (i == (LINK_UP_TIMEOUT / 10)) { e_dbg("Never got a valid link from auto-neg!!!\n"); hw->autoneg_failed = 1; /* AutoNeg failed to achieve a link, so we'll call * e1000_check_for_link. This routine will force the * link up if we detect a signal. This will allow us to * communicate with non-autonegotiating link partners. */ ret_val = e1000_check_for_link(hw); if (ret_val) { e_dbg("Error while checking for link\n"); return ret_val; } hw->autoneg_failed = 0; } else { hw->autoneg_failed = 0; e_dbg("Valid Link Found\n"); } } else { e_dbg("No Signal Detected\n"); } return E1000_SUCCESS; } /** * e1000_copper_link_rtl_setup - Copper link setup for e1000_phy_rtl series. * @hw: Struct containing variables accessed by shared code * * Commits changes to PHY configuration by calling e1000_phy_reset(). */ static s32 e1000_copper_link_rtl_setup(struct e1000_hw *hw) { s32 ret_val; /* SW reset the PHY so all changes take effect */ ret_val = e1000_phy_reset(hw); if (ret_val) { e_dbg("Error Resetting the PHY\n"); return ret_val; } return E1000_SUCCESS; } static s32 gbe_dhg_phy_setup(struct e1000_hw *hw) { s32 ret_val; u32 ctrl_aux; switch (hw->phy_type) { case e1000_phy_8211: ret_val = e1000_copper_link_rtl_setup(hw); if (ret_val) { e_dbg("e1000_copper_link_rtl_setup failed!\n"); return ret_val; } break; case e1000_phy_8201: /* Set RMII mode */ ctrl_aux = er32(CTL_AUX); ctrl_aux |= E1000_CTL_AUX_RMII; ew32(CTL_AUX, ctrl_aux); E1000_WRITE_FLUSH(); /* Disable the J/K bits required for receive */ ctrl_aux = er32(CTL_AUX); ctrl_aux |= 0x4; ctrl_aux &= ~0x2; ew32(CTL_AUX, ctrl_aux); E1000_WRITE_FLUSH(); ret_val = e1000_copper_link_rtl_setup(hw); if (ret_val) { e_dbg("e1000_copper_link_rtl_setup failed!\n"); return ret_val; } break; default: e_dbg("Error Resetting the PHY\n"); return E1000_ERR_PHY_TYPE; } return E1000_SUCCESS; } /** * e1000_copper_link_preconfig - early configuration for copper * @hw: Struct containing variables accessed by shared code * * Make sure we have a valid PHY and change PHY mode before link setup. */ static s32 e1000_copper_link_preconfig(struct e1000_hw *hw) { u32 ctrl; s32 ret_val; u16 phy_data; ctrl = er32(CTRL); /* With 82543, we need to force speed and duplex on the MAC equal to * what the PHY speed and duplex configuration is. In addition, we need * to perform a hardware reset on the PHY to take it out of reset. */ if (hw->mac_type > e1000_82543) { ctrl |= E1000_CTRL_SLU; ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); ew32(CTRL, ctrl); } else { ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); ew32(CTRL, ctrl); ret_val = e1000_phy_hw_reset(hw); if (ret_val) return ret_val; } /* Make sure we have a valid PHY */ ret_val = e1000_detect_gig_phy(hw); if (ret_val) { e_dbg("Error, did not detect valid phy.\n"); return ret_val; } e_dbg("Phy ID = %x\n", hw->phy_id); /* Set PHY to class A mode (if necessary) */ ret_val = e1000_set_phy_mode(hw); if (ret_val) return ret_val; if ((hw->mac_type == e1000_82545_rev_3) || (hw->mac_type == e1000_82546_rev_3)) { ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); phy_data |= 0x00000008; ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); } if (hw->mac_type <= e1000_82543 || hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 || hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) hw->phy_reset_disable = false; return E1000_SUCCESS; } /** * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series. * @hw: Struct containing variables accessed by shared code */ static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw) { u32 led_ctrl; s32 ret_val; u16 phy_data; if (hw->phy_reset_disable) return E1000_SUCCESS; ret_val = e1000_phy_reset(hw); if (ret_val) { e_dbg("Error Resetting the PHY\n"); return ret_val; } /* Wait 15ms for MAC to configure PHY from eeprom settings */ msleep(15); /* Configure activity LED after PHY reset */ led_ctrl = er32(LEDCTL); led_ctrl &= IGP_ACTIVITY_LED_MASK; led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); ew32(LEDCTL, led_ctrl); /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */ if (hw->phy_type == e1000_phy_igp) { /* disable lplu d3 during driver init */ ret_val = e1000_set_d3_lplu_state(hw, false); if (ret_val) { e_dbg("Error Disabling LPLU D3\n"); return ret_val; } } /* Configure mdi-mdix settings */ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); if (ret_val) return ret_val; if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { hw->dsp_config_state = e1000_dsp_config_disabled; /* Force MDI for earlier revs of the IGP PHY */ phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX); hw->mdix = 1; } else { hw->dsp_config_state = e1000_dsp_config_enabled; phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; switch (hw->mdix) { case 1: phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; break; case 2: phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; break; case 0: default: phy_data |= IGP01E1000_PSCR_AUTO_MDIX; break; } } ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); if (ret_val) return ret_val; /* set auto-master slave resolution settings */ if (hw->autoneg) { e1000_ms_type phy_ms_setting = hw->master_slave; if (hw->ffe_config_state == e1000_ffe_config_active) hw->ffe_config_state = e1000_ffe_config_enabled; if (hw->dsp_config_state == e1000_dsp_config_activated) hw->dsp_config_state = e1000_dsp_config_enabled; /* when autonegotiation advertisement is only 1000Mbps then we * should disable SmartSpeed and enable Auto MasterSlave * resolution as hardware default. */ if (hw->autoneg_advertised == ADVERTISE_1000_FULL) { /* Disable SmartSpeed */ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); if (ret_val) return ret_val; phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); if (ret_val) return ret_val; /* Set auto Master/Slave resolution process */ ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); if (ret_val) return ret_val; phy_data &= ~CR_1000T_MS_ENABLE; ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); if (ret_val) return ret_val; } ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); if (ret_val) return ret_val; /* load defaults for future use */ hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ? ((phy_data & CR_1000T_MS_VALUE) ? e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto; switch (phy_ms_setting) { case e1000_ms_force_master: phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); break; case e1000_ms_force_slave: phy_data |= CR_1000T_MS_ENABLE; phy_data &= ~(CR_1000T_MS_VALUE); break; case e1000_ms_auto: phy_data &= ~CR_1000T_MS_ENABLE; default: break; } ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); if (ret_val) return ret_val; } return E1000_SUCCESS; } /** * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series. * @hw: Struct containing variables accessed by shared code */ static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw) { s32 ret_val; u16 phy_data; if (hw->phy_reset_disable) return E1000_SUCCESS; /* Enable CRS on TX. This must be set for half-duplex operation. */ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); if (ret_val) return ret_val; phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; /* Options: * MDI/MDI-X = 0 (default) * 0 - Auto for all speeds * 1 - MDI mode * 2 - MDI-X mode * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) */ phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; switch (hw->mdix) { case 1: phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; break; case 2: phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; break; case 3: phy_data |= M88E1000_PSCR_AUTO_X_1000T; break; case 0: default: phy_data |= M88E1000_PSCR_AUTO_X_MODE; break; } /* Options: * disable_polarity_correction = 0 (default) * Automatic Correction for Reversed Cable Polarity * 0 - Disabled * 1 - Enabled */ phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; if (hw->disable_polarity_correction == 1) phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); if (ret_val) return ret_val; if (hw->phy_revision < M88E1011_I_REV_4) { /* Force TX_CLK in the Extended PHY Specific Control Register * to 25MHz clock. */ ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); if (ret_val) return ret_val; phy_data |= M88E1000_EPSCR_TX_CLK_25; if ((hw->phy_revision == E1000_REVISION_2) && (hw->phy_id == M88E1111_I_PHY_ID)) { /* Vidalia Phy, set the downshift counter to 5x */ phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK); phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); if (ret_val) return ret_val; } else { /* Configure Master and Slave downshift values */ phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); if (ret_val) return ret_val; } } /* SW Reset the PHY so all changes take effect */ ret_val = e1000_phy_reset(hw); if (ret_val) { e_dbg("Error Resetting the PHY\n"); return ret_val; } return E1000_SUCCESS; } /** * e1000_copper_link_autoneg - setup auto-neg * @hw: Struct containing variables accessed by shared code * * Setup auto-negotiation and flow control advertisements, * and then perform auto-negotiation. */ static s32 e1000_copper_link_autoneg(struct e1000_hw *hw) { s32 ret_val; u16 phy_data; /* Perform some bounds checking on the hw->autoneg_advertised * parameter. If this variable is zero, then set it to the default. */ hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; /* If autoneg_advertised is zero, we assume it was not defaulted * by the calling code so we set to advertise full capability. */ if (hw->autoneg_advertised == 0) hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; /* IFE/RTL8201N PHY only supports 10/100 */ if (hw->phy_type == e1000_phy_8201) hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL; e_dbg("Reconfiguring auto-neg advertisement params\n"); ret_val = e1000_phy_setup_autoneg(hw); if (ret_val) { e_dbg("Error Setting up Auto-Negotiation\n"); return ret_val; } e_dbg("Restarting Auto-Neg\n"); /* Restart auto-negotiation by setting the Auto Neg Enable bit and * the Auto Neg Restart bit in the PHY control register. */ ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); if (ret_val) return ret_val; phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); if (ret_val) return ret_val; /* Does the user want to wait for Auto-Neg to complete here, or * check at a later time (for example, callback routine). */ if (hw->wait_autoneg_complete) { ret_val = e1000_wait_autoneg(hw); if (ret_val) { e_dbg ("Error while waiting for autoneg to complete\n"); return ret_val; } } hw->get_link_status = true; return E1000_SUCCESS; } /** * e1000_copper_link_postconfig - post link setup * @hw: Struct containing variables accessed by shared code * * Config the MAC and the PHY after link is up. * 1) Set up the MAC to the current PHY speed/duplex * if we are on 82543. If we * are on newer silicon, we only need to configure * collision distance in the Transmit Control Register. * 2) Set up flow control on the MAC to that established with * the link partner. * 3) Config DSP to improve Gigabit link quality for some PHY revisions. */ static s32 e1000_copper_link_postconfig(struct e1000_hw *hw) { s32 ret_val; if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) { e1000_config_collision_dist(hw); } else { ret_val = e1000_config_mac_to_phy(hw); if (ret_val) { e_dbg("Error configuring MAC to PHY settings\n"); return ret_val; } } ret_val = e1000_config_fc_after_link_up(hw); if (ret_val) { e_dbg("Error Configuring Flow Control\n"); return ret_val; } /* Config DSP to improve Giga link quality */ if (hw->phy_type == e1000_phy_igp) { ret_val = e1000_config_dsp_after_link_change(hw, true); if (ret_val) { e_dbg("Error Configuring DSP after link up\n"); return ret_val; } } return E1000_SUCCESS; } /** * e1000_setup_copper_link - phy/speed/duplex setting * @hw: Struct containing variables accessed by shared code * * Detects which PHY is present and sets up the speed and duplex */ static s32 e1000_setup_copper_link(struct e1000_hw *hw) { s32 ret_val; u16 i; u16 phy_data; /* Check if it is a valid PHY and set PHY mode if necessary. */ ret_val = e1000_copper_link_preconfig(hw); if (ret_val) return ret_val; if (hw->phy_type == e1000_phy_igp) { ret_val = e1000_copper_link_igp_setup(hw); if (ret_val) return ret_val; } else if (hw->phy_type == e1000_phy_m88) { ret_val = e1000_copper_link_mgp_setup(hw); if (ret_val) return ret_val; } else { ret_val = gbe_dhg_phy_setup(hw); if (ret_val) { e_dbg("gbe_dhg_phy_setup failed!\n"); return ret_val; } } if (hw->autoneg) { /* Setup autoneg and flow control advertisement * and perform autonegotiation */ ret_val = e1000_copper_link_autoneg(hw); if (ret_val) return ret_val; } else { /* PHY will be set to 10H, 10F, 100H,or 100F * depending on value from forced_speed_duplex. */ e_dbg("Forcing speed and duplex\n"); ret_val = e1000_phy_force_speed_duplex(hw); if (ret_val) { e_dbg("Error Forcing Speed and Duplex\n"); return ret_val; } } /* Check link status. Wait up to 100 microseconds for link to become * valid. */ for (i = 0; i < 10; i++) { ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); if (ret_val) return ret_val; ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); if (ret_val) return ret_val; if (phy_data & MII_SR_LINK_STATUS) { /* Config the MAC and PHY after link is up */ ret_val = e1000_copper_link_postconfig(hw); if (ret_val) return ret_val; e_dbg("Valid link established!!!\n"); return E1000_SUCCESS; } udelay(10); } e_dbg("Unable to establish link!!!\n"); return E1000_SUCCESS; } /** * e1000_phy_setup_autoneg - phy settings * @hw: Struct containing variables accessed by shared code * * Configures PHY autoneg and flow control advertisement settings */ s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) { s32 ret_val; u16 mii_autoneg_adv_reg; u16 mii_1000t_ctrl_reg; /* Read the MII Auto-Neg Advertisement Register (Address 4). */ ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); if (ret_val) return ret_val; /* Read the MII 1000Base-T Control Register (Address 9). */ ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); if (ret_val) return ret_val; else if (hw->phy_type == e1000_phy_8201) mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; /* Need to parse both autoneg_advertised and fc and set up * the appropriate PHY registers. First we will parse for * autoneg_advertised software override. Since we can advertise * a plethora of combinations, we need to check each bit * individually. */ /* First we clear all the 10/100 mb speed bits in the Auto-Neg * Advertisement Register (Address 4) and the 1000 mb speed bits in * the 1000Base-T Control Register (Address 9). */ mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; e_dbg("autoneg_advertised %x\n", hw->autoneg_advertised); /* Do we want to advertise 10 Mb Half Duplex? */ if (hw->autoneg_advertised & ADVERTISE_10_HALF) { e_dbg("Advertise 10mb Half duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; } /* Do we want to advertise 10 Mb Full Duplex? */ if (hw->autoneg_advertised & ADVERTISE_10_FULL) { e_dbg("Advertise 10mb Full duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; } /* Do we want to advertise 100 Mb Half Duplex? */ if (hw->autoneg_advertised & ADVERTISE_100_HALF) { e_dbg("Advertise 100mb Half duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; } /* Do we want to advertise 100 Mb Full Duplex? */ if (hw->autoneg_advertised & ADVERTISE_100_FULL) { e_dbg("Advertise 100mb Full duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; } /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ if (hw->autoneg_advertised & ADVERTISE_1000_HALF) { e_dbg ("Advertise 1000mb Half duplex requested, request denied!\n"); } /* Do we want to advertise 1000 Mb Full Duplex? */ if (hw->autoneg_advertised & ADVERTISE_1000_FULL) { e_dbg("Advertise 1000mb Full duplex\n"); mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; } /* Check for a software override of the flow control settings, and * setup the PHY advertisement registers accordingly. If * auto-negotiation is enabled, then software will have to set the * "PAUSE" bits to the correct value in the Auto-Negotiation * Advertisement Register (PHY_AUTONEG_ADV) and re-start * auto-negotiation. * * The possible values of the "fc" parameter are: * 0: Flow control is completely disabled * 1: Rx flow control is enabled (we can receive pause frames * but not send pause frames). * 2: Tx flow control is enabled (we can send pause frames * but we do not support receiving pause frames). * 3: Both Rx and TX flow control (symmetric) are enabled. * other: No software override. The flow control configuration * in the EEPROM is used. */ switch (hw->fc) { case E1000_FC_NONE: /* 0 */ /* Flow control (RX & TX) is completely disabled by a * software over-ride. */ mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); break; case E1000_FC_RX_PAUSE: /* 1 */ /* RX Flow control is enabled, and TX Flow control is * disabled, by a software over-ride. */ /* Since there really isn't a way to advertise that we are * capable of RX Pause ONLY, we will advertise that we * support both symmetric and asymmetric RX PAUSE. Later * (in e1000_config_fc_after_link_up) we will disable the * hw's ability to send PAUSE frames. */ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); break; case E1000_FC_TX_PAUSE: /* 2 */ /* TX Flow control is enabled, and RX Flow control is * disabled, by a software over-ride. */ mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; break; case E1000_FC_FULL: /* 3 */ /* Flow control (both RX and TX) is enabled by a software * over-ride. */ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); break; default: e_dbg("Flow control param set incorrectly\n"); return -E1000_ERR_CONFIG; } ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); if (ret_val) return ret_val; e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); if (hw->phy_type == e1000_phy_8201) { mii_1000t_ctrl_reg = 0; } else { ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); if (ret_val) return ret_val; } return E1000_SUCCESS; } /** * e1000_phy_force_speed_duplex - force link settings * @hw: Struct containing variables accessed by shared code * * Force PHY speed and duplex settings to hw->forced_speed_duplex */ static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw) { u32 ctrl; s32 ret_val; u16 mii_ctrl_reg; u16 mii_status_reg; u16 phy_data; u16 i; /* Turn off Flow control if we are forcing speed and duplex. */ hw->fc = E1000_FC_NONE; e_dbg("hw->fc = %d\n", hw->fc); /* Read the Device Control Register. */ ctrl = er32(CTRL); /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */ ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); ctrl &= ~(DEVICE_SPEED_MASK); /* Clear the Auto Speed Detect Enable bit. */ ctrl &= ~E1000_CTRL_ASDE; /* Read the MII Control Register. */ ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg); if (ret_val) return ret_val; /* We need to disable autoneg in order to force link and duplex. */ mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN; /* Are we forcing Full or Half Duplex? */ if (hw->forced_speed_duplex == e1000_100_full || hw->forced_speed_duplex == e1000_10_full) { /* We want to force full duplex so we SET the full duplex bits * in the Device and MII Control Registers. */ ctrl |= E1000_CTRL_FD; mii_ctrl_reg |= MII_CR_FULL_DUPLEX; e_dbg("Full Duplex\n"); } else { /* We want to force half duplex so we CLEAR the full duplex bits * in the Device and MII Control Registers. */ ctrl &= ~E1000_CTRL_FD; mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX; e_dbg("Half Duplex\n"); } /* Are we forcing 100Mbps??? */ if (hw->forced_speed_duplex == e1000_100_full || hw->forced_speed_duplex == e1000_100_half) { /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */ ctrl |= E1000_CTRL_SPD_100; mii_ctrl_reg |= MII_CR_SPEED_100; mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); e_dbg("Forcing 100mb "); } else { /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */ ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); mii_ctrl_reg |= MII_CR_SPEED_10; mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); e_dbg("Forcing 10mb "); } e1000_config_collision_dist(hw); /* Write the configured values back to the Device Control Reg. */ ew32(CTRL, ctrl); if (hw->phy_type == e1000_phy_m88) { ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); if (ret_val) return ret_val; /* Clear Auto-Crossover to force MDI manually. M88E1000 requires * MDI forced whenever speed are duplex are forced. */ phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); if (ret_val) return ret_val; e_dbg("M88E1000 PSCR: %x\n", phy_data); /* Need to reset the PHY or these changes will be ignored */ mii_ctrl_reg |= MII_CR_RESET; /* Disable MDI-X support for 10/100 */ } else { /* Clear Auto-Crossover to force MDI manually. IGP requires MDI * forced whenever speed or duplex are forced. */ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); if (ret_val) return ret_val; phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); if (ret_val) return ret_val; } /* Write back the modified PHY MII control register. */ ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg); if (ret_val) return ret_val; udelay(1); /* The wait_autoneg_complete flag may be a little misleading here. * Since we are forcing speed and duplex, Auto-Neg is not enabled. * But we do want to delay for a period while forcing only so we * don't generate false No Link messages. So we will wait here * only if the user has set wait_autoneg_complete to 1, which is * the default. */ if (hw->wait_autoneg_complete) { /* We will wait for autoneg to complete. */ e_dbg("Waiting for forced speed/duplex link.\n"); mii_status_reg = 0; /* Wait for autoneg to complete or 4.5 seconds to expire */ for (i = PHY_FORCE_TIME; i > 0; i--) { /* Read the MII Status Register and wait for Auto-Neg * Complete bit to be set. */ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); if (ret_val) return ret_val; ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); if (ret_val) return ret_val; if (mii_status_reg & MII_SR_LINK_STATUS) break; msleep(100); } if ((i == 0) && (hw->phy_type == e1000_phy_m88)) { /* We didn't get link. Reset the DSP and wait again * for link. */ ret_val = e1000_phy_reset_dsp(hw); if (ret_val) { e_dbg("Error Resetting PHY DSP\n"); return ret_val; } } /* This loop will early-out if the link condition has been * met */ for (i = PHY_FORCE_TIME; i > 0; i--) { if (mii_status_reg & MII_SR_LINK_STATUS) break; msleep(100); /* Read the MII Status Register and wait for Auto-Neg * Complete bit to be set. */ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); if (ret_val) return ret_val; ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); if (ret_val) return ret_val; } } if (hw->phy_type == e1000_phy_m88) { /* Because we reset the PHY above, we need to re-force TX_CLK in * the Extended PHY Specific Control Register to 25MHz clock. * This value defaults back to a 2.5MHz clock when the PHY is * reset. */ ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); if (ret_val) return ret_val; phy_data |= M88E1000_EPSCR_TX_CLK_25; ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); if (ret_val) return ret_val; /* In addition, because of the s/w reset above, we need to * enable CRS on Tx. This must be set for both full and half * duplex operation. */ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); if (ret_val) return ret_val; phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); if (ret_val) return ret_val; if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) && (!hw->autoneg) && (hw->forced_speed_duplex == e1000_10_full || hw->forced_speed_duplex == e1000_10_half)) { ret_val = e1000_polarity_reversal_workaround(hw); if (ret_val) return ret_val; } } return E1000_SUCCESS; } /** * e1000_config_collision_dist - set collision distance register * @hw: Struct containing variables accessed by shared code * * Sets the collision distance in the Transmit Control register. * Link should have been established previously. Reads the speed and duplex * information from the Device Status register. */ void e1000_config_collision_dist(struct e1000_hw *hw) { u32 tctl, coll_dist; if (hw->mac_type < e1000_82543) coll_dist = E1000_COLLISION_DISTANCE_82542; else coll_dist = E1000_COLLISION_DISTANCE; tctl = er32(TCTL); tctl &= ~E1000_TCTL_COLD; tctl |= coll_dist << E1000_COLD_SHIFT; ew32(TCTL, tctl); E1000_WRITE_FLUSH(); } /** * e1000_config_mac_to_phy - sync phy and mac settings * @hw: Struct containing variables accessed by shared code * @mii_reg: data to write to the MII control register * * Sets MAC speed and duplex settings to reflect the those in the PHY * The contents of the PHY register containing the needed information need to * be passed in. */ static s32 e1000_config_mac_to_phy(struct e1000_hw *hw) { u32 ctrl; s32 ret_val; u16 phy_data; /* 82544 or newer MAC, Auto Speed Detection takes care of * MAC speed/duplex configuration. */ if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) return E1000_SUCCESS; /* Read the Device Control Register and set the bits to Force Speed * and Duplex. */ ctrl = er32(CTRL); ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); switch (hw->phy_type) { case e1000_phy_8201: ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); if (ret_val) return ret_val; if (phy_data & RTL_PHY_CTRL_FD) ctrl |= E1000_CTRL_FD; else ctrl &= ~E1000_CTRL_FD; if (phy_data & RTL_PHY_CTRL_SPD_100) ctrl |= E1000_CTRL_SPD_100; else ctrl |= E1000_CTRL_SPD_10; e1000_config_collision_dist(hw); break; default: /* Set up duplex in the Device Control and Transmit Control * registers depending on negotiated values. */ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); if (ret_val) return ret_val; if (phy_data & M88E1000_PSSR_DPLX) ctrl |= E1000_CTRL_FD; else ctrl &= ~E1000_CTRL_FD; e1000_config_collision_dist(hw); /* Set up speed in the Device Control register depending on * negotiated values. */ if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) ctrl |= E1000_CTRL_SPD_1000; else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) ctrl |= E1000_CTRL_SPD_100; } /* Write the configured values back to the Device Control Reg. */ ew32(CTRL, ctrl); return E1000_SUCCESS; } /** * e1000_force_mac_fc - force flow control settings * @hw: Struct containing variables accessed by shared code * * Forces the MAC's flow control settings. * Sets the TFCE and RFCE bits in the device control register to reflect * the adapter settings. TFCE and RFCE need to be explicitly set by * software when a Copper PHY is used because autonegotiation is managed * by the PHY rather than the MAC. Software must also configure these * bits when link is forced on a fiber connection. */ s32 e1000_force_mac_fc(struct e1000_hw *hw) { u32 ctrl; /* Get the current configuration of the Device Control Register */ ctrl = er32(CTRL); /* Because we didn't get link via the internal auto-negotiation * mechanism (we either forced link or we got link via PHY * auto-neg), we have to manually enable/disable transmit an * receive flow control. * * The "Case" statement below enables/disable flow control * according to the "hw->fc" parameter. * * The possible values of the "fc" parameter are: * 0: Flow control is completely disabled * 1: Rx flow control is enabled (we can receive pause * frames but not send pause frames). * 2: Tx flow control is enabled (we can send pause frames * frames but we do not receive pause frames). * 3: Both Rx and TX flow control (symmetric) is enabled. * other: No other values should be possible at this point. */ switch (hw->fc) { case E1000_FC_NONE: ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); break; case E1000_FC_RX_PAUSE: ctrl &= (~E1000_CTRL_TFCE); ctrl |= E1000_CTRL_RFCE; break; case E1000_FC_TX_PAUSE: ctrl &= (~E1000_CTRL_RFCE); ctrl |= E1000_CTRL_TFCE; break; case E1000_FC_FULL: ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); break; default: e_dbg("Flow control param set incorrectly\n"); return -E1000_ERR_CONFIG; } /* Disable TX Flow Control for 82542 (rev 2.0) */ if (hw->mac_type == e1000_82542_rev2_0) ctrl &= (~E1000_CTRL_TFCE); ew32(CTRL, ctrl); return E1000_SUCCESS; } /** * e1000_config_fc_after_link_up - configure flow control after autoneg * @hw: Struct containing variables accessed by shared code * * Configures flow control settings after link is established * Should be called immediately after a valid link has been established. * Forces MAC flow control settings if link was forced. When in MII/GMII mode * and autonegotiation is enabled, the MAC flow control settings will be set * based on the flow control negotiated by the PHY. In TBI mode, the TFCE * and RFCE bits will be automatically set to the negotiated flow control mode. */ static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw) { s32 ret_val; u16 mii_status_reg; u16 mii_nway_adv_reg; u16 mii_nway_lp_ability_reg; u16 speed; u16 duplex; /* Check for the case where we have fiber media and auto-neg failed * so we had to force link. In this case, we need to force the * configuration of the MAC to match the "fc" parameter. */ if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) || ((hw->media_type == e1000_media_type_internal_serdes) && (hw->autoneg_failed)) || ((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) { ret_val = e1000_force_mac_fc(hw); if (ret_val) { e_dbg("Error forcing flow control settings\n"); return ret_val; } } /* Check for the case where we have copper media and auto-neg is * enabled. In this case, we need to check and see if Auto-Neg * has completed, and if so, how the PHY and link partner has * flow control configured. */ if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) { /* Read the MII Status Register and check to see if AutoNeg * has completed. We read this twice because this reg has * some "sticky" (latched) bits. */ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); if (ret_val) return ret_val; ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); if (ret_val) return ret_val; if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) { /* The AutoNeg process has completed, so we now need to * read both the Auto Negotiation Advertisement Register * (Address 4) and the Auto_Negotiation Base Page * Ability Register (Address 5) to determine how flow * control was negotiated. */ ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg); if (ret_val) return ret_val; ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg); if (ret_val) return ret_val; /* Two bits in the Auto Negotiation Advertisement * Register (Address 4) and two bits in the Auto * Negotiation Base Page Ability Register (Address 5) * determine flow control for both the PHY and the link * partner. The following table, taken out of the IEEE * 802.3ab/D6.0 dated March 25, 1999, describes these * PAUSE resolution bits and how flow control is * determined based upon these settings. * NOTE: DC = Don't Care * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution *-------|---------|-------|---------|------------------ * 0 | 0 | DC | DC | E1000_FC_NONE * 0 | 1 | 0 | DC | E1000_FC_NONE * 0 | 1 | 1 | 0 | E1000_FC_NONE * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE * 1 | 0 | 0 | DC | E1000_FC_NONE * 1 | DC | 1 | DC | E1000_FC_FULL * 1 | 1 | 0 | 0 | E1000_FC_NONE * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE * */ /* Are both PAUSE bits set to 1? If so, this implies * Symmetric Flow Control is enabled at both ends. The * ASM_DIR bits are irrelevant per the spec. * * For Symmetric Flow Control: * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result *-------|---------|-------|---------|------------------ * 1 | DC | 1 | DC | E1000_FC_FULL * */ if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { /* Now we need to check if the user selected Rx * ONLY of pause frames. In this case, we had * to advertise FULL flow control because we * could not advertise Rx ONLY. Hence, we must * now check to see if we need to turn OFF the * TRANSMISSION of PAUSE frames. */ if (hw->original_fc == E1000_FC_FULL) { hw->fc = E1000_FC_FULL; e_dbg("Flow Control = FULL.\n"); } else { hw->fc = E1000_FC_RX_PAUSE; e_dbg ("Flow Control = RX PAUSE frames only.\n"); } } /* For receiving PAUSE frames ONLY. * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result *-------|---------|-------|---------|------------------ * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE * */ else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { hw->fc = E1000_FC_TX_PAUSE; e_dbg ("Flow Control = TX PAUSE frames only.\n"); } /* For transmitting PAUSE frames ONLY. * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result *-------|---------|-------|---------|------------------ * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE * */ else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { hw->fc = E1000_FC_RX_PAUSE; e_dbg ("Flow Control = RX PAUSE frames only.\n"); } /* Per the IEEE spec, at this point flow control should * be disabled. However, we want to consider that we * could be connected to a legacy switch that doesn't * advertise desired flow control, but can be forced on * the link partner. So if we advertised no flow * control, that is what we will resolve to. If we * advertised some kind of receive capability (Rx Pause * Only or Full Flow Control) and the link partner * advertised none, we will configure ourselves to * enable Rx Flow Control only. We can do this safely * for two reasons: If the link partner really * didn't want flow control enabled, and we enable Rx, * no harm done since we won't be receiving any PAUSE * frames anyway. If the intent on the link partner was * to have flow control enabled, then by us enabling Rx * only, we can at least receive pause frames and * process them. This is a good idea because in most * cases, since we are predominantly a server NIC, more * times than not we will be asked to delay transmission * of packets than asking our link partner to pause * transmission of frames. */ else if ((hw->original_fc == E1000_FC_NONE || hw->original_fc == E1000_FC_TX_PAUSE) || hw->fc_strict_ieee) { hw->fc = E1000_FC_NONE; e_dbg("Flow Control = NONE.\n"); } else { hw->fc = E1000_FC_RX_PAUSE; e_dbg ("Flow Control = RX PAUSE frames only.\n"); } /* Now we need to do one last check... If we auto- * negotiated to HALF DUPLEX, flow control should not be * enabled per IEEE 802.3 spec. */ ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); if (ret_val) { e_dbg ("Error getting link speed and duplex\n"); return ret_val; } if (duplex == HALF_DUPLEX) hw->fc = E1000_FC_NONE; /* Now we call a subroutine to actually force the MAC * controller to use the correct flow control settings. */ ret_val = e1000_force_mac_fc(hw); if (ret_val) { e_dbg ("Error forcing flow control settings\n"); return ret_val; } } else { e_dbg ("Copper PHY and Auto Neg has not completed.\n"); } } return E1000_SUCCESS; } /** * e1000_check_for_serdes_link_generic - Check for link (Serdes) * @hw: pointer to the HW structure * * Checks for link up on the hardware. If link is not up and we have * a signal, then we need to force link up. */ static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw) { u32 rxcw; u32 ctrl; u32 status; s32 ret_val = E1000_SUCCESS; ctrl = er32(CTRL); status = er32(STATUS); rxcw = er32(RXCW); /* If we don't have link (auto-negotiation failed or link partner * cannot auto-negotiate), and our link partner is not trying to * auto-negotiate with us (we are receiving idles or data), * we need to force link up. We also need to give auto-negotiation * time to complete. */ /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) { if (hw->autoneg_failed == 0) { hw->autoneg_failed = 1; goto out; } e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n"); /* Disable auto-negotiation in the TXCW register */ ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE)); /* Force link-up and also force full-duplex. */ ctrl = er32(CTRL); ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); ew32(CTRL, ctrl); /* Configure Flow Control after forcing link up. */ ret_val = e1000_config_fc_after_link_up(hw); if (ret_val) { e_dbg("Error configuring flow control\n"); goto out; } } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { /* If we are forcing link and we are receiving /C/ ordered * sets, re-enable auto-negotiation in the TXCW register * and disable forced link in the Device Control register * in an attempt to auto-negotiate with our link partner. */ e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n"); ew32(TXCW, hw->txcw); ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); hw->serdes_has_link = true; } else if (!(E1000_TXCW_ANE & er32(TXCW))) { /* If we force link for non-auto-negotiation switch, check * link status based on MAC synchronization for internal * serdes media type. */ /* SYNCH bit and IV bit are sticky. */ udelay(10); rxcw = er32(RXCW); if (rxcw & E1000_RXCW_SYNCH) { if (!(rxcw & E1000_RXCW_IV)) { hw->serdes_has_link = true; e_dbg("SERDES: Link up - forced.\n"); } } else { hw->serdes_has_link = false; e_dbg("SERDES: Link down - force failed.\n"); } } if (E1000_TXCW_ANE & er32(TXCW)) { status = er32(STATUS); if (status & E1000_STATUS_LU) { /* SYNCH bit and IV bit are sticky, so reread rxcw. */ udelay(10); rxcw = er32(RXCW); if (rxcw & E1000_RXCW_SYNCH) { if (!(rxcw & E1000_RXCW_IV)) { hw->serdes_has_link = true; e_dbg("SERDES: Link up - autoneg " "completed successfully.\n"); } else { hw->serdes_has_link = false; e_dbg("SERDES: Link down - invalid" "codewords detected in autoneg.\n"); } } else { hw->serdes_has_link = false; e_dbg("SERDES: Link down - no sync.\n"); } } else { hw->serdes_has_link = false; e_dbg("SERDES: Link down - autoneg failed\n"); } } out: return ret_val; } /** * e1000_check_for_link * @hw: Struct containing variables accessed by shared code * * Checks to see if the link status of the hardware has changed. * Called by any function that needs to check the link status of the adapter. */ s32 e1000_check_for_link(struct e1000_hw *hw) { u32 rxcw = 0; u32 ctrl; u32 status; u32 rctl; u32 icr; u32 signal = 0; s32 ret_val; u16 phy_data; ctrl = er32(CTRL); status = er32(STATUS); /* On adapters with a MAC newer than 82544, SW Definable pin 1 will be * set when the optics detect a signal. On older adapters, it will be * cleared when there is a signal. This applies to fiber media only. */ if ((hw->media_type == e1000_media_type_fiber) || (hw->media_type == e1000_media_type_internal_serdes)) { rxcw = er32(RXCW); if (hw->media_type == e1000_media_type_fiber) { signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; if (status & E1000_STATUS_LU) hw->get_link_status = false; } } /* If we have a copper PHY then we only want to go out to the PHY * registers to see if Auto-Neg has completed and/or if our link * status has changed. The get_link_status flag will be set if we * receive a Link Status Change interrupt or we have Rx Sequence * Errors. */ if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) { /* First we want to see if the MII Status Register reports * link. If so, then we want to get the current speed/duplex * of the PHY. * Read the register twice since the link bit is sticky. */ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); if (ret_val) return ret_val; ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); if (ret_val) return ret_val; if (phy_data & MII_SR_LINK_STATUS) { hw->get_link_status = false; /* Check if there was DownShift, must be checked * immediately after link-up */ e1000_check_downshift(hw); /* If we are on 82544 or 82543 silicon and speed/duplex * are forced to 10H or 10F, then we will implement the * polarity reversal workaround. We disable interrupts * first, and upon returning, place the devices * interrupt state to its previous value except for the * link status change interrupt which will * happen due to the execution of this workaround. */ if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) && (!hw->autoneg) && (hw->forced_speed_duplex == e1000_10_full || hw->forced_speed_duplex == e1000_10_half)) { ew32(IMC, 0xffffffff); ret_val = e1000_polarity_reversal_workaround(hw); icr = er32(ICR); ew32(ICS, (icr & ~E1000_ICS_LSC)); ew32(IMS, IMS_ENABLE_MASK); } } else { /* No link detected */ e1000_config_dsp_after_link_change(hw, false); return 0; } /* If we are forcing speed/duplex, then we simply return since * we have already determined whether we have link or not. */ if (!hw->autoneg) return -E1000_ERR_CONFIG; /* optimize the dsp settings for the igp phy */ e1000_config_dsp_after_link_change(hw, true); /* We have a M88E1000 PHY and Auto-Neg is enabled. If we * have Si on board that is 82544 or newer, Auto * Speed Detection takes care of MAC speed/duplex * configuration. So we only need to configure Collision * Distance in the MAC. Otherwise, we need to force * speed/duplex on the MAC to the current PHY speed/duplex * settings. */ if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) e1000_config_collision_dist(hw); else { ret_val = e1000_config_mac_to_phy(hw); if (ret_val) { e_dbg ("Error configuring MAC to PHY settings\n"); return ret_val; } } /* Configure Flow Control now that Auto-Neg has completed. * First, we need to restore the desired flow control settings * because we may have had to re-autoneg with a different link * partner. */ ret_val = e1000_config_fc_after_link_up(hw); if (ret_val) { e_dbg("Error configuring flow control\n"); return ret_val; } /* At this point we know that we are on copper and we have * auto-negotiated link. These are conditions for checking the * link partner capability register. We use the link speed to * determine if TBI compatibility needs to be turned on or off. * If the link is not at gigabit speed, then TBI compatibility * is not needed. If we are at gigabit speed, we turn on TBI * compatibility. */ if (hw->tbi_compatibility_en) { u16 speed, duplex; ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); if (ret_val) { e_dbg ("Error getting link speed and duplex\n"); return ret_val; } if (speed != SPEED_1000) { /* If link speed is not set to gigabit speed, we * do not need to enable TBI compatibility. */ if (hw->tbi_compatibility_on) { /* If we previously were in the mode, * turn it off. */ rctl = er32(RCTL); rctl &= ~E1000_RCTL_SBP; ew32(RCTL, rctl); hw->tbi_compatibility_on = false; } } else { /* If TBI compatibility is was previously off, * turn it on. For compatibility with a TBI link * partner, we will store bad packets. Some * frames have an additional byte on the end and * will look like CRC errors to to the hardware. */ if (!hw->tbi_compatibility_on) { hw->tbi_compatibility_on = true; rctl = er32(RCTL); rctl |= E1000_RCTL_SBP; ew32(RCTL, rctl); } } } } if ((hw->media_type == e1000_media_type_fiber) || (hw->media_type == e1000_media_type_internal_serdes)) e1000_check_for_serdes_link_generic(hw); return E1000_SUCCESS; } /** * e1000_get_speed_and_duplex * @hw: Struct containing variables accessed by shared code * @speed: Speed of the connection * @duplex: Duplex setting of the connection * * Detects the current speed and duplex settings of the hardware. */ s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) { u32 status; s32 ret_val; u16 phy_data; if (hw->mac_type >= e1000_82543) { status = er32(STATUS); if (status & E1000_STATUS_SPEED_1000) { *speed = SPEED_1000; e_dbg("1000 Mbs, "); } else if (status & E1000_STATUS_SPEED_100) { *speed = SPEED_100; e_dbg("100 Mbs, "); } else { *speed = SPEED_10; e_dbg("10 Mbs, "); } if (status & E1000_STATUS_FD) { *duplex = FULL_DUPLEX; e_dbg("Full Duplex\n"); } else { *duplex = HALF_DUPLEX; e_dbg(" Half Duplex\n"); } } else { e_dbg("1000 Mbs, Full Duplex\n"); *speed = SPEED_1000; *duplex = FULL_DUPLEX; } /* IGP01 PHY may advertise full duplex operation after speed downgrade * even if it is operating at half duplex. Here we set the duplex * settings to match the duplex in the link partner's capabilities. */ if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) { ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data); if (ret_val) return ret_val; if (!(phy_data & NWAY_ER_LP_NWAY_CAPS)) *duplex = HALF_DUPLEX; else { ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data); if (ret_val) return ret_val; if ((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) || (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS))) *duplex = HALF_DUPLEX; } } return E1000_SUCCESS; } /** * e1000_wait_autoneg * @hw: Struct containing variables accessed by shared code * * Blocks until autoneg completes or times out (~4.5 seconds) */ static s32 e1000_wait_autoneg(struct e1000_hw *hw) { s32 ret_val; u16 i; u16 phy_data; e_dbg("Waiting for Auto-Neg to complete.\n"); /* We will wait for autoneg to complete or 4.5 seconds to expire. */ for (i = PHY_AUTO_NEG_TIME; i > 0; i--) { /* Read the MII Status Register and wait for Auto-Neg * Complete bit to be set. */ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); if (ret_val) return ret_val; ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); if (ret_val) return ret_val; if (phy_data & MII_SR_AUTONEG_COMPLETE) return E1000_SUCCESS; msleep(100); } return E1000_SUCCESS; } /** * e1000_raise_mdi_clk - Raises the Management Data Clock * @hw: Struct containing variables accessed by shared code * @ctrl: Device control register's current value */ static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl) { /* Raise the clock input to the Management Data Clock (by setting the * MDC bit), and then delay 10 microseconds. */ ew32(CTRL, (*ctrl | E1000_CTRL_MDC)); E1000_WRITE_FLUSH(); udelay(10); } /** * e1000_lower_mdi_clk - Lowers the Management Data Clock * @hw: Struct containing variables accessed by shared code * @ctrl: Device control register's current value */ static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl) { /* Lower the clock input to the Management Data Clock (by clearing the * MDC bit), and then delay 10 microseconds. */ ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC)); E1000_WRITE_FLUSH(); udelay(10); } /** * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY * @hw: Struct containing variables accessed by shared code * @data: Data to send out to the PHY * @count: Number of bits to shift out * * Bits are shifted out in MSB to LSB order. */ static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count) { u32 ctrl; u32 mask; /* We need to shift "count" number of bits out to the PHY. So, the value * in the "data" parameter will be shifted out to the PHY one bit at a * time. In order to do this, "data" must be broken down into bits. */ mask = 0x01; mask <<= (count - 1); ctrl = er32(CTRL); /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); while (mask) { /* A "1" is shifted out to the PHY by setting the MDIO bit to * "1" and then raising and lowering the Management Data Clock. * A "0" is shifted out to the PHY by setting the MDIO bit to * "0" and then raising and lowering the clock. */ if (data & mask) ctrl |= E1000_CTRL_MDIO; else ctrl &= ~E1000_CTRL_MDIO; ew32(CTRL, ctrl); E1000_WRITE_FLUSH(); udelay(10); e1000_raise_mdi_clk(hw, &ctrl); e1000_lower_mdi_clk(hw, &ctrl); mask = mask >> 1; } } /** * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY * @hw: Struct containing variables accessed by shared code * * Bits are shifted in in MSB to LSB order. */ static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw) { u32 ctrl; u16 data = 0; u8 i; /* In order to read a register from the PHY, we need to shift in a total * of 18 bits from the PHY. The first two bit (turnaround) times are * used to avoid contention on the MDIO pin when a read operation is * performed. These two bits are ignored by us and thrown away. Bits are * "shifted in" by raising the input to the Management Data Clock * (setting the MDC bit), and then reading the value of the MDIO bit. */ ctrl = er32(CTRL); /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as * input. */ ctrl &= ~E1000_CTRL_MDIO_DIR; ctrl &= ~E1000_CTRL_MDIO; ew32(CTRL, ctrl); E1000_WRITE_FLUSH(); /* Raise and Lower the clock before reading in the data. This accounts * for the turnaround bits. The first clock occurred when we clocked out * the last bit of the Register Address. */ e1000_raise_mdi_clk(hw, &ctrl); e1000_lower_mdi_clk(hw, &ctrl); for (data = 0, i = 0; i < 16; i++) { data = data << 1; e1000_raise_mdi_clk(hw, &ctrl); ctrl = er32(CTRL); /* Check to see if we shifted in a "1". */ if (ctrl & E1000_CTRL_MDIO) data |= 1; e1000_lower_mdi_clk(hw, &ctrl); } e1000_raise_mdi_clk(hw, &ctrl); e1000_lower_mdi_clk(hw, &ctrl); return data; } /** * e1000_read_phy_reg - read a phy register * @hw: Struct containing variables accessed by shared code * @reg_addr: address of the PHY register to read * @phy_data: pointer to the value on the PHY register * * Reads the value from a PHY register, if the value is on a specific non zero * page, sets the page first. */ s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data) { u32 ret_val; unsigned long flags; spin_lock_irqsave(&e1000_phy_lock, flags); if ((hw->phy_type == e1000_phy_igp) && (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, (u16) reg_addr); if (ret_val) goto out; } ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, phy_data); out: spin_unlock_irqrestore(&e1000_phy_lock, flags); return ret_val; } static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data) { u32 i; u32 mdic = 0; const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1; if (reg_addr > MAX_PHY_REG_ADDRESS) { e_dbg("PHY Address %d is out of range\n", reg_addr); return -E1000_ERR_PARAM; } if (hw->mac_type > e1000_82543) { /* Set up Op-code, Phy Address, and register address in the MDI * Control register. The MAC will take care of interfacing with * the PHY to retrieve the desired data. */ if (hw->mac_type == e1000_ce4100) { mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | (phy_addr << E1000_MDIC_PHY_SHIFT) | (INTEL_CE_GBE_MDIC_OP_READ) | (INTEL_CE_GBE_MDIC_GO)); writel(mdic, E1000_MDIO_CMD); /* Poll the ready bit to see if the MDI read * completed */ for (i = 0; i < 64; i++) { udelay(50); mdic = readl(E1000_MDIO_CMD); if (!(mdic & INTEL_CE_GBE_MDIC_GO)) break; } if (mdic & INTEL_CE_GBE_MDIC_GO) { e_dbg("MDI Read did not complete\n"); return -E1000_ERR_PHY; } mdic = readl(E1000_MDIO_STS); if (mdic & INTEL_CE_GBE_MDIC_READ_ERROR) { e_dbg("MDI Read Error\n"); return -E1000_ERR_PHY; } *phy_data = (u16)mdic; } else { mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | (phy_addr << E1000_MDIC_PHY_SHIFT) | (E1000_MDIC_OP_READ)); ew32(MDIC, mdic); /* Poll the ready bit to see if the MDI read * completed */ for (i = 0; i < 64; i++) { udelay(50); mdic = er32(MDIC); if (mdic & E1000_MDIC_READY) break; } if (!(mdic & E1000_MDIC_READY)) { e_dbg("MDI Read did not complete\n"); return -E1000_ERR_PHY; } if (mdic & E1000_MDIC_ERROR) { e_dbg("MDI Error\n"); return -E1000_ERR_PHY; } *phy_data = (u16)mdic; } } else { /* We must first send a preamble through the MDIO pin to signal * the beginning of an MII instruction. This is done by sending * 32 consecutive "1" bits. */ e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); /* Now combine the next few fields that are required for a read * operation. We use this method instead of calling the * e1000_shift_out_mdi_bits routine five different times. The * format of a MII read instruction consists of a shift out of * 14 bits and is defined as follows: * <Preamble><SOF><Op Code><Phy Addr><Reg Addr> * followed by a shift in of 18 bits. This first two bits * shifted in are TurnAround bits used to avoid contention on * the MDIO pin when a READ operation is performed. These two * bits are thrown away followed by a shift in of 16 bits which * contains the desired data. */ mdic = ((reg_addr) | (phy_addr << 5) | (PHY_OP_READ << 10) | (PHY_SOF << 12)); e1000_shift_out_mdi_bits(hw, mdic, 14); /* Now that we've shifted out the read command to the MII, we * need to "shift in" the 16-bit value (18 total bits) of the * requested PHY register address. */ *phy_data = e1000_shift_in_mdi_bits(hw); } return E1000_SUCCESS; } /** * e1000_write_phy_reg - write a phy register * * @hw: Struct containing variables accessed by shared code * @reg_addr: address of the PHY register to write * @data: data to write to the PHY * * Writes a value to a PHY register */ s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data) { u32 ret_val; unsigned long flags; spin_lock_irqsave(&e1000_phy_lock, flags); if ((hw->phy_type == e1000_phy_igp) && (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, (u16)reg_addr); if (ret_val) { spin_unlock_irqrestore(&e1000_phy_lock, flags); return ret_val; } } ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, phy_data); spin_unlock_irqrestore(&e1000_phy_lock, flags); return ret_val; } static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, u16 phy_data) { u32 i; u32 mdic = 0; const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1; if (reg_addr > MAX_PHY_REG_ADDRESS) { e_dbg("PHY Address %d is out of range\n", reg_addr); return -E1000_ERR_PARAM; } if (hw->mac_type > e1000_82543) { /* Set up Op-code, Phy Address, register address, and data * intended for the PHY register in the MDI Control register. * The MAC will take care of interfacing with the PHY to send * the desired data. */ if (hw->mac_type == e1000_ce4100) { mdic = (((u32)phy_data) | (reg_addr << E1000_MDIC_REG_SHIFT) | (phy_addr << E1000_MDIC_PHY_SHIFT) | (INTEL_CE_GBE_MDIC_OP_WRITE) | (INTEL_CE_GBE_MDIC_GO)); writel(mdic, E1000_MDIO_CMD); /* Poll the ready bit to see if the MDI read * completed */ for (i = 0; i < 640; i++) { udelay(5); mdic = readl(E1000_MDIO_CMD); if (!(mdic & INTEL_CE_GBE_MDIC_GO)) break; } if (mdic & INTEL_CE_GBE_MDIC_GO) { e_dbg("MDI Write did not complete\n"); return -E1000_ERR_PHY; } } else { mdic = (((u32)phy_data) | (reg_addr << E1000_MDIC_REG_SHIFT) | (phy_addr << E1000_MDIC_PHY_SHIFT) | (E1000_MDIC_OP_WRITE)); ew32(MDIC, mdic); /* Poll the ready bit to see if the MDI read * completed */ for (i = 0; i < 641; i++) { udelay(5); mdic = er32(MDIC); if (mdic & E1000_MDIC_READY) break; } if (!(mdic & E1000_MDIC_READY)) { e_dbg("MDI Write did not complete\n"); return -E1000_ERR_PHY; } } } else { /* We'll need to use the SW defined pins to shift the write * command out to the PHY. We first send a preamble to the PHY * to signal the beginning of the MII instruction. This is done * by sending 32 consecutive "1" bits. */ e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); /* Now combine the remaining required fields that will indicate * a write operation. We use this method instead of calling the * e1000_shift_out_mdi_bits routine for each field in the * command. The format of a MII write instruction is as follows: * <Preamble><SOF><OpCode><PhyAddr><RegAddr><Turnaround><Data>. */ mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) | (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); mdic <<= 16; mdic |= (u32)phy_data; e1000_shift_out_mdi_bits(hw, mdic, 32); } return E1000_SUCCESS; } /** * e1000_phy_hw_reset - reset the phy, hardware style * @hw: Struct containing variables accessed by shared code * * Returns the PHY to the power-on reset state */ s32 e1000_phy_hw_reset(struct e1000_hw *hw) { u32 ctrl, ctrl_ext; u32 led_ctrl; e_dbg("Resetting Phy...\n"); if (hw->mac_type > e1000_82543) { /* Read the device control register and assert the * E1000_CTRL_PHY_RST bit. Then, take it out of reset. * For e1000 hardware, we delay for 10ms between the assert * and de-assert. */ ctrl = er32(CTRL); ew32(CTRL, ctrl | E1000_CTRL_PHY_RST); E1000_WRITE_FLUSH(); msleep(10); ew32(CTRL, ctrl); E1000_WRITE_FLUSH(); } else { /* Read the Extended Device Control Register, assert the * PHY_RESET_DIR bit to put the PHY into reset. Then, take it * out of reset. */ ctrl_ext = er32(CTRL_EXT); ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; ew32(CTRL_EXT, ctrl_ext); E1000_WRITE_FLUSH(); msleep(10); ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; ew32(CTRL_EXT, ctrl_ext); E1000_WRITE_FLUSH(); } udelay(150); if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { /* Configure activity LED after PHY reset */ led_ctrl = er32(LEDCTL); led_ctrl &= IGP_ACTIVITY_LED_MASK; led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); ew32(LEDCTL, led_ctrl); } /* Wait for FW to finish PHY configuration. */ return e1000_get_phy_cfg_done(hw); } /** * e1000_phy_reset - reset the phy to commit settings * @hw: Struct containing variables accessed by shared code * * Resets the PHY * Sets bit 15 of the MII Control register */ s32 e1000_phy_reset(struct e1000_hw *hw) { s32 ret_val; u16 phy_data; switch (hw->phy_type) { case e1000_phy_igp: ret_val = e1000_phy_hw_reset(hw); if (ret_val) return ret_val; break; default: ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); if (ret_val) return ret_val; phy_data |= MII_CR_RESET; ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); if (ret_val) return ret_val; udelay(1); break; } if (hw->phy_type == e1000_phy_igp) e1000_phy_init_script(hw); return E1000_SUCCESS; } /** * e1000_detect_gig_phy - check the phy type * @hw: Struct containing variables accessed by shared code * * Probes the expected PHY address for known PHY IDs */ static s32 e1000_detect_gig_phy(struct e1000_hw *hw) { s32 phy_init_status, ret_val; u16 phy_id_high, phy_id_low; bool match = false; if (hw->phy_id != 0) return E1000_SUCCESS; /* Read the PHY ID Registers to identify which PHY is onboard. */ ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high); if (ret_val) return ret_val; hw->phy_id = (u32)(phy_id_high << 16); udelay(20); ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low); if (ret_val) return ret_val; hw->phy_id |= (u32)(phy_id_low & PHY_REVISION_MASK); hw->phy_revision = (u32)phy_id_low & ~PHY_REVISION_MASK; switch (hw->mac_type) { case e1000_82543: if (hw->phy_id == M88E1000_E_PHY_ID) match = true; break; case e1000_82544: if (hw->phy_id == M88E1000_I_PHY_ID) match = true; break; case e1000_82540: case e1000_82545: case e1000_82545_rev_3: case e1000_82546: case e1000_82546_rev_3: if (hw->phy_id == M88E1011_I_PHY_ID) match = true; break; case e1000_ce4100: if ((hw->phy_id == RTL8211B_PHY_ID) || (hw->phy_id == RTL8201N_PHY_ID) || (hw->phy_id == M88E1118_E_PHY_ID)) match = true; break; case e1000_82541: case e1000_82541_rev_2: case e1000_82547: case e1000_82547_rev_2: if (hw->phy_id == IGP01E1000_I_PHY_ID) match = true; break; default: e_dbg("Invalid MAC type %d\n", hw->mac_type); return -E1000_ERR_CONFIG; } phy_init_status = e1000_set_phy_type(hw); if ((match) && (phy_init_status == E1000_SUCCESS)) { e_dbg("PHY ID 0x%X detected\n", hw->phy_id); return E1000_SUCCESS; } e_dbg("Invalid PHY ID 0x%X\n", hw->phy_id); return -E1000_ERR_PHY; } /** * e1000_phy_reset_dsp - reset DSP * @hw: Struct containing variables accessed by shared code * * Resets the PHY's DSP */ static s32 e1000_phy_reset_dsp(struct e1000_hw *hw) { s32 ret_val; do { ret_val = e1000_write_phy_reg(hw, 29, 0x001d); if (ret_val) break; ret_val = e1000_write_phy_reg(hw, 30, 0x00c1); if (ret_val) break; ret_val = e1000_write_phy_reg(hw, 30, 0x0000); if (ret_val) break; ret_val = E1000_SUCCESS; } while (0); return ret_val; } /** * e1000_phy_igp_get_info - get igp specific registers * @hw: Struct containing variables accessed by shared code * @phy_info: PHY information structure * * Get PHY information from various PHY registers for igp PHY only. */ static s32 e1000_phy_igp_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info) { s32 ret_val; u16 phy_data, min_length, max_length, average; e1000_rev_polarity polarity; /* The downshift status is checked only once, after link is established, * and it stored in the hw->speed_downgraded parameter. */ phy_info->downshift = (e1000_downshift) hw->speed_downgraded; /* IGP01E1000 does not need to support it. */ phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal; /* IGP01E1000 always correct polarity reversal */ phy_info->polarity_correction = e1000_polarity_reversal_enabled; /* Check polarity status */ ret_val = e1000_check_polarity(hw, &polarity); if (ret_val) return ret_val; phy_info->cable_polarity = polarity; ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data); if (ret_val) return ret_val; phy_info->mdix_mode = (e1000_auto_x_mode) ((phy_data & IGP01E1000_PSSR_MDIX) >> IGP01E1000_PSSR_MDIX_SHIFT); if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == IGP01E1000_PSSR_SPEED_1000MBPS) { /* Local/Remote Receiver Information are only valid @ 1000 * Mbps */ ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); if (ret_val) return ret_val; phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >> SR_1000T_LOCAL_RX_STATUS_SHIFT) ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >> SR_1000T_REMOTE_RX_STATUS_SHIFT) ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; /* Get cable length */ ret_val = e1000_get_cable_length(hw, &min_length, &max_length); if (ret_val) return ret_val; /* Translate to old method */ average = (max_length + min_length) / 2; if (average <= e1000_igp_cable_length_50) phy_info->cable_length = e1000_cable_length_50; else if (average <= e1000_igp_cable_length_80) phy_info->cable_length = e1000_cable_length_50_80; else if (average <= e1000_igp_cable_length_110) phy_info->cable_length = e1000_cable_length_80_110; else if (average <= e1000_igp_cable_length_140) phy_info->cable_length = e1000_cable_length_110_140; else phy_info->cable_length = e1000_cable_length_140; } return E1000_SUCCESS; } /** * e1000_phy_m88_get_info - get m88 specific registers * @hw: Struct containing variables accessed by shared code * @phy_info: PHY information structure * * Get PHY information from various PHY registers for m88 PHY only. */ static s32 e1000_phy_m88_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info) { s32 ret_val; u16 phy_data; e1000_rev_polarity polarity; /* The downshift status is checked only once, after link is established, * and it stored in the hw->speed_downgraded parameter. */ phy_info->downshift = (e1000_downshift) hw->speed_downgraded; ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); if (ret_val) return ret_val; phy_info->extended_10bt_distance = ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >> M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ? e1000_10bt_ext_dist_enable_lower : e1000_10bt_ext_dist_enable_normal; phy_info->polarity_correction = ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >> M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ? e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled; /* Check polarity status */ ret_val = e1000_check_polarity(hw, &polarity); if (ret_val) return ret_val; phy_info->cable_polarity = polarity; ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); if (ret_val) return ret_val; phy_info->mdix_mode = (e1000_auto_x_mode) ((phy_data & M88E1000_PSSR_MDIX) >> M88E1000_PSSR_MDIX_SHIFT); if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { /* Cable Length Estimation and Local/Remote Receiver Information * are only valid at 1000 Mbps. */ phy_info->cable_length = (e1000_cable_length) ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >> M88E1000_PSSR_CABLE_LENGTH_SHIFT); ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); if (ret_val) return ret_val; phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >> SR_1000T_LOCAL_RX_STATUS_SHIFT) ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >> SR_1000T_REMOTE_RX_STATUS_SHIFT) ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; } return E1000_SUCCESS; } /** * e1000_phy_get_info - request phy info * @hw: Struct containing variables accessed by shared code * @phy_info: PHY information structure * * Get PHY information from various PHY registers */ s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info) { s32 ret_val; u16 phy_data; phy_info->cable_length = e1000_cable_length_undefined; phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined; phy_info->cable_polarity = e1000_rev_polarity_undefined; phy_info->downshift = e1000_downshift_undefined; phy_info->polarity_correction = e1000_polarity_reversal_undefined; phy_info->mdix_mode = e1000_auto_x_mode_undefined; phy_info->local_rx = e1000_1000t_rx_status_undefined; phy_info->remote_rx = e1000_1000t_rx_status_undefined; if (hw->media_type != e1000_media_type_copper) { e_dbg("PHY info is only valid for copper media\n"); return -E1000_ERR_CONFIG; } ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); if (ret_val) return ret_val; ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); if (ret_val) return ret_val; if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) { e_dbg("PHY info is only valid if link is up\n"); return -E1000_ERR_CONFIG; } if (hw->phy_type == e1000_phy_igp) return e1000_phy_igp_get_info(hw, phy_info); else if ((hw->phy_type == e1000_phy_8211) || (hw->phy_type == e1000_phy_8201)) return E1000_SUCCESS; else return e1000_phy_m88_get_info(hw, phy_info); } s32 e1000_validate_mdi_setting(struct e1000_hw *hw) { if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) { e_dbg("Invalid MDI setting detected\n"); hw->mdix = 1; return -E1000_ERR_CONFIG; } return E1000_SUCCESS; } /** * e1000_init_eeprom_params - initialize sw eeprom vars * @hw: Struct containing variables accessed by shared code * * Sets up eeprom variables in the hw struct. Must be called after mac_type * is configured. */ s32 e1000_init_eeprom_params(struct e1000_hw *hw) { struct e1000_eeprom_info *eeprom = &hw->eeprom; u32 eecd = er32(EECD); s32 ret_val = E1000_SUCCESS; u16 eeprom_size; switch (hw->mac_type) { case e1000_82542_rev2_0: case e1000_82542_rev2_1: case e1000_82543: case e1000_82544: eeprom->type = e1000_eeprom_microwire; eeprom->word_size = 64; eeprom->opcode_bits = 3; eeprom->address_bits = 6; eeprom->delay_usec = 50; break; case e1000_82540: case e1000_82545: case e1000_82545_rev_3: case e1000_82546: case e1000_82546_rev_3: eeprom->type = e1000_eeprom_microwire; eeprom->opcode_bits = 3; eeprom->delay_usec = 50; if (eecd & E1000_EECD_SIZE) { eeprom->word_size = 256; eeprom->address_bits = 8; } else { eeprom->word_size = 64; eeprom->address_bits = 6; } break; case e1000_82541: case e1000_82541_rev_2: case e1000_82547: case e1000_82547_rev_2: if (eecd & E1000_EECD_TYPE) { eeprom->type = e1000_eeprom_spi; eeprom->opcode_bits = 8; eeprom->delay_usec = 1; if (eecd & E1000_EECD_ADDR_BITS) { eeprom->page_size = 32; eeprom->address_bits = 16; } else { eeprom->page_size = 8; eeprom->address_bits = 8; } } else { eeprom->type = e1000_eeprom_microwire; eeprom->opcode_bits = 3; eeprom->delay_usec = 50; if (eecd & E1000_EECD_ADDR_BITS) { eeprom->word_size = 256; eeprom->address_bits = 8; } else { eeprom->word_size = 64; eeprom->address_bits = 6; } } break; default: break; } if (eeprom->type == e1000_eeprom_spi) { /* eeprom_size will be an enum [0..8] that maps to eeprom sizes * 128B to 32KB (incremented by powers of 2). */ /* Set to default value for initial eeprom read. */ eeprom->word_size = 64; ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size); if (ret_val) return ret_val; eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT; /* 256B eeprom size was not supported in earlier hardware, so we * bump eeprom_size up one to ensure that "1" (which maps to * 256B) is never the result used in the shifting logic below. */ if (eeprom_size) eeprom_size++; eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT); } return ret_val; } /** * e1000_raise_ee_clk - Raises the EEPROM's clock input. * @hw: Struct containing variables accessed by shared code * @eecd: EECD's current value */ static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd) { /* Raise the clock input to the EEPROM (by setting the SK bit), and then * wait <delay> microseconds. */ *eecd = *eecd | E1000_EECD_SK; ew32(EECD, *eecd); E1000_WRITE_FLUSH(); udelay(hw->eeprom.delay_usec); } /** * e1000_lower_ee_clk - Lowers the EEPROM's clock input. * @hw: Struct containing variables accessed by shared code * @eecd: EECD's current value */ static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd) { /* Lower the clock input to the EEPROM (by clearing the SK bit), and * then wait 50 microseconds. */ *eecd = *eecd & ~E1000_EECD_SK; ew32(EECD, *eecd); E1000_WRITE_FLUSH(); udelay(hw->eeprom.delay_usec); } /** * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM. * @hw: Struct containing variables accessed by shared code * @data: data to send to the EEPROM * @count: number of bits to shift out */ static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count) { struct e1000_eeprom_info *eeprom = &hw->eeprom; u32 eecd; u32 mask; /* We need to shift "count" bits out to the EEPROM. So, value in the * "data" parameter will be shifted out to the EEPROM one bit at a time. * In order to do this, "data" must be broken down into bits. */ mask = 0x01 << (count - 1); eecd = er32(EECD); if (eeprom->type == e1000_eeprom_microwire) eecd &= ~E1000_EECD_DO; else if (eeprom->type == e1000_eeprom_spi) eecd |= E1000_EECD_DO; do { /* A "1" is shifted out to the EEPROM by setting bit "DI" to a * "1", and then raising and then lowering the clock (the SK bit * controls the clock input to the EEPROM). A "0" is shifted * out to the EEPROM by setting "DI" to "0" and then raising and * then lowering the clock. */ eecd &= ~E1000_EECD_DI; if (data & mask) eecd |= E1000_EECD_DI; ew32(EECD, eecd); E1000_WRITE_FLUSH(); udelay(eeprom->delay_usec); e1000_raise_ee_clk(hw, &eecd); e1000_lower_ee_clk(hw, &eecd); mask = mask >> 1; } while (mask); /* We leave the "DI" bit set to "0" when we leave this routine. */ eecd &= ~E1000_EECD_DI; ew32(EECD, eecd); } /** * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM * @hw: Struct containing variables accessed by shared code * @count: number of bits to shift in */ static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count) { u32 eecd; u32 i; u16 data; /* In order to read a register from the EEPROM, we need to shift 'count' * bits in from the EEPROM. Bits are "shifted in" by raising the clock * input to the EEPROM (setting the SK bit), and then reading the value * of the "DO" bit. During this "shifting in" process the "DI" bit * should always be clear. */ eecd = er32(EECD); eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); data = 0; for (i = 0; i < count; i++) { data = data << 1; e1000_raise_ee_clk(hw, &eecd); eecd = er32(EECD); eecd &= ~(E1000_EECD_DI); if (eecd & E1000_EECD_DO) data |= 1; e1000_lower_ee_clk(hw, &eecd); } return data; } /** * e1000_acquire_eeprom - Prepares EEPROM for access * @hw: Struct containing variables accessed by shared code * * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This * function should be called before issuing a command to the EEPROM. */ static s32 e1000_acquire_eeprom(struct e1000_hw *hw) { struct e1000_eeprom_info *eeprom = &hw->eeprom; u32 eecd, i = 0; eecd = er32(EECD); /* Request EEPROM Access */ if (hw->mac_type > e1000_82544) { eecd |= E1000_EECD_REQ; ew32(EECD, eecd); eecd = er32(EECD); while ((!(eecd & E1000_EECD_GNT)) && (i < E1000_EEPROM_GRANT_ATTEMPTS)) { i++; udelay(5); eecd = er32(EECD); } if (!(eecd & E1000_EECD_GNT)) { eecd &= ~E1000_EECD_REQ; ew32(EECD, eecd); e_dbg("Could not acquire EEPROM grant\n"); return -E1000_ERR_EEPROM; } } /* Setup EEPROM for Read/Write */ if (eeprom->type == e1000_eeprom_microwire) { /* Clear SK and DI */ eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); ew32(EECD, eecd); /* Set CS */ eecd |= E1000_EECD_CS; ew32(EECD, eecd); } else if (eeprom->type == e1000_eeprom_spi) { /* Clear SK and CS */ eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); ew32(EECD, eecd); E1000_WRITE_FLUSH(); udelay(1); } return E1000_SUCCESS; } /** * e1000_standby_eeprom - Returns EEPROM to a "standby" state * @hw: Struct containing variables accessed by shared code */ static void e1000_standby_eeprom(struct e1000_hw *hw) { struct e1000_eeprom_info *eeprom = &hw->eeprom; u32 eecd; eecd = er32(EECD); if (eeprom->type == e1000_eeprom_microwire) { eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); ew32(EECD, eecd); E1000_WRITE_FLUSH(); udelay(eeprom->delay_usec); /* Clock high */ eecd |= E1000_EECD_SK; ew32(EECD, eecd); E1000_WRITE_FLUSH(); udelay(eeprom->delay_usec); /* Select EEPROM */ eecd |= E1000_EECD_CS; ew32(EECD, eecd); E1000_WRITE_FLUSH(); udelay(eeprom->delay_usec); /* Clock low */ eecd &= ~E1000_EECD_SK; ew32(EECD, eecd); E1000_WRITE_FLUSH(); udelay(eeprom->delay_usec); } else if (eeprom->type == e1000_eeprom_spi) { /* Toggle CS to flush commands */ eecd |= E1000_EECD_CS; ew32(EECD, eecd); E1000_WRITE_FLUSH(); udelay(eeprom->delay_usec); eecd &= ~E1000_EECD_CS; ew32(EECD, eecd); E1000_WRITE_FLUSH(); udelay(eeprom->delay_usec); } } /** * e1000_release_eeprom - drop chip select * @hw: Struct containing variables accessed by shared code * * Terminates a command by inverting the EEPROM's chip select pin */ static void e1000_release_eeprom(struct e1000_hw *hw) { u32 eecd; eecd = er32(EECD); if (hw->eeprom.type == e1000_eeprom_spi) { eecd |= E1000_EECD_CS; /* Pull CS high */ eecd &= ~E1000_EECD_SK; /* Lower SCK */ ew32(EECD, eecd); E1000_WRITE_FLUSH(); udelay(hw->eeprom.delay_usec); } else if (hw->eeprom.type == e1000_eeprom_microwire) { /* cleanup eeprom */ /* CS on Microwire is active-high */ eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); ew32(EECD, eecd); /* Rising edge of clock */ eecd |= E1000_EECD_SK; ew32(EECD, eecd); E1000_WRITE_FLUSH(); udelay(hw->eeprom.delay_usec); /* Falling edge of clock */ eecd &= ~E1000_EECD_SK; ew32(EECD, eecd); E1000_WRITE_FLUSH(); udelay(hw->eeprom.delay_usec); } /* Stop requesting EEPROM access */ if (hw->mac_type > e1000_82544) { eecd &= ~E1000_EECD_REQ; ew32(EECD, eecd); } } /** * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM. * @hw: Struct containing variables accessed by shared code */ static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw) { u16 retry_count = 0; u8 spi_stat_reg; /* Read "Status Register" repeatedly until the LSB is cleared. The * EEPROM will signal that the command has been completed by clearing * bit 0 of the internal status register. If it's not cleared within * 5 milliseconds, then error out. */ retry_count = 0; do { e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI, hw->eeprom.opcode_bits); spi_stat_reg = (u8)e1000_shift_in_ee_bits(hw, 8); if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI)) break; udelay(5); retry_count += 5; e1000_standby_eeprom(hw); } while (retry_count < EEPROM_MAX_RETRY_SPI); /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and * only 0-5mSec on 5V devices) */ if (retry_count >= EEPROM_MAX_RETRY_SPI) { e_dbg("SPI EEPROM Status error\n"); return -E1000_ERR_EEPROM; } return E1000_SUCCESS; } /** * e1000_read_eeprom - Reads a 16 bit word from the EEPROM. * @hw: Struct containing variables accessed by shared code * @offset: offset of word in the EEPROM to read * @data: word read from the EEPROM * @words: number of words to read */ s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { s32 ret; mutex_lock(&e1000_eeprom_lock); ret = e1000_do_read_eeprom(hw, offset, words, data); mutex_unlock(&e1000_eeprom_lock); return ret; } static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { struct e1000_eeprom_info *eeprom = &hw->eeprom; u32 i = 0; if (hw->mac_type == e1000_ce4100) { GBE_CONFIG_FLASH_READ(GBE_CONFIG_BASE_VIRT, offset, words, data); return E1000_SUCCESS; } /* A check for invalid values: offset too large, too many words, and * not enough words. */ if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || (words == 0)) { e_dbg("\"words\" parameter out of bounds. Words = %d," "size = %d\n", offset, eeprom->word_size); return -E1000_ERR_EEPROM; } /* EEPROM's that don't use EERD to read require us to bit-bang the SPI * directly. In this case, we need to acquire the EEPROM so that * FW or other port software does not interrupt. */ /* Prepare the EEPROM for bit-bang reading */ if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) return -E1000_ERR_EEPROM; /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have * acquired the EEPROM at this point, so any returns should release it */ if (eeprom->type == e1000_eeprom_spi) { u16 word_in; u8 read_opcode = EEPROM_READ_OPCODE_SPI; if (e1000_spi_eeprom_ready(hw)) { e1000_release_eeprom(hw); return -E1000_ERR_EEPROM; } e1000_standby_eeprom(hw); /* Some SPI eeproms use the 8th address bit embedded in the * opcode */ if ((eeprom->address_bits == 8) && (offset >= 128)) read_opcode |= EEPROM_A8_OPCODE_SPI; /* Send the READ command (opcode + addr) */ e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits); e1000_shift_out_ee_bits(hw, (u16)(offset * 2), eeprom->address_bits); /* Read the data. The address of the eeprom internally * increments with each byte (spi) being read, saving on the * overhead of eeprom setup and tear-down. The address counter * will roll over if reading beyond the size of the eeprom, thus * allowing the entire memory to be read starting from any * offset. */ for (i = 0; i < words; i++) { word_in = e1000_shift_in_ee_bits(hw, 16); data[i] = (word_in >> 8) | (word_in << 8); } } else if (eeprom->type == e1000_eeprom_microwire) { for (i = 0; i < words; i++) { /* Send the READ command (opcode + addr) */ e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE, eeprom->opcode_bits); e1000_shift_out_ee_bits(hw, (u16)(offset + i), eeprom->address_bits); /* Read the data. For microwire, each word requires the * overhead of eeprom setup and tear-down. */ data[i] = e1000_shift_in_ee_bits(hw, 16); e1000_standby_eeprom(hw); cond_resched(); } } /* End this read operation */ e1000_release_eeprom(hw); return E1000_SUCCESS; } /** * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum * @hw: Struct containing variables accessed by shared code * * Reads the first 64 16 bit words of the EEPROM and sums the values read. * If the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is * valid. */ s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw) { u16 checksum = 0; u16 i, eeprom_data; for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { e_dbg("EEPROM Read Error\n"); return -E1000_ERR_EEPROM; } checksum += eeprom_data; } #ifdef CONFIG_PARISC /* This is a signature and not a checksum on HP c8000 */ if ((hw->subsystem_vendor_id == 0x103C) && (eeprom_data == 0x16d6)) return E1000_SUCCESS; #endif if (checksum == (u16)EEPROM_SUM) return E1000_SUCCESS; else { e_dbg("EEPROM Checksum Invalid\n"); return -E1000_ERR_EEPROM; } } /** * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum * @hw: Struct containing variables accessed by shared code * * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA. * Writes the difference to word offset 63 of the EEPROM. */ s32 e1000_update_eeprom_checksum(struct e1000_hw *hw) { u16 checksum = 0; u16 i, eeprom_data; for (i = 0; i < EEPROM_CHECKSUM_REG; i++) { if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { e_dbg("EEPROM Read Error\n"); return -E1000_ERR_EEPROM; } checksum += eeprom_data; } checksum = (u16)EEPROM_SUM - checksum; if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) { e_dbg("EEPROM Write Error\n"); return -E1000_ERR_EEPROM; } return E1000_SUCCESS; } /** * e1000_write_eeprom - write words to the different EEPROM types. * @hw: Struct containing variables accessed by shared code * @offset: offset within the EEPROM to be written to * @words: number of words to write * @data: 16 bit word to be written to the EEPROM * * If e1000_update_eeprom_checksum is not called after this function, the * EEPROM will most likely contain an invalid checksum. */ s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { s32 ret; mutex_lock(&e1000_eeprom_lock); ret = e1000_do_write_eeprom(hw, offset, words, data); mutex_unlock(&e1000_eeprom_lock); return ret; } static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { struct e1000_eeprom_info *eeprom = &hw->eeprom; s32 status = 0; if (hw->mac_type == e1000_ce4100) { GBE_CONFIG_FLASH_WRITE(GBE_CONFIG_BASE_VIRT, offset, words, data); return E1000_SUCCESS; } /* A check for invalid values: offset too large, too many words, and * not enough words. */ if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || (words == 0)) { e_dbg("\"words\" parameter out of bounds\n"); return -E1000_ERR_EEPROM; } /* Prepare the EEPROM for writing */ if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) return -E1000_ERR_EEPROM; if (eeprom->type == e1000_eeprom_microwire) { status = e1000_write_eeprom_microwire(hw, offset, words, data); } else { status = e1000_write_eeprom_spi(hw, offset, words, data); msleep(10); } /* Done with writing */ e1000_release_eeprom(hw); return status; } /** * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM. * @hw: Struct containing variables accessed by shared code * @offset: offset within the EEPROM to be written to * @words: number of words to write * @data: pointer to array of 8 bit words to be written to the EEPROM */ static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { struct e1000_eeprom_info *eeprom = &hw->eeprom; u16 widx = 0; while (widx < words) { u8 write_opcode = EEPROM_WRITE_OPCODE_SPI; if (e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM; e1000_standby_eeprom(hw); cond_resched(); /* Send the WRITE ENABLE command (8 bit opcode ) */ e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI, eeprom->opcode_bits); e1000_standby_eeprom(hw); /* Some SPI eeproms use the 8th address bit embedded in the * opcode */ if ((eeprom->address_bits == 8) && (offset >= 128)) write_opcode |= EEPROM_A8_OPCODE_SPI; /* Send the Write command (8-bit opcode + addr) */ e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits); e1000_shift_out_ee_bits(hw, (u16)((offset + widx) * 2), eeprom->address_bits); /* Send the data */ /* Loop to allow for up to whole page write (32 bytes) of * eeprom */ while (widx < words) { u16 word_out = data[widx]; word_out = (word_out >> 8) | (word_out << 8); e1000_shift_out_ee_bits(hw, word_out, 16); widx++; /* Some larger eeprom sizes are capable of a 32-byte * PAGE WRITE operation, while the smaller eeproms are * capable of an 8-byte PAGE WRITE operation. Break the * inner loop to pass new address */ if ((((offset + widx) * 2) % eeprom->page_size) == 0) { e1000_standby_eeprom(hw); break; } } } return E1000_SUCCESS; } /** * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM. * @hw: Struct containing variables accessed by shared code * @offset: offset within the EEPROM to be written to * @words: number of words to write * @data: pointer to array of 8 bit words to be written to the EEPROM */ static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { struct e1000_eeprom_info *eeprom = &hw->eeprom; u32 eecd; u16 words_written = 0; u16 i = 0; /* Send the write enable command to the EEPROM (3-bit opcode plus * 6/8-bit dummy address beginning with 11). It's less work to include * the 11 of the dummy address as part of the opcode than it is to shift * it over the correct number of bits for the address. This puts the * EEPROM into write/erase mode. */ e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE, (u16)(eeprom->opcode_bits + 2)); e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2)); /* Prepare the EEPROM */ e1000_standby_eeprom(hw); while (words_written < words) { /* Send the Write command (3-bit opcode + addr) */ e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE, eeprom->opcode_bits); e1000_shift_out_ee_bits(hw, (u16)(offset + words_written), eeprom->address_bits); /* Send the data */ e1000_shift_out_ee_bits(hw, data[words_written], 16); /* Toggle the CS line. This in effect tells the EEPROM to * execute the previous command. */ e1000_standby_eeprom(hw); /* Read DO repeatedly until it is high (equal to '1'). The * EEPROM will signal that the command has been completed by * raising the DO signal. If DO does not go high in 10 * milliseconds, then error out. */ for (i = 0; i < 200; i++) { eecd = er32(EECD); if (eecd & E1000_EECD_DO) break; udelay(50); } if (i == 200) { e_dbg("EEPROM Write did not complete\n"); return -E1000_ERR_EEPROM; } /* Recover from write */ e1000_standby_eeprom(hw); cond_resched(); words_written++; } /* Send the write disable command to the EEPROM (3-bit opcode plus * 6/8-bit dummy address beginning with 10). It's less work to include * the 10 of the dummy address as part of the opcode than it is to shift * it over the correct number of bits for the address. This takes the * EEPROM out of write/erase mode. */ e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE, (u16)(eeprom->opcode_bits + 2)); e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2)); return E1000_SUCCESS; } /** * e1000_read_mac_addr - read the adapters MAC from eeprom * @hw: Struct containing variables accessed by shared code * * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the * second function of dual function devices */ s32 e1000_read_mac_addr(struct e1000_hw *hw) { u16 offset; u16 eeprom_data, i; for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) { offset = i >> 1; if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { e_dbg("EEPROM Read Error\n"); return -E1000_ERR_EEPROM; } hw->perm_mac_addr[i] = (u8)(eeprom_data & 0x00FF); hw->perm_mac_addr[i + 1] = (u8)(eeprom_data >> 8); } switch (hw->mac_type) { default: break; case e1000_82546: case e1000_82546_rev_3: if (er32(STATUS) & E1000_STATUS_FUNC_1) hw->perm_mac_addr[5] ^= 0x01; break; } for (i = 0; i < NODE_ADDRESS_SIZE; i++) hw->mac_addr[i] = hw->perm_mac_addr[i]; return E1000_SUCCESS; } /** * e1000_init_rx_addrs - Initializes receive address filters. * @hw: Struct containing variables accessed by shared code * * Places the MAC address in receive address register 0 and clears the rest * of the receive address registers. Clears the multicast table. Assumes * the receiver is in reset when the routine is called. */ static void e1000_init_rx_addrs(struct e1000_hw *hw) { u32 i; u32 rar_num; /* Setup the receive address. */ e_dbg("Programming MAC Address into RAR[0]\n"); e1000_rar_set(hw, hw->mac_addr, 0); rar_num = E1000_RAR_ENTRIES; /* Zero out the following 14 receive addresses. RAR[15] is for * manageability */ e_dbg("Clearing RAR[1-14]\n"); for (i = 1; i < rar_num; i++) { E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); E1000_WRITE_FLUSH(); E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); E1000_WRITE_FLUSH(); } } /** * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table * @hw: Struct containing variables accessed by shared code * @mc_addr: the multicast address to hash */ u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) { u32 hash_value = 0; /* The portion of the address that is used for the hash table is * determined by the mc_filter_type setting. */ switch (hw->mc_filter_type) { /* [0] [1] [2] [3] [4] [5] * 01 AA 00 12 34 56 * LSB MSB */ case 0: /* [47:36] i.e. 0x563 for above example address */ hash_value = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4)); break; case 1: /* [46:35] i.e. 0xAC6 for above example address */ hash_value = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5)); break; case 2: /* [45:34] i.e. 0x5D8 for above example address */ hash_value = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6)); break; case 3: /* [43:32] i.e. 0x634 for above example address */ hash_value = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8)); break; } hash_value &= 0xFFF; return hash_value; } /** * e1000_rar_set - Puts an ethernet address into a receive address register. * @hw: Struct containing variables accessed by shared code * @addr: Address to put into receive address register * @index: Receive address register to write */ void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) { u32 rar_low, rar_high; /* HW expects these in little endian so we reverse the byte order * from network order (big endian) to little endian */ rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) | ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx * unit hang. * * Description: * If there are any Rx frames queued up or otherwise present in the HW * before RSS is enabled, and then we enable RSS, the HW Rx unit will * hang. To work around this issue, we have to disable receives and * flush out all Rx frames before we enable RSS. To do so, we modify we * redirect all Rx traffic to manageability and then reset the HW. * This flushes away Rx frames, and (since the redirections to * manageability persists across resets) keeps new ones from coming in * while we work. Then, we clear the Address Valid AV bit for all MAC * addresses and undo the re-direction to manageability. * Now, frames are coming in again, but the MAC won't accept them, so * far so good. We now proceed to initialize RSS (if necessary) and * configure the Rx unit. Last, we re-enable the AV bits and continue * on our merry way. */ switch (hw->mac_type) { default: /* Indicate to hardware the Address is Valid. */ rar_high |= E1000_RAH_AV; break; } E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); E1000_WRITE_FLUSH(); E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); E1000_WRITE_FLUSH(); } /** * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table. * @hw: Struct containing variables accessed by shared code * @offset: Offset in VLAN filer table to write * @value: Value to write into VLAN filter table */ void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) { u32 temp; if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) { temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1)); E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); E1000_WRITE_FLUSH(); E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp); E1000_WRITE_FLUSH(); } else { E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); E1000_WRITE_FLUSH(); } } /** * e1000_clear_vfta - Clears the VLAN filer table * @hw: Struct containing variables accessed by shared code */ static void e1000_clear_vfta(struct e1000_hw *hw) { u32 offset; u32 vfta_value = 0; u32 vfta_offset = 0; u32 vfta_bit_in_reg = 0; for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { /* If the offset we want to clear is the same offset of the * manageability VLAN ID, then clear all bits except that of the * manageability unit */ vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value); E1000_WRITE_FLUSH(); } } static s32 e1000_id_led_init(struct e1000_hw *hw) { u32 ledctl; const u32 ledctl_mask = 0x000000FF; const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; u16 eeprom_data, i, temp; const u16 led_mask = 0x0F; if (hw->mac_type < e1000_82540) { /* Nothing to do */ return E1000_SUCCESS; } ledctl = er32(LEDCTL); hw->ledctl_default = ledctl; hw->ledctl_mode1 = hw->ledctl_default; hw->ledctl_mode2 = hw->ledctl_default; if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) { e_dbg("EEPROM Read Error\n"); return -E1000_ERR_EEPROM; } if ((eeprom_data == ID_LED_RESERVED_0000) || (eeprom_data == ID_LED_RESERVED_FFFF)) { eeprom_data = ID_LED_DEFAULT; } for (i = 0; i < 4; i++) { temp = (eeprom_data >> (i << 2)) & led_mask; switch (temp) { case ID_LED_ON1_DEF2: case ID_LED_ON1_ON2: case ID_LED_ON1_OFF2: hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); hw->ledctl_mode1 |= ledctl_on << (i << 3); break; case ID_LED_OFF1_DEF2: case ID_LED_OFF1_ON2: case ID_LED_OFF1_OFF2: hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); hw->ledctl_mode1 |= ledctl_off << (i << 3); break; default: /* Do nothing */ break; } switch (temp) { case ID_LED_DEF1_ON2: case ID_LED_ON1_ON2: case ID_LED_OFF1_ON2: hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); hw->ledctl_mode2 |= ledctl_on << (i << 3); break; case ID_LED_DEF1_OFF2: case ID_LED_ON1_OFF2: case ID_LED_OFF1_OFF2: hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); hw->ledctl_mode2 |= ledctl_off << (i << 3); break; default: /* Do nothing */ break; } } return E1000_SUCCESS; } /** * e1000_setup_led * @hw: Struct containing variables accessed by shared code * * Prepares SW controlable LED for use and saves the current state of the LED. */ s32 e1000_setup_led(struct e1000_hw *hw) { u32 ledctl; s32 ret_val = E1000_SUCCESS; switch (hw->mac_type) { case e1000_82542_rev2_0: case e1000_82542_rev2_1: case e1000_82543: case e1000_82544: /* No setup necessary */ break; case e1000_82541: case e1000_82547: case e1000_82541_rev_2: case e1000_82547_rev_2: /* Turn off PHY Smart Power Down (if enabled) */ ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &hw->phy_spd_default); if (ret_val) return ret_val; ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, (u16)(hw->phy_spd_default & ~IGP01E1000_GMII_SPD)); if (ret_val) return ret_val; fallthrough; default: if (hw->media_type == e1000_media_type_fiber) { ledctl = er32(LEDCTL); /* Save current LEDCTL settings */ hw->ledctl_default = ledctl; /* Turn off LED0 */ ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK | E1000_LEDCTL_LED0_MODE_MASK); ledctl |= (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT); ew32(LEDCTL, ledctl); } else if (hw->media_type == e1000_media_type_copper) ew32(LEDCTL, hw->ledctl_mode1); break; } return E1000_SUCCESS; } /** * e1000_cleanup_led - Restores the saved state of the SW controlable LED. * @hw: Struct containing variables accessed by shared code */ s32 e1000_cleanup_led(struct e1000_hw *hw) { s32 ret_val = E1000_SUCCESS; switch (hw->mac_type) { case e1000_82542_rev2_0: case e1000_82542_rev2_1: case e1000_82543: case e1000_82544: /* No cleanup necessary */ break; case e1000_82541: case e1000_82547: case e1000_82541_rev_2: case e1000_82547_rev_2: /* Turn on PHY Smart Power Down (if previously enabled) */ ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, hw->phy_spd_default); if (ret_val) return ret_val; fallthrough; default: /* Restore LEDCTL settings */ ew32(LEDCTL, hw->ledctl_default); break; } return E1000_SUCCESS; } /** * e1000_led_on - Turns on the software controllable LED * @hw: Struct containing variables accessed by shared code */ s32 e1000_led_on(struct e1000_hw *hw) { u32 ctrl = er32(CTRL); switch (hw->mac_type) { case e1000_82542_rev2_0: case e1000_82542_rev2_1: case e1000_82543: /* Set SW Defineable Pin 0 to turn on the LED */ ctrl |= E1000_CTRL_SWDPIN0; ctrl |= E1000_CTRL_SWDPIO0; break; case e1000_82544: if (hw->media_type == e1000_media_type_fiber) { /* Set SW Defineable Pin 0 to turn on the LED */ ctrl |= E1000_CTRL_SWDPIN0; ctrl |= E1000_CTRL_SWDPIO0; } else { /* Clear SW Defineable Pin 0 to turn on the LED */ ctrl &= ~E1000_CTRL_SWDPIN0; ctrl |= E1000_CTRL_SWDPIO0; } break; default: if (hw->media_type == e1000_media_type_fiber) { /* Clear SW Defineable Pin 0 to turn on the LED */ ctrl &= ~E1000_CTRL_SWDPIN0; ctrl |= E1000_CTRL_SWDPIO0; } else if (hw->media_type == e1000_media_type_copper) { ew32(LEDCTL, hw->ledctl_mode2); return E1000_SUCCESS; } break; } ew32(CTRL, ctrl); return E1000_SUCCESS; } /** * e1000_led_off - Turns off the software controllable LED * @hw: Struct containing variables accessed by shared code */ s32 e1000_led_off(struct e1000_hw *hw) { u32 ctrl = er32(CTRL); switch (hw->mac_type) { case e1000_82542_rev2_0: case e1000_82542_rev2_1: case e1000_82543: /* Clear SW Defineable Pin 0 to turn off the LED */ ctrl &= ~E1000_CTRL_SWDPIN0; ctrl |= E1000_CTRL_SWDPIO0; break; case e1000_82544: if (hw->media_type == e1000_media_type_fiber) { /* Clear SW Defineable Pin 0 to turn off the LED */ ctrl &= ~E1000_CTRL_SWDPIN0; ctrl |= E1000_CTRL_SWDPIO0; } else { /* Set SW Defineable Pin 0 to turn off the LED */ ctrl |= E1000_CTRL_SWDPIN0; ctrl |= E1000_CTRL_SWDPIO0; } break; default: if (hw->media_type == e1000_media_type_fiber) { /* Set SW Defineable Pin 0 to turn off the LED */ ctrl |= E1000_CTRL_SWDPIN0; ctrl |= E1000_CTRL_SWDPIO0; } else if (hw->media_type == e1000_media_type_copper) { ew32(LEDCTL, hw->ledctl_mode1); return E1000_SUCCESS; } break; } ew32(CTRL, ctrl); return E1000_SUCCESS; } /** * e1000_clear_hw_cntrs - Clears all hardware statistics counters. * @hw: Struct containing variables accessed by shared code */ static void e1000_clear_hw_cntrs(struct e1000_hw *hw) { volatile u32 temp; temp = er32(CRCERRS); temp = er32(SYMERRS); temp = er32(MPC); temp = er32(SCC); temp = er32(ECOL); temp = er32(MCC); temp = er32(LATECOL); temp = er32(COLC); temp = er32(DC); temp = er32(SEC); temp = er32(RLEC); temp = er32(XONRXC); temp = er32(XONTXC); temp = er32(XOFFRXC); temp = er32(XOFFTXC); temp = er32(FCRUC); temp = er32(PRC64); temp = er32(PRC127); temp = er32(PRC255); temp = er32(PRC511); temp = er32(PRC1023); temp = er32(PRC1522); temp = er32(GPRC); temp = er32(BPRC); temp = er32(MPRC); temp = er32(GPTC); temp = er32(GORCL); temp = er32(GORCH); temp = er32(GOTCL); temp = er32(GOTCH); temp = er32(RNBC); temp = er32(RUC); temp = er32(RFC); temp = er32(ROC); temp = er32(RJC); temp = er32(TORL); temp = er32(TORH); temp = er32(TOTL); temp = er32(TOTH); temp = er32(TPR); temp = er32(TPT); temp = er32(PTC64); temp = er32(PTC127); temp = er32(PTC255); temp = er32(PTC511); temp = er32(PTC1023); temp = er32(PTC1522); temp = er32(MPTC); temp = er32(BPTC); if (hw->mac_type < e1000_82543) return; temp = er32(ALGNERRC); temp = er32(RXERRC); temp = er32(TNCRS); temp = er32(CEXTERR); temp = er32(TSCTC); temp = er32(TSCTFC); if (hw->mac_type <= e1000_82544) return; temp = er32(MGTPRC); temp = er32(MGTPDC); temp = er32(MGTPTC); } /** * e1000_reset_adaptive - Resets Adaptive IFS to its default state. * @hw: Struct containing variables accessed by shared code * * Call this after e1000_init_hw. You may override the IFS defaults by setting * hw->ifs_params_forced to true. However, you must initialize hw-> * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio * before calling this function. */ void e1000_reset_adaptive(struct e1000_hw *hw) { if (hw->adaptive_ifs) { if (!hw->ifs_params_forced) { hw->current_ifs_val = 0; hw->ifs_min_val = IFS_MIN; hw->ifs_max_val = IFS_MAX; hw->ifs_step_size = IFS_STEP; hw->ifs_ratio = IFS_RATIO; } hw->in_ifs_mode = false; ew32(AIT, 0); } else { e_dbg("Not in Adaptive IFS mode!\n"); } } /** * e1000_update_adaptive - update adaptive IFS * @hw: Struct containing variables accessed by shared code * @tx_packets: Number of transmits since last callback * @total_collisions: Number of collisions since last callback * * Called during the callback/watchdog routine to update IFS value based on * the ratio of transmits to collisions. */ void e1000_update_adaptive(struct e1000_hw *hw) { if (hw->adaptive_ifs) { if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) { if (hw->tx_packet_delta > MIN_NUM_XMITS) { hw->in_ifs_mode = true; if (hw->current_ifs_val < hw->ifs_max_val) { if (hw->current_ifs_val == 0) hw->current_ifs_val = hw->ifs_min_val; else hw->current_ifs_val += hw->ifs_step_size; ew32(AIT, hw->current_ifs_val); } } } else { if (hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) { hw->current_ifs_val = 0; hw->in_ifs_mode = false; ew32(AIT, 0); } } } else { e_dbg("Not in Adaptive IFS mode!\n"); } } /** * e1000_get_bus_info * @hw: Struct containing variables accessed by shared code * * Gets the current PCI bus type, speed, and width of the hardware */ void e1000_get_bus_info(struct e1000_hw *hw) { u32 status; switch (hw->mac_type) { case e1000_82542_rev2_0: case e1000_82542_rev2_1: hw->bus_type = e1000_bus_type_pci; hw->bus_speed = e1000_bus_speed_unknown; hw->bus_width = e1000_bus_width_unknown; break; default: status = er32(STATUS); hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? e1000_bus_type_pcix : e1000_bus_type_pci; if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) { hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ? e1000_bus_speed_66 : e1000_bus_speed_120; } else if (hw->bus_type == e1000_bus_type_pci) { hw->bus_speed = (status & E1000_STATUS_PCI66) ? e1000_bus_speed_66 : e1000_bus_speed_33; } else { switch (status & E1000_STATUS_PCIX_SPEED) { case E1000_STATUS_PCIX_SPEED_66: hw->bus_speed = e1000_bus_speed_66; break; case E1000_STATUS_PCIX_SPEED_100: hw->bus_speed = e1000_bus_speed_100; break; case E1000_STATUS_PCIX_SPEED_133: hw->bus_speed = e1000_bus_speed_133; break; default: hw->bus_speed = e1000_bus_speed_reserved; break; } } hw->bus_width = (status & E1000_STATUS_BUS64) ? e1000_bus_width_64 : e1000_bus_width_32; break; } } /** * e1000_write_reg_io * @hw: Struct containing variables accessed by shared code * @offset: offset to write to * @value: value to write * * Writes a value to one of the devices registers using port I/O (as opposed to * memory mapped I/O). Only 82544 and newer devices support port I/O. */ static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value) { unsigned long io_addr = hw->io_base; unsigned long io_data = hw->io_base + 4; e1000_io_write(hw, io_addr, offset); e1000_io_write(hw, io_data, value); } /** * e1000_get_cable_length - Estimates the cable length. * @hw: Struct containing variables accessed by shared code * @min_length: The estimated minimum length * @max_length: The estimated maximum length * * returns: - E1000_ERR_XXX * E1000_SUCCESS * * This function always returns a ranged length (minimum & maximum). * So for M88 phy's, this function interprets the one value returned from the * register to the minimum and maximum range. * For IGP phy's, the function calculates the range by the AGC registers. */ static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length, u16 *max_length) { s32 ret_val; u16 agc_value = 0; u16 i, phy_data; u16 cable_length; *min_length = *max_length = 0; /* Use old method for Phy older than IGP */ if (hw->phy_type == e1000_phy_m88) { ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); if (ret_val) return ret_val; cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> M88E1000_PSSR_CABLE_LENGTH_SHIFT; /* Convert the enum value to ranged values */ switch (cable_length) { case e1000_cable_length_50: *min_length = 0; *max_length = e1000_igp_cable_length_50; break; case e1000_cable_length_50_80: *min_length = e1000_igp_cable_length_50; *max_length = e1000_igp_cable_length_80; break; case e1000_cable_length_80_110: *min_length = e1000_igp_cable_length_80; *max_length = e1000_igp_cable_length_110; break; case e1000_cable_length_110_140: *min_length = e1000_igp_cable_length_110; *max_length = e1000_igp_cable_length_140; break; case e1000_cable_length_140: *min_length = e1000_igp_cable_length_140; *max_length = e1000_igp_cable_length_170; break; default: return -E1000_ERR_PHY; } } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */ u16 cur_agc_value; u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE; static const u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = { IGP01E1000_PHY_AGC_A, IGP01E1000_PHY_AGC_B, IGP01E1000_PHY_AGC_C, IGP01E1000_PHY_AGC_D }; /* Read the AGC registers for all channels */ for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data); if (ret_val) return ret_val; cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT; /* Value bound check. */ if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) || (cur_agc_value == 0)) return -E1000_ERR_PHY; agc_value += cur_agc_value; /* Update minimal AGC value. */ if (min_agc_value > cur_agc_value) min_agc_value = cur_agc_value; } /* Remove the minimal AGC result for length < 50m */ if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) { agc_value -= min_agc_value; /* Get the average length of the remaining 3 channels */ agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1); } else { /* Get the average length of all the 4 channels. */ agc_value /= IGP01E1000_PHY_CHANNEL_NUM; } /* Set the range of the calculated length. */ *min_length = ((e1000_igp_cable_length_table[agc_value] - IGP01E1000_AGC_RANGE) > 0) ? (e1000_igp_cable_length_table[agc_value] - IGP01E1000_AGC_RANGE) : 0; *max_length = e1000_igp_cable_length_table[agc_value] + IGP01E1000_AGC_RANGE; } return E1000_SUCCESS; } /** * e1000_check_polarity - Check the cable polarity * @hw: Struct containing variables accessed by shared code * @polarity: output parameter : 0 - Polarity is not reversed * 1 - Polarity is reversed. * * returns: - E1000_ERR_XXX * E1000_SUCCESS * * For phy's older than IGP, this function simply reads the polarity bit in the * Phy Status register. For IGP phy's, this bit is valid only if link speed is * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will * return 0. If the link speed is 1000 Mbps the polarity status is in the * IGP01E1000_PHY_PCS_INIT_REG. */ static s32 e1000_check_polarity(struct e1000_hw *hw, e1000_rev_polarity *polarity) { s32 ret_val; u16 phy_data; if (hw->phy_type == e1000_phy_m88) { /* return the Polarity bit in the Status register. */ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); if (ret_val) return ret_val; *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >> M88E1000_PSSR_REV_POLARITY_SHIFT) ? e1000_rev_polarity_reversed : e1000_rev_polarity_normal; } else if (hw->phy_type == e1000_phy_igp) { /* Read the Status register to check the speed */ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data); if (ret_val) return ret_val; /* If speed is 1000 Mbps, must read the * IGP01E1000_PHY_PCS_INIT_REG to find the polarity status */ if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == IGP01E1000_PSSR_SPEED_1000MBPS) { /* Read the GIG initialization PCS register (0x00B4) */ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG, &phy_data); if (ret_val) return ret_val; /* Check the polarity bits */ *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ? e1000_rev_polarity_reversed : e1000_rev_polarity_normal; } else { /* For 10 Mbps, read the polarity bit in the status * register. (for 100 Mbps this bit is always 0) */ *polarity = (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ? e1000_rev_polarity_reversed : e1000_rev_polarity_normal; } } return E1000_SUCCESS; } /** * e1000_check_downshift - Check if Downshift occurred * @hw: Struct containing variables accessed by shared code * @downshift: output parameter : 0 - No Downshift occurred. * 1 - Downshift occurred. * * returns: - E1000_ERR_XXX * E1000_SUCCESS * * For phy's older than IGP, this function reads the Downshift bit in the Phy * Specific Status register. For IGP phy's, it reads the Downgrade bit in the * Link Health register. In IGP this bit is latched high, so the driver must * read it immediately after link is established. */ static s32 e1000_check_downshift(struct e1000_hw *hw) { s32 ret_val; u16 phy_data; if (hw->phy_type == e1000_phy_igp) { ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, &phy_data); if (ret_val) return ret_val; hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0; } else if (hw->phy_type == e1000_phy_m88) { ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); if (ret_val) return ret_val; hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> M88E1000_PSSR_DOWNSHIFT_SHIFT; } return E1000_SUCCESS; } static const u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = { IGP01E1000_PHY_AGC_PARAM_A, IGP01E1000_PHY_AGC_PARAM_B, IGP01E1000_PHY_AGC_PARAM_C, IGP01E1000_PHY_AGC_PARAM_D }; static s32 e1000_1000Mb_check_cable_length(struct e1000_hw *hw) { u16 min_length, max_length; u16 phy_data, i; s32 ret_val; ret_val = e1000_get_cable_length(hw, &min_length, &max_length); if (ret_val) return ret_val; if (hw->dsp_config_state != e1000_dsp_config_enabled) return 0; if (min_length >= e1000_igp_cable_length_50) { for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], &phy_data); if (ret_val) return ret_val; phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i], phy_data); if (ret_val) return ret_val; } hw->dsp_config_state = e1000_dsp_config_activated; } else { u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20; u32 idle_errs = 0; /* clear previous idle error counts */ ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); if (ret_val) return ret_val; for (i = 0; i < ffe_idle_err_timeout; i++) { udelay(1000); ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); if (ret_val) return ret_val; idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT); if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) { hw->ffe_config_state = e1000_ffe_config_active; ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE, IGP01E1000_PHY_DSP_FFE_CM_CP); if (ret_val) return ret_val; break; } if (idle_errs) ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100; } } return 0; } /** * e1000_config_dsp_after_link_change * @hw: Struct containing variables accessed by shared code * @link_up: was link up at the time this was called * * returns: - E1000_ERR_PHY if fail to read/write the PHY * E1000_SUCCESS at any other case. * * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a * gigabit link is achieved to improve link quality. */ static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up) { s32 ret_val; u16 phy_data, phy_saved_data, speed, duplex, i; if (hw->phy_type != e1000_phy_igp) return E1000_SUCCESS; if (link_up) { ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); if (ret_val) { e_dbg("Error getting link speed and duplex\n"); return ret_val; } if (speed == SPEED_1000) { ret_val = e1000_1000Mb_check_cable_length(hw); if (ret_val) return ret_val; } } else { if (hw->dsp_config_state == e1000_dsp_config_activated) { /* Save off the current value of register 0x2F5B to be * restored at the end of the routines. */ ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); if (ret_val) return ret_val; /* Disable the PHY transmitter */ ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); if (ret_val) return ret_val; msleep(20); ret_val = e1000_write_phy_reg(hw, 0x0000, IGP01E1000_IEEE_FORCE_GIGA); if (ret_val) return ret_val; for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], &phy_data); if (ret_val) return ret_val; phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS; ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i], phy_data); if (ret_val) return ret_val; } ret_val = e1000_write_phy_reg(hw, 0x0000, IGP01E1000_IEEE_RESTART_AUTONEG); if (ret_val) return ret_val; msleep(20); /* Now enable the transmitter */ ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); if (ret_val) return ret_val; hw->dsp_config_state = e1000_dsp_config_enabled; } if (hw->ffe_config_state == e1000_ffe_config_active) { /* Save off the current value of register 0x2F5B to be * restored at the end of the routines. */ ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); if (ret_val) return ret_val; /* Disable the PHY transmitter */ ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); if (ret_val) return ret_val; msleep(20); ret_val = e1000_write_phy_reg(hw, 0x0000, IGP01E1000_IEEE_FORCE_GIGA); if (ret_val) return ret_val; ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE, IGP01E1000_PHY_DSP_FFE_DEFAULT); if (ret_val) return ret_val; ret_val = e1000_write_phy_reg(hw, 0x0000, IGP01E1000_IEEE_RESTART_AUTONEG); if (ret_val) return ret_val; msleep(20); /* Now enable the transmitter */ ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); if (ret_val) return ret_val; hw->ffe_config_state = e1000_ffe_config_enabled; } } return E1000_SUCCESS; } /** * e1000_set_phy_mode - Set PHY to class A mode * @hw: Struct containing variables accessed by shared code * * Assumes the following operations will follow to enable the new class mode. * 1. Do a PHY soft reset * 2. Restart auto-negotiation or force link. */ static s32 e1000_set_phy_mode(struct e1000_hw *hw) { s32 ret_val; u16 eeprom_data; if ((hw->mac_type == e1000_82545_rev_3) && (hw->media_type == e1000_media_type_copper)) { ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data); if (ret_val) return ret_val; if ((eeprom_data != EEPROM_RESERVED_WORD) && (eeprom_data & EEPROM_PHY_CLASS_A)) { ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B); if (ret_val) return ret_val; ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104); if (ret_val) return ret_val; hw->phy_reset_disable = false; } } return E1000_SUCCESS; } /** * e1000_set_d3_lplu_state - set d3 link power state * @hw: Struct containing variables accessed by shared code * @active: true to enable lplu false to disable lplu. * * This function sets the lplu state according to the active flag. When * activating lplu this function also disables smart speed and vise versa. * lplu will not be activated unless the device autonegotiation advertisement * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. * * returns: - E1000_ERR_PHY if fail to read/write the PHY * E1000_SUCCESS at any other case. */ static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) { s32 ret_val; u16 phy_data; if (hw->phy_type != e1000_phy_igp) return E1000_SUCCESS; /* During driver activity LPLU should not be used or it will attain link * from the lowest speeds starting from 10Mbps. The capability is used * for Dx transitions and states */ if (hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) { ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); if (ret_val) return ret_val; } if (!active) { if (hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) { phy_data &= ~IGP01E1000_GMII_FLEX_SPD; ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); if (ret_val) return ret_val; } /* LPLU and SmartSpeed are mutually exclusive. LPLU is used * during Dx states where the power conservation is most * important. During driver activity we should enable * SmartSpeed, so performance is maintained. */ if (hw->smart_speed == e1000_smart_speed_on) { ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); if (ret_val) return ret_val; phy_data |= IGP01E1000_PSCFR_SMART_SPEED; ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); if (ret_val) return ret_val; } else if (hw->smart_speed == e1000_smart_speed_off) { ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); if (ret_val) return ret_val; phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); if (ret_val) return ret_val; } } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) { if (hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) { phy_data |= IGP01E1000_GMII_FLEX_SPD; ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); if (ret_val) return ret_val; } /* When LPLU is enabled we should disable SmartSpeed */ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); if (ret_val) return ret_val; phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); if (ret_val) return ret_val; } return E1000_SUCCESS; } /** * e1000_set_vco_speed * @hw: Struct containing variables accessed by shared code * * Change VCO speed register to improve Bit Error Rate performance of SERDES. */ static s32 e1000_set_vco_speed(struct e1000_hw *hw) { s32 ret_val; u16 default_page = 0; u16 phy_data; switch (hw->mac_type) { case e1000_82545_rev_3: case e1000_82546_rev_3: break; default: return E1000_SUCCESS; } /* Set PHY register 30, page 5, bit 8 to 0 */ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page); if (ret_val) return ret_val; ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005); if (ret_val) return ret_val; ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); if (ret_val) return ret_val; phy_data &= ~M88E1000_PHY_VCO_REG_BIT8; ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); if (ret_val) return ret_val; /* Set PHY register 30, page 4, bit 11 to 1 */ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004); if (ret_val) return ret_val; ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); if (ret_val) return ret_val; phy_data |= M88E1000_PHY_VCO_REG_BIT11; ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); if (ret_val) return ret_val; ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page); if (ret_val) return ret_val; return E1000_SUCCESS; } /** * e1000_enable_mng_pass_thru - check for bmc pass through * @hw: Struct containing variables accessed by shared code * * Verifies the hardware needs to allow ARPs to be processed by the host * returns: - true/false */ u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw) { u32 manc; if (hw->asf_firmware_present) { manc = er32(MANC); if (!(manc & E1000_MANC_RCV_TCO_EN) || !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) return false; if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN)) return true; } return false; } static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw) { s32 ret_val; u16 mii_status_reg; u16 i; /* Polarity reversal workaround for forced 10F/10H links. */ /* Disable the transmitter on the PHY */ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); if (ret_val) return ret_val; ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF); if (ret_val) return ret_val; ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); if (ret_val) return ret_val; /* This loop will early-out if the NO link condition has been met. */ for (i = PHY_FORCE_TIME; i > 0; i--) { /* Read the MII Status Register and wait for Link Status bit * to be clear. */ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); if (ret_val) return ret_val; ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); if (ret_val) return ret_val; if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break; msleep(100); } /* Recommended delay time after link has been lost */ msleep(1000); /* Now we will re-enable th transmitter on the PHY */ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); if (ret_val) return ret_val; msleep(50); ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0); if (ret_val) return ret_val; msleep(50); ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00); if (ret_val) return ret_val; msleep(50); ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000); if (ret_val) return ret_val; ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); if (ret_val) return ret_val; /* This loop will early-out if the link condition has been met. */ for (i = PHY_FORCE_TIME; i > 0; i--) { /* Read the MII Status Register and wait for Link Status bit * to be set. */ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); if (ret_val) return ret_val; ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); if (ret_val) return ret_val; if (mii_status_reg & MII_SR_LINK_STATUS) break; msleep(100); } return E1000_SUCCESS; } /** * e1000_get_auto_rd_done * @hw: Struct containing variables accessed by shared code * * Check for EEPROM Auto Read bit done. * returns: - E1000_ERR_RESET if fail to reset MAC * E1000_SUCCESS at any other case. */ static s32 e1000_get_auto_rd_done(struct e1000_hw *hw) { msleep(5); return E1000_SUCCESS; } /** * e1000_get_phy_cfg_done * @hw: Struct containing variables accessed by shared code * * Checks if the PHY configuration is done * returns: - E1000_ERR_RESET if fail to reset MAC * E1000_SUCCESS at any other case. */ static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw) { msleep(10); return E1000_SUCCESS; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1