Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Auke-Jan H Kok | 7140 | 61.08% | 5 | 4.00% |
Bruce W Allan | 3201 | 27.38% | 60 | 48.00% |
Joe Perches | 225 | 1.92% | 1 | 0.80% |
Jesse Brandeburg | 164 | 1.40% | 4 | 3.20% |
Philippe Reynes | 132 | 1.13% | 1 | 0.80% |
Yanir Lubetkin | 115 | 0.98% | 1 | 0.80% |
Jeff Kirsher | 90 | 0.77% | 6 | 4.80% |
Dave Ertman | 77 | 0.66% | 5 | 4.00% |
Jacob E Keller | 68 | 0.58% | 2 | 1.60% |
Ajit Khaparde | 64 | 0.55% | 2 | 1.60% |
David Decotigny | 55 | 0.47% | 3 | 2.40% |
Carolyn Wyborny | 45 | 0.38% | 1 | 0.80% |
Steve Shih | 38 | 0.33% | 1 | 0.80% |
Nicholas Nunley | 38 | 0.33% | 1 | 0.80% |
Rafael J. Wysocki | 36 | 0.31% | 1 | 0.80% |
Chaitanya Lala | 33 | 0.28% | 1 | 0.80% |
Mitch A Williams | 30 | 0.26% | 1 | 0.80% |
Jeff Garzik | 28 | 0.24% | 1 | 0.80% |
Sasha Neftin | 21 | 0.18% | 3 | 2.40% |
Roel Kluin | 13 | 0.11% | 2 | 1.60% |
Jakub Kiciński | 12 | 0.10% | 2 | 1.60% |
Rick Jones | 8 | 0.07% | 1 | 0.80% |
Arjan van de Ven | 7 | 0.06% | 1 | 0.80% |
Kees Cook | 6 | 0.05% | 1 | 0.80% |
Sergei Shtylyov | 5 | 0.04% | 1 | 0.80% |
Matthew Vick | 4 | 0.03% | 1 | 0.80% |
FUJITA Tomonori | 4 | 0.03% | 1 | 0.80% |
Richard Cochran | 4 | 0.03% | 1 | 0.80% |
Tejun Heo | 3 | 0.03% | 1 | 0.80% |
Adrian Bunk | 3 | 0.03% | 2 | 1.60% |
Konstantin Khlebnikov | 3 | 0.03% | 1 | 0.80% |
Wilfried Klaebe | 3 | 0.03% | 1 | 0.80% |
David S. Miller | 3 | 0.03% | 1 | 0.80% |
Alejandro Martinez Ruiz | 2 | 0.02% | 2 | 1.60% |
Stefan Assmann | 2 | 0.02% | 1 | 0.80% |
Jiri Pirko | 2 | 0.02% | 1 | 0.80% |
Alexey Dobriyan | 2 | 0.02% | 1 | 0.80% |
Suraj Upadhyay | 2 | 0.02% | 1 | 0.80% |
Benjamin Poirier | 1 | 0.01% | 1 | 0.80% |
Alexander Chiang | 1 | 0.01% | 1 | 0.80% |
Total | 11690 | 125 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 1999 - 2018 Intel Corporation. */ /* ethtool support for e1000 */ #include <linux/netdevice.h> #include <linux/interrupt.h> #include <linux/ethtool.h> #include <linux/pci.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/vmalloc.h> #include <linux/pm_runtime.h> #include "e1000.h" enum { NETDEV_STATS, E1000_STATS }; struct e1000_stats { char stat_string[ETH_GSTRING_LEN]; int type; int sizeof_stat; int stat_offset; }; #define E1000_STAT(str, m) { \ .stat_string = str, \ .type = E1000_STATS, \ .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \ .stat_offset = offsetof(struct e1000_adapter, m) } #define E1000_NETDEV_STAT(str, m) { \ .stat_string = str, \ .type = NETDEV_STATS, \ .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \ .stat_offset = offsetof(struct rtnl_link_stats64, m) } static const struct e1000_stats e1000_gstrings_stats[] = { E1000_STAT("rx_packets", stats.gprc), E1000_STAT("tx_packets", stats.gptc), E1000_STAT("rx_bytes", stats.gorc), E1000_STAT("tx_bytes", stats.gotc), E1000_STAT("rx_broadcast", stats.bprc), E1000_STAT("tx_broadcast", stats.bptc), E1000_STAT("rx_multicast", stats.mprc), E1000_STAT("tx_multicast", stats.mptc), E1000_NETDEV_STAT("rx_errors", rx_errors), E1000_NETDEV_STAT("tx_errors", tx_errors), E1000_NETDEV_STAT("tx_dropped", tx_dropped), E1000_STAT("multicast", stats.mprc), E1000_STAT("collisions", stats.colc), E1000_NETDEV_STAT("rx_length_errors", rx_length_errors), E1000_NETDEV_STAT("rx_over_errors", rx_over_errors), E1000_STAT("rx_crc_errors", stats.crcerrs), E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors), E1000_STAT("rx_no_buffer_count", stats.rnbc), E1000_STAT("rx_missed_errors", stats.mpc), E1000_STAT("tx_aborted_errors", stats.ecol), E1000_STAT("tx_carrier_errors", stats.tncrs), E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors), E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors), E1000_STAT("tx_window_errors", stats.latecol), E1000_STAT("tx_abort_late_coll", stats.latecol), E1000_STAT("tx_deferred_ok", stats.dc), E1000_STAT("tx_single_coll_ok", stats.scc), E1000_STAT("tx_multi_coll_ok", stats.mcc), E1000_STAT("tx_timeout_count", tx_timeout_count), E1000_STAT("tx_restart_queue", restart_queue), E1000_STAT("rx_long_length_errors", stats.roc), E1000_STAT("rx_short_length_errors", stats.ruc), E1000_STAT("rx_align_errors", stats.algnerrc), E1000_STAT("tx_tcp_seg_good", stats.tsctc), E1000_STAT("tx_tcp_seg_failed", stats.tsctfc), E1000_STAT("rx_flow_control_xon", stats.xonrxc), E1000_STAT("rx_flow_control_xoff", stats.xoffrxc), E1000_STAT("tx_flow_control_xon", stats.xontxc), E1000_STAT("tx_flow_control_xoff", stats.xofftxc), E1000_STAT("rx_csum_offload_good", hw_csum_good), E1000_STAT("rx_csum_offload_errors", hw_csum_err), E1000_STAT("rx_header_split", rx_hdr_split), E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed), E1000_STAT("tx_smbus", stats.mgptc), E1000_STAT("rx_smbus", stats.mgprc), E1000_STAT("dropped_smbus", stats.mgpdc), E1000_STAT("rx_dma_failed", rx_dma_failed), E1000_STAT("tx_dma_failed", tx_dma_failed), E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared), E1000_STAT("uncorr_ecc_errors", uncorr_errors), E1000_STAT("corr_ecc_errors", corr_errors), E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts), E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped), }; #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN) static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { "Register test (offline)", "Eeprom test (offline)", "Interrupt test (offline)", "Loopback test (offline)", "Link test (on/offline)" }; #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) static int e1000_get_link_ksettings(struct net_device *netdev, struct ethtool_link_ksettings *cmd) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; u32 speed, supported, advertising; if (hw->phy.media_type == e1000_media_type_copper) { supported = (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_TP); if (hw->phy.type == e1000_phy_ife) supported &= ~SUPPORTED_1000baseT_Full; advertising = ADVERTISED_TP; if (hw->mac.autoneg == 1) { advertising |= ADVERTISED_Autoneg; /* the e1000 autoneg seems to match ethtool nicely */ advertising |= hw->phy.autoneg_advertised; } cmd->base.port = PORT_TP; cmd->base.phy_address = hw->phy.addr; } else { supported = (SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE | SUPPORTED_Autoneg); advertising = (ADVERTISED_1000baseT_Full | ADVERTISED_FIBRE | ADVERTISED_Autoneg); cmd->base.port = PORT_FIBRE; } speed = SPEED_UNKNOWN; cmd->base.duplex = DUPLEX_UNKNOWN; if (netif_running(netdev)) { if (netif_carrier_ok(netdev)) { speed = adapter->link_speed; cmd->base.duplex = adapter->link_duplex - 1; } } else if (!pm_runtime_suspended(netdev->dev.parent)) { u32 status = er32(STATUS); if (status & E1000_STATUS_LU) { if (status & E1000_STATUS_SPEED_1000) speed = SPEED_1000; else if (status & E1000_STATUS_SPEED_100) speed = SPEED_100; else speed = SPEED_10; if (status & E1000_STATUS_FD) cmd->base.duplex = DUPLEX_FULL; else cmd->base.duplex = DUPLEX_HALF; } } cmd->base.speed = speed; cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) || hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; /* MDI-X => 2; MDI =>1; Invalid =>0 */ if ((hw->phy.media_type == e1000_media_type_copper) && netif_carrier_ok(netdev)) cmd->base.eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : ETH_TP_MDI; else cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID; if (hw->phy.mdix == AUTO_ALL_MODES) cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; else cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix; if (hw->phy.media_type != e1000_media_type_copper) cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID; ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, supported); ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, advertising); return 0; } static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) { struct e1000_mac_info *mac = &adapter->hw.mac; mac->autoneg = 0; /* Make sure dplx is at most 1 bit and lsb of speed is not set * for the switch() below to work */ if ((spd & 1) || (dplx & ~1)) goto err_inval; /* Fiber NICs only allow 1000 gbps Full duplex */ if ((adapter->hw.phy.media_type == e1000_media_type_fiber) && (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) { goto err_inval; } switch (spd + dplx) { case SPEED_10 + DUPLEX_HALF: mac->forced_speed_duplex = ADVERTISE_10_HALF; break; case SPEED_10 + DUPLEX_FULL: mac->forced_speed_duplex = ADVERTISE_10_FULL; break; case SPEED_100 + DUPLEX_HALF: mac->forced_speed_duplex = ADVERTISE_100_HALF; break; case SPEED_100 + DUPLEX_FULL: mac->forced_speed_duplex = ADVERTISE_100_FULL; break; case SPEED_1000 + DUPLEX_FULL: if (adapter->hw.phy.media_type == e1000_media_type_copper) { mac->autoneg = 1; adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; } else { mac->forced_speed_duplex = ADVERTISE_1000_FULL; } break; case SPEED_1000 + DUPLEX_HALF: /* not supported */ default: goto err_inval; } /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ adapter->hw.phy.mdix = AUTO_ALL_MODES; return 0; err_inval: e_err("Unsupported Speed/Duplex configuration\n"); return -EINVAL; } static int e1000_set_link_ksettings(struct net_device *netdev, const struct ethtool_link_ksettings *cmd) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; int ret_val = 0; u32 advertising; ethtool_convert_link_mode_to_legacy_u32(&advertising, cmd->link_modes.advertising); pm_runtime_get_sync(netdev->dev.parent); /* When SoL/IDER sessions are active, autoneg/speed/duplex * cannot be changed */ if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw)) { e_err("Cannot change link characteristics when SoL/IDER is active.\n"); ret_val = -EINVAL; goto out; } /* MDI setting is only allowed when autoneg enabled because * some hardware doesn't allow MDI setting when speed or * duplex is forced. */ if (cmd->base.eth_tp_mdix_ctrl) { if (hw->phy.media_type != e1000_media_type_copper) { ret_val = -EOPNOTSUPP; goto out; } if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && (cmd->base.autoneg != AUTONEG_ENABLE)) { e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); ret_val = -EINVAL; goto out; } } while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) usleep_range(1000, 2000); if (cmd->base.autoneg == AUTONEG_ENABLE) { hw->mac.autoneg = 1; if (hw->phy.media_type == e1000_media_type_fiber) hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full | ADVERTISED_FIBRE | ADVERTISED_Autoneg; else hw->phy.autoneg_advertised = advertising | ADVERTISED_TP | ADVERTISED_Autoneg; advertising = hw->phy.autoneg_advertised; if (adapter->fc_autoneg) hw->fc.requested_mode = e1000_fc_default; } else { u32 speed = cmd->base.speed; /* calling this overrides forced MDI setting */ if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) { ret_val = -EINVAL; goto out; } } /* MDI-X => 2; MDI => 1; Auto => 3 */ if (cmd->base.eth_tp_mdix_ctrl) { /* fix up the value for auto (3 => 0) as zero is mapped * internally to auto */ if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) hw->phy.mdix = AUTO_ALL_MODES; else hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl; } /* reset the link */ if (netif_running(adapter->netdev)) { e1000e_down(adapter, true); e1000e_up(adapter); } else { e1000e_reset(adapter); } out: pm_runtime_put_sync(netdev->dev.parent); clear_bit(__E1000_RESETTING, &adapter->state); return ret_val; } static void e1000_get_pauseparam(struct net_device *netdev, struct ethtool_pauseparam *pause) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; pause->autoneg = (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); if (hw->fc.current_mode == e1000_fc_rx_pause) { pause->rx_pause = 1; } else if (hw->fc.current_mode == e1000_fc_tx_pause) { pause->tx_pause = 1; } else if (hw->fc.current_mode == e1000_fc_full) { pause->rx_pause = 1; pause->tx_pause = 1; } } static int e1000_set_pauseparam(struct net_device *netdev, struct ethtool_pauseparam *pause) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; int retval = 0; adapter->fc_autoneg = pause->autoneg; while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) usleep_range(1000, 2000); pm_runtime_get_sync(netdev->dev.parent); if (adapter->fc_autoneg == AUTONEG_ENABLE) { hw->fc.requested_mode = e1000_fc_default; if (netif_running(adapter->netdev)) { e1000e_down(adapter, true); e1000e_up(adapter); } else { e1000e_reset(adapter); } } else { if (pause->rx_pause && pause->tx_pause) hw->fc.requested_mode = e1000_fc_full; else if (pause->rx_pause && !pause->tx_pause) hw->fc.requested_mode = e1000_fc_rx_pause; else if (!pause->rx_pause && pause->tx_pause) hw->fc.requested_mode = e1000_fc_tx_pause; else if (!pause->rx_pause && !pause->tx_pause) hw->fc.requested_mode = e1000_fc_none; hw->fc.current_mode = hw->fc.requested_mode; if (hw->phy.media_type == e1000_media_type_fiber) { retval = hw->mac.ops.setup_link(hw); /* implicit goto out */ } else { retval = e1000e_force_mac_fc(hw); if (retval) goto out; e1000e_set_fc_watermarks(hw); } } out: pm_runtime_put_sync(netdev->dev.parent); clear_bit(__E1000_RESETTING, &adapter->state); return retval; } static u32 e1000_get_msglevel(struct net_device *netdev) { struct e1000_adapter *adapter = netdev_priv(netdev); return adapter->msg_enable; } static void e1000_set_msglevel(struct net_device *netdev, u32 data) { struct e1000_adapter *adapter = netdev_priv(netdev); adapter->msg_enable = data; } static int e1000_get_regs_len(struct net_device __always_unused *netdev) { #define E1000_REGS_LEN 32 /* overestimate */ return E1000_REGS_LEN * sizeof(u32); } static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs, void *p) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; u32 *regs_buff = p; u16 phy_data; pm_runtime_get_sync(netdev->dev.parent); memset(p, 0, E1000_REGS_LEN * sizeof(u32)); regs->version = (1u << 24) | (adapter->pdev->revision << 16) | adapter->pdev->device; regs_buff[0] = er32(CTRL); regs_buff[1] = er32(STATUS); regs_buff[2] = er32(RCTL); regs_buff[3] = er32(RDLEN(0)); regs_buff[4] = er32(RDH(0)); regs_buff[5] = er32(RDT(0)); regs_buff[6] = er32(RDTR); regs_buff[7] = er32(TCTL); regs_buff[8] = er32(TDLEN(0)); regs_buff[9] = er32(TDH(0)); regs_buff[10] = er32(TDT(0)); regs_buff[11] = er32(TIDV); regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */ /* ethtool doesn't use anything past this point, so all this * code is likely legacy junk for apps that may or may not exist */ if (hw->phy.type == e1000_phy_m88) { e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); regs_buff[13] = (u32)phy_data; /* cable length */ regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ regs_buff[18] = regs_buff[13]; /* cable polarity */ regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ regs_buff[20] = regs_buff[17]; /* polarity correction */ /* phy receive errors */ regs_buff[22] = adapter->phy_stats.receive_errors; regs_buff[23] = regs_buff[13]; /* mdix mode */ } regs_buff[21] = 0; /* was idle_errors */ e1e_rphy(hw, MII_STAT1000, &phy_data); regs_buff[24] = (u32)phy_data; /* phy local receiver status */ regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ pm_runtime_put_sync(netdev->dev.parent); } static int e1000_get_eeprom_len(struct net_device *netdev) { struct e1000_adapter *adapter = netdev_priv(netdev); return adapter->hw.nvm.word_size * 2; } static int e1000_get_eeprom(struct net_device *netdev, struct ethtool_eeprom *eeprom, u8 *bytes) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; u16 *eeprom_buff; int first_word; int last_word; int ret_val = 0; u16 i; if (eeprom->len == 0) return -EINVAL; eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16); first_word = eeprom->offset >> 1; last_word = (eeprom->offset + eeprom->len - 1) >> 1; eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16), GFP_KERNEL); if (!eeprom_buff) return -ENOMEM; pm_runtime_get_sync(netdev->dev.parent); if (hw->nvm.type == e1000_nvm_eeprom_spi) { ret_val = e1000_read_nvm(hw, first_word, last_word - first_word + 1, eeprom_buff); } else { for (i = 0; i < last_word - first_word + 1; i++) { ret_val = e1000_read_nvm(hw, first_word + i, 1, &eeprom_buff[i]); if (ret_val) break; } } pm_runtime_put_sync(netdev->dev.parent); if (ret_val) { /* a read error occurred, throw away the result */ memset(eeprom_buff, 0xff, sizeof(u16) * (last_word - first_word + 1)); } else { /* Device's eeprom is always little-endian, word addressable */ for (i = 0; i < last_word - first_word + 1; i++) le16_to_cpus(&eeprom_buff[i]); } memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len); kfree(eeprom_buff); return ret_val; } static int e1000_set_eeprom(struct net_device *netdev, struct ethtool_eeprom *eeprom, u8 *bytes) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; u16 *eeprom_buff; void *ptr; int max_len; int first_word; int last_word; int ret_val = 0; u16 i; if (eeprom->len == 0) return -EOPNOTSUPP; if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16))) return -EFAULT; if (adapter->flags & FLAG_READ_ONLY_NVM) return -EINVAL; max_len = hw->nvm.word_size * 2; first_word = eeprom->offset >> 1; last_word = (eeprom->offset + eeprom->len - 1) >> 1; eeprom_buff = kmalloc(max_len, GFP_KERNEL); if (!eeprom_buff) return -ENOMEM; ptr = (void *)eeprom_buff; pm_runtime_get_sync(netdev->dev.parent); if (eeprom->offset & 1) { /* need read/modify/write of first changed EEPROM word */ /* only the second byte of the word is being modified */ ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]); ptr++; } if (((eeprom->offset + eeprom->len) & 1) && (!ret_val)) /* need read/modify/write of last changed EEPROM word */ /* only the first byte of the word is being modified */ ret_val = e1000_read_nvm(hw, last_word, 1, &eeprom_buff[last_word - first_word]); if (ret_val) goto out; /* Device's eeprom is always little-endian, word addressable */ for (i = 0; i < last_word - first_word + 1; i++) le16_to_cpus(&eeprom_buff[i]); memcpy(ptr, bytes, eeprom->len); for (i = 0; i < last_word - first_word + 1; i++) cpu_to_le16s(&eeprom_buff[i]); ret_val = e1000_write_nvm(hw, first_word, last_word - first_word + 1, eeprom_buff); if (ret_val) goto out; /* Update the checksum over the first part of the EEPROM if needed * and flush shadow RAM for applicable controllers */ if ((first_word <= NVM_CHECKSUM_REG) || (hw->mac.type == e1000_82583) || (hw->mac.type == e1000_82574) || (hw->mac.type == e1000_82573)) ret_val = e1000e_update_nvm_checksum(hw); out: pm_runtime_put_sync(netdev->dev.parent); kfree(eeprom_buff); return ret_val; } static void e1000_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo) { struct e1000_adapter *adapter = netdev_priv(netdev); strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver)); /* EEPROM image version # is reported as firmware version # for * PCI-E controllers */ snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), "%d.%d-%d", (adapter->eeprom_vers & 0xF000) >> 12, (adapter->eeprom_vers & 0x0FF0) >> 4, (adapter->eeprom_vers & 0x000F)); strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), sizeof(drvinfo->bus_info)); } static void e1000_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring) { struct e1000_adapter *adapter = netdev_priv(netdev); ring->rx_max_pending = E1000_MAX_RXD; ring->tx_max_pending = E1000_MAX_TXD; ring->rx_pending = adapter->rx_ring_count; ring->tx_pending = adapter->tx_ring_count; } static int e1000_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_ring *temp_tx = NULL, *temp_rx = NULL; int err = 0, size = sizeof(struct e1000_ring); bool set_tx = false, set_rx = false; u16 new_rx_count, new_tx_count; if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) return -EINVAL; new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD, E1000_MAX_RXD); new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE); new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD, E1000_MAX_TXD); new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE); if ((new_tx_count == adapter->tx_ring_count) && (new_rx_count == adapter->rx_ring_count)) /* nothing to do */ return 0; while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) usleep_range(1000, 2000); if (!netif_running(adapter->netdev)) { /* Set counts now and allocate resources during open() */ adapter->tx_ring->count = new_tx_count; adapter->rx_ring->count = new_rx_count; adapter->tx_ring_count = new_tx_count; adapter->rx_ring_count = new_rx_count; goto clear_reset; } set_tx = (new_tx_count != adapter->tx_ring_count); set_rx = (new_rx_count != adapter->rx_ring_count); /* Allocate temporary storage for ring updates */ if (set_tx) { temp_tx = vmalloc(size); if (!temp_tx) { err = -ENOMEM; goto free_temp; } } if (set_rx) { temp_rx = vmalloc(size); if (!temp_rx) { err = -ENOMEM; goto free_temp; } } pm_runtime_get_sync(netdev->dev.parent); e1000e_down(adapter, true); /* We can't just free everything and then setup again, because the * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring * structs. First, attempt to allocate new resources... */ if (set_tx) { memcpy(temp_tx, adapter->tx_ring, size); temp_tx->count = new_tx_count; err = e1000e_setup_tx_resources(temp_tx); if (err) goto err_setup; } if (set_rx) { memcpy(temp_rx, adapter->rx_ring, size); temp_rx->count = new_rx_count; err = e1000e_setup_rx_resources(temp_rx); if (err) goto err_setup_rx; } /* ...then free the old resources and copy back any new ring data */ if (set_tx) { e1000e_free_tx_resources(adapter->tx_ring); memcpy(adapter->tx_ring, temp_tx, size); adapter->tx_ring_count = new_tx_count; } if (set_rx) { e1000e_free_rx_resources(adapter->rx_ring); memcpy(adapter->rx_ring, temp_rx, size); adapter->rx_ring_count = new_rx_count; } err_setup_rx: if (err && set_tx) e1000e_free_tx_resources(temp_tx); err_setup: e1000e_up(adapter); pm_runtime_put_sync(netdev->dev.parent); free_temp: vfree(temp_tx); vfree(temp_rx); clear_reset: clear_bit(__E1000_RESETTING, &adapter->state); return err; } static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg, int offset, u32 mask, u32 write) { u32 pat, val; static const u32 test[] = { 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF }; for (pat = 0; pat < ARRAY_SIZE(test); pat++) { E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset, (test[pat] & write)); val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset); if (val != (test[pat] & write & mask)) { e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", reg + (offset << 2), val, (test[pat] & write & mask)); *data = reg; return true; } } return false; } static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg, u32 mask, u32 write) { u32 val; __ew32(&adapter->hw, reg, write & mask); val = __er32(&adapter->hw, reg); if ((write & mask) != (val & mask)) { e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", reg, (val & mask), (write & mask)); *data = reg; return true; } return false; } #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \ do { \ if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \ return 1; \ } while (0) #define REG_PATTERN_TEST(reg, mask, write) \ REG_PATTERN_TEST_ARRAY(reg, 0, mask, write) #define REG_SET_AND_CHECK(reg, mask, write) \ do { \ if (reg_set_and_check(adapter, data, reg, mask, write)) \ return 1; \ } while (0) static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) { struct e1000_hw *hw = &adapter->hw; struct e1000_mac_info *mac = &adapter->hw.mac; u32 value; u32 before; u32 after; u32 i; u32 toggle; u32 mask; u32 wlock_mac = 0; /* The status register is Read Only, so a write should fail. * Some bits that get toggled are ignored. There are several bits * on newer hardware that are r/w. */ switch (mac->type) { case e1000_82571: case e1000_82572: case e1000_80003es2lan: toggle = 0x7FFFF3FF; break; default: toggle = 0x7FFFF033; break; } before = er32(STATUS); value = (er32(STATUS) & toggle); ew32(STATUS, toggle); after = er32(STATUS) & toggle; if (value != after) { e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n", after, value); *data = 1; return 1; } /* restore previous status */ ew32(STATUS, before); if (!(adapter->flags & FLAG_IS_ICH)) { REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF); REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF); REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF); REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF); } REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF); REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF); REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF); REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF); REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8); REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF); REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF); REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF); REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000); before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE); REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB); REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000); REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF); REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); if (!(adapter->flags & FLAG_IS_ICH)) REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF); REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF); mask = 0x8003FFFF; switch (mac->type) { case e1000_ich10lan: case e1000_pchlan: case e1000_pch2lan: case e1000_pch_lpt: case e1000_pch_spt: case e1000_pch_cnp: case e1000_pch_tgp: case e1000_pch_adp: mask |= BIT(18); break; default: break; } if (mac->type >= e1000_pch_lpt) wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >> E1000_FWSM_WLOCK_MAC_SHIFT; for (i = 0; i < mac->rar_entry_count; i++) { if (mac->type >= e1000_pch_lpt) { /* Cannot test write-protected SHRAL[n] registers */ if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac))) continue; /* SHRAH[9] different than the others */ if (i == 10) mask |= BIT(30); else mask &= ~BIT(30); } if (mac->type == e1000_pch2lan) { /* SHRAH[0,1,2] different than previous */ if (i == 1) mask &= 0xFFF4FFFF; /* SHRAH[3] different than SHRAH[0,1,2] */ if (i == 4) mask |= BIT(30); /* RAR[1-6] owned by management engine - skipping */ if (i > 0) i += 6; } REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask, 0xFFFFFFFF); /* reset index to actual value */ if ((mac->type == e1000_pch2lan) && (i > 6)) i -= 6; } for (i = 0; i < mac->mta_reg_count; i++) REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF); *data = 0; return 0; } static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) { u16 temp; u16 checksum = 0; u16 i; *data = 0; /* Read and add up the contents of the EEPROM */ for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) { *data = 1; return *data; } checksum += temp; } /* If Checksum is not Correct return error else test passed */ if ((checksum != (u16)NVM_SUM) && !(*data)) *data = 2; return *data; } static irqreturn_t e1000_test_intr(int __always_unused irq, void *data) { struct net_device *netdev = (struct net_device *)data; struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; adapter->test_icr |= er32(ICR); return IRQ_HANDLED; } static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) { struct net_device *netdev = adapter->netdev; struct e1000_hw *hw = &adapter->hw; u32 mask; u32 shared_int = 1; u32 irq = adapter->pdev->irq; int i; int ret_val = 0; int int_mode = E1000E_INT_MODE_LEGACY; *data = 0; /* NOTE: we don't test MSI/MSI-X interrupts here, yet */ if (adapter->int_mode == E1000E_INT_MODE_MSIX) { int_mode = adapter->int_mode; e1000e_reset_interrupt_capability(adapter); adapter->int_mode = E1000E_INT_MODE_LEGACY; e1000e_set_interrupt_capability(adapter); } /* Hook up test interrupt handler just for this test */ if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, netdev)) { shared_int = 0; } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name, netdev)) { *data = 1; ret_val = -1; goto out; } e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared")); /* Disable all the interrupts */ ew32(IMC, 0xFFFFFFFF); e1e_flush(); usleep_range(10000, 11000); /* Test each interrupt */ for (i = 0; i < 10; i++) { /* Interrupt to test */ mask = BIT(i); if (adapter->flags & FLAG_IS_ICH) { switch (mask) { case E1000_ICR_RXSEQ: continue; case 0x00000100: if (adapter->hw.mac.type == e1000_ich8lan || adapter->hw.mac.type == e1000_ich9lan) continue; break; default: break; } } if (!shared_int) { /* Disable the interrupt to be reported in * the cause register and then force the same * interrupt and see if one gets posted. If * an interrupt was posted to the bus, the * test failed. */ adapter->test_icr = 0; ew32(IMC, mask); ew32(ICS, mask); e1e_flush(); usleep_range(10000, 11000); if (adapter->test_icr & mask) { *data = 3; break; } } /* Enable the interrupt to be reported in * the cause register and then force the same * interrupt and see if one gets posted. If * an interrupt was not posted to the bus, the * test failed. */ adapter->test_icr = 0; ew32(IMS, mask); ew32(ICS, mask); e1e_flush(); usleep_range(10000, 11000); if (!(adapter->test_icr & mask)) { *data = 4; break; } if (!shared_int) { /* Disable the other interrupts to be reported in * the cause register and then force the other * interrupts and see if any get posted. If * an interrupt was posted to the bus, the * test failed. */ adapter->test_icr = 0; ew32(IMC, ~mask & 0x00007FFF); ew32(ICS, ~mask & 0x00007FFF); e1e_flush(); usleep_range(10000, 11000); if (adapter->test_icr) { *data = 5; break; } } } /* Disable all the interrupts */ ew32(IMC, 0xFFFFFFFF); e1e_flush(); usleep_range(10000, 11000); /* Unhook test interrupt handler */ free_irq(irq, netdev); out: if (int_mode == E1000E_INT_MODE_MSIX) { e1000e_reset_interrupt_capability(adapter); adapter->int_mode = int_mode; e1000e_set_interrupt_capability(adapter); } return ret_val; } static void e1000_free_desc_rings(struct e1000_adapter *adapter) { struct e1000_ring *tx_ring = &adapter->test_tx_ring; struct e1000_ring *rx_ring = &adapter->test_rx_ring; struct pci_dev *pdev = adapter->pdev; struct e1000_buffer *buffer_info; int i; if (tx_ring->desc && tx_ring->buffer_info) { for (i = 0; i < tx_ring->count; i++) { buffer_info = &tx_ring->buffer_info[i]; if (buffer_info->dma) dma_unmap_single(&pdev->dev, buffer_info->dma, buffer_info->length, DMA_TO_DEVICE); dev_kfree_skb(buffer_info->skb); } } if (rx_ring->desc && rx_ring->buffer_info) { for (i = 0; i < rx_ring->count; i++) { buffer_info = &rx_ring->buffer_info[i]; if (buffer_info->dma) dma_unmap_single(&pdev->dev, buffer_info->dma, 2048, DMA_FROM_DEVICE); dev_kfree_skb(buffer_info->skb); } } if (tx_ring->desc) { dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, tx_ring->dma); tx_ring->desc = NULL; } if (rx_ring->desc) { dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, rx_ring->dma); rx_ring->desc = NULL; } kfree(tx_ring->buffer_info); tx_ring->buffer_info = NULL; kfree(rx_ring->buffer_info); rx_ring->buffer_info = NULL; } static int e1000_setup_desc_rings(struct e1000_adapter *adapter) { struct e1000_ring *tx_ring = &adapter->test_tx_ring; struct e1000_ring *rx_ring = &adapter->test_rx_ring; struct pci_dev *pdev = adapter->pdev; struct e1000_hw *hw = &adapter->hw; u32 rctl; int i; int ret_val; /* Setup Tx descriptor ring and Tx buffers */ if (!tx_ring->count) tx_ring->count = E1000_DEFAULT_TXD; tx_ring->buffer_info = kcalloc(tx_ring->count, sizeof(struct e1000_buffer), GFP_KERNEL); if (!tx_ring->buffer_info) { ret_val = 1; goto err_nomem; } tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); tx_ring->size = ALIGN(tx_ring->size, 4096); tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size, &tx_ring->dma, GFP_KERNEL); if (!tx_ring->desc) { ret_val = 2; goto err_nomem; } tx_ring->next_to_use = 0; tx_ring->next_to_clean = 0; ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF)); ew32(TDBAH(0), ((u64)tx_ring->dma >> 32)); ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc)); ew32(TDH(0), 0); ew32(TDT(0), 0); ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR | E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT); for (i = 0; i < tx_ring->count; i++) { struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); struct sk_buff *skb; unsigned int skb_size = 1024; skb = alloc_skb(skb_size, GFP_KERNEL); if (!skb) { ret_val = 3; goto err_nomem; } skb_put(skb, skb_size); tx_ring->buffer_info[i].skb = skb; tx_ring->buffer_info[i].length = skb->len; tx_ring->buffer_info[i].dma = dma_map_single(&pdev->dev, skb->data, skb->len, DMA_TO_DEVICE); if (dma_mapping_error(&pdev->dev, tx_ring->buffer_info[i].dma)) { ret_val = 4; goto err_nomem; } tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma); tx_desc->lower.data = cpu_to_le32(skb->len); tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS | E1000_TXD_CMD_RS); tx_desc->upper.data = 0; } /* Setup Rx descriptor ring and Rx buffers */ if (!rx_ring->count) rx_ring->count = E1000_DEFAULT_RXD; rx_ring->buffer_info = kcalloc(rx_ring->count, sizeof(struct e1000_buffer), GFP_KERNEL); if (!rx_ring->buffer_info) { ret_val = 5; goto err_nomem; } rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended); rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size, &rx_ring->dma, GFP_KERNEL); if (!rx_ring->desc) { ret_val = 6; goto err_nomem; } rx_ring->next_to_use = 0; rx_ring->next_to_clean = 0; rctl = er32(RCTL); if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) ew32(RCTL, rctl & ~E1000_RCTL_EN); ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF)); ew32(RDBAH(0), ((u64)rx_ring->dma >> 32)); ew32(RDLEN(0), rx_ring->size); ew32(RDH(0), 0); ew32(RDT(0), 0); rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE | E1000_RCTL_SBP | E1000_RCTL_SECRC | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); ew32(RCTL, rctl); for (i = 0; i < rx_ring->count; i++) { union e1000_rx_desc_extended *rx_desc; struct sk_buff *skb; skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL); if (!skb) { ret_val = 7; goto err_nomem; } skb_reserve(skb, NET_IP_ALIGN); rx_ring->buffer_info[i].skb = skb; rx_ring->buffer_info[i].dma = dma_map_single(&pdev->dev, skb->data, 2048, DMA_FROM_DEVICE); if (dma_mapping_error(&pdev->dev, rx_ring->buffer_info[i].dma)) { ret_val = 8; goto err_nomem; } rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); rx_desc->read.buffer_addr = cpu_to_le64(rx_ring->buffer_info[i].dma); memset(skb->data, 0x00, skb->len); } return 0; err_nomem: e1000_free_desc_rings(adapter); return ret_val; } static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) { /* Write out to PHY registers 29 and 30 to disable the Receiver. */ e1e_wphy(&adapter->hw, 29, 0x001F); e1e_wphy(&adapter->hw, 30, 0x8FFC); e1e_wphy(&adapter->hw, 29, 0x001A); e1e_wphy(&adapter->hw, 30, 0x8FF0); } static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u32 ctrl_reg = 0; u16 phy_reg = 0; s32 ret_val = 0; hw->mac.autoneg = 0; if (hw->phy.type == e1000_phy_ife) { /* force 100, set loopback */ e1e_wphy(hw, MII_BMCR, 0x6100); /* Now set up the MAC to the same speed/duplex as the PHY. */ ctrl_reg = er32(CTRL); ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ E1000_CTRL_SPD_100 |/* Force Speed to 100 */ E1000_CTRL_FD); /* Force Duplex to FULL */ ew32(CTRL, ctrl_reg); e1e_flush(); usleep_range(500, 1000); return 0; } /* Specific PHY configuration for loopback */ switch (hw->phy.type) { case e1000_phy_m88: /* Auto-MDI/MDIX Off */ e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); /* reset to update Auto-MDI/MDIX */ e1e_wphy(hw, MII_BMCR, 0x9140); /* autoneg off */ e1e_wphy(hw, MII_BMCR, 0x8140); break; case e1000_phy_gg82563: e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC); break; case e1000_phy_bm: /* Set Default MAC Interface speed to 1GB */ e1e_rphy(hw, PHY_REG(2, 21), &phy_reg); phy_reg &= ~0x0007; phy_reg |= 0x006; e1e_wphy(hw, PHY_REG(2, 21), phy_reg); /* Assert SW reset for above settings to take effect */ hw->phy.ops.commit(hw); usleep_range(1000, 2000); /* Force Full Duplex */ e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C); /* Set Link Up (in force link) */ e1e_rphy(hw, PHY_REG(776, 16), &phy_reg); e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040); /* Force Link */ e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040); /* Set Early Link Enable */ e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400); break; case e1000_phy_82577: case e1000_phy_82578: /* Workaround: K1 must be disabled for stable 1Gbps operation */ ret_val = hw->phy.ops.acquire(hw); if (ret_val) { e_err("Cannot setup 1Gbps loopback.\n"); return ret_val; } e1000_configure_k1_ich8lan(hw, false); hw->phy.ops.release(hw); break; case e1000_phy_82579: /* Disable PHY energy detect power down */ e1e_rphy(hw, PHY_REG(0, 21), &phy_reg); e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3)); /* Disable full chip energy detect */ e1e_rphy(hw, PHY_REG(776, 18), &phy_reg); e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1); /* Enable loopback on the PHY */ e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001); break; default: break; } /* force 1000, set loopback */ e1e_wphy(hw, MII_BMCR, 0x4140); msleep(250); /* Now set up the MAC to the same speed/duplex as the PHY. */ ctrl_reg = er32(CTRL); ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ E1000_CTRL_FD); /* Force Duplex to FULL */ if (adapter->flags & FLAG_IS_ICH) ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */ if (hw->phy.media_type == e1000_media_type_copper && hw->phy.type == e1000_phy_m88) { ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ } else { /* Set the ILOS bit on the fiber Nic if half duplex link is * detected. */ if ((er32(STATUS) & E1000_STATUS_FD) == 0) ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); } ew32(CTRL, ctrl_reg); /* Disable the receiver on the PHY so when a cable is plugged in, the * PHY does not begin to autoneg when a cable is reconnected to the NIC. */ if (hw->phy.type == e1000_phy_m88) e1000_phy_disable_receiver(adapter); usleep_range(500, 1000); return 0; } static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u32 ctrl = er32(CTRL); int link; /* special requirements for 82571/82572 fiber adapters */ /* jump through hoops to make sure link is up because serdes * link is hardwired up */ ctrl |= E1000_CTRL_SLU; ew32(CTRL, ctrl); /* disable autoneg */ ctrl = er32(TXCW); ctrl &= ~BIT(31); ew32(TXCW, ctrl); link = (er32(STATUS) & E1000_STATUS_LU); if (!link) { /* set invert loss of signal */ ctrl = er32(CTRL); ctrl |= E1000_CTRL_ILOS; ew32(CTRL, ctrl); } /* special write to serdes control register to enable SerDes analog * loopback */ ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK); e1e_flush(); usleep_range(10000, 11000); return 0; } /* only call this for fiber/serdes connections to es2lan */ static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u32 ctrlext = er32(CTRL_EXT); u32 ctrl = er32(CTRL); /* save CTRL_EXT to restore later, reuse an empty variable (unused * on mac_type 80003es2lan) */ adapter->tx_fifo_head = ctrlext; /* clear the serdes mode bits, putting the device into mac loopback */ ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; ew32(CTRL_EXT, ctrlext); /* force speed to 1000/FD, link up */ ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SPD_1000 | E1000_CTRL_FD); ew32(CTRL, ctrl); /* set mac loopback */ ctrl = er32(RCTL); ctrl |= E1000_RCTL_LBM_MAC; ew32(RCTL, ctrl); /* set testing mode parameters (no need to reset later) */ #define KMRNCTRLSTA_OPMODE (0x1F << 16) #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582 ew32(KMRNCTRLSTA, (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII)); return 0; } static int e1000_setup_loopback_test(struct e1000_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u32 rctl, fext_nvm11, tarc0; if (hw->mac.type >= e1000_pch_spt) { fext_nvm11 = er32(FEXTNVM11); fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX; ew32(FEXTNVM11, fext_nvm11); tarc0 = er32(TARC(0)); /* clear bits 28 & 29 (control of MULR concurrent requests) */ tarc0 &= 0xcfffffff; /* set bit 29 (value of MULR requests is now 2) */ tarc0 |= 0x20000000; ew32(TARC(0), tarc0); } if (hw->phy.media_type == e1000_media_type_fiber || hw->phy.media_type == e1000_media_type_internal_serdes) { switch (hw->mac.type) { case e1000_80003es2lan: return e1000_set_es2lan_mac_loopback(adapter); case e1000_82571: case e1000_82572: return e1000_set_82571_fiber_loopback(adapter); default: rctl = er32(RCTL); rctl |= E1000_RCTL_LBM_TCVR; ew32(RCTL, rctl); return 0; } } else if (hw->phy.media_type == e1000_media_type_copper) { return e1000_integrated_phy_loopback(adapter); } return 7; } static void e1000_loopback_cleanup(struct e1000_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u32 rctl, fext_nvm11, tarc0; u16 phy_reg; rctl = er32(RCTL); rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); ew32(RCTL, rctl); switch (hw->mac.type) { case e1000_pch_spt: case e1000_pch_cnp: case e1000_pch_tgp: case e1000_pch_adp: fext_nvm11 = er32(FEXTNVM11); fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX; ew32(FEXTNVM11, fext_nvm11); tarc0 = er32(TARC(0)); /* clear bits 28 & 29 (control of MULR concurrent requests) */ /* set bit 29 (value of MULR requests is now 0) */ tarc0 &= 0xcfffffff; ew32(TARC(0), tarc0); fallthrough; case e1000_80003es2lan: if (hw->phy.media_type == e1000_media_type_fiber || hw->phy.media_type == e1000_media_type_internal_serdes) { /* restore CTRL_EXT, stealing space from tx_fifo_head */ ew32(CTRL_EXT, adapter->tx_fifo_head); adapter->tx_fifo_head = 0; } fallthrough; case e1000_82571: case e1000_82572: if (hw->phy.media_type == e1000_media_type_fiber || hw->phy.media_type == e1000_media_type_internal_serdes) { ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); e1e_flush(); usleep_range(10000, 11000); break; } fallthrough; default: hw->mac.autoneg = 1; if (hw->phy.type == e1000_phy_gg82563) e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180); e1e_rphy(hw, MII_BMCR, &phy_reg); if (phy_reg & BMCR_LOOPBACK) { phy_reg &= ~BMCR_LOOPBACK; e1e_wphy(hw, MII_BMCR, phy_reg); if (hw->phy.ops.commit) hw->phy.ops.commit(hw); } break; } } static void e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size) { memset(skb->data, 0xFF, frame_size); frame_size &= ~1; memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); skb->data[frame_size / 2 + 10] = 0xBE; skb->data[frame_size / 2 + 12] = 0xAF; } static int e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size) { frame_size &= ~1; if (*(skb->data + 3) == 0xFF) if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && (*(skb->data + frame_size / 2 + 12) == 0xAF)) return 0; return 13; } static int e1000_run_loopback_test(struct e1000_adapter *adapter) { struct e1000_ring *tx_ring = &adapter->test_tx_ring; struct e1000_ring *rx_ring = &adapter->test_rx_ring; struct pci_dev *pdev = adapter->pdev; struct e1000_hw *hw = &adapter->hw; struct e1000_buffer *buffer_info; int i, j, k, l; int lc; int good_cnt; int ret_val = 0; unsigned long time; ew32(RDT(0), rx_ring->count - 1); /* Calculate the loop count based on the largest descriptor ring * The idea is to wrap the largest ring a number of times using 64 * send/receive pairs during each loop */ if (rx_ring->count <= tx_ring->count) lc = ((tx_ring->count / 64) * 2) + 1; else lc = ((rx_ring->count / 64) * 2) + 1; k = 0; l = 0; /* loop count loop */ for (j = 0; j <= lc; j++) { /* send the packets */ for (i = 0; i < 64; i++) { buffer_info = &tx_ring->buffer_info[k]; e1000_create_lbtest_frame(buffer_info->skb, 1024); dma_sync_single_for_device(&pdev->dev, buffer_info->dma, buffer_info->length, DMA_TO_DEVICE); k++; if (k == tx_ring->count) k = 0; } ew32(TDT(0), k); e1e_flush(); msleep(200); time = jiffies; /* set the start time for the receive */ good_cnt = 0; /* receive the sent packets */ do { buffer_info = &rx_ring->buffer_info[l]; dma_sync_single_for_cpu(&pdev->dev, buffer_info->dma, 2048, DMA_FROM_DEVICE); ret_val = e1000_check_lbtest_frame(buffer_info->skb, 1024); if (!ret_val) good_cnt++; l++; if (l == rx_ring->count) l = 0; /* time + 20 msecs (200 msecs on 2.4) is more than * enough time to complete the receives, if it's * exceeded, break and error off */ } while ((good_cnt < 64) && !time_after(jiffies, time + 20)); if (good_cnt != 64) { ret_val = 13; /* ret_val is the same as mis-compare */ break; } if (time_after(jiffies, time + 20)) { ret_val = 14; /* error code for time out error */ break; } } return ret_val; } static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) { struct e1000_hw *hw = &adapter->hw; /* PHY loopback cannot be performed if SoL/IDER sessions are active */ if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw)) { e_err("Cannot do PHY loopback test when SoL/IDER is active.\n"); *data = 0; goto out; } *data = e1000_setup_desc_rings(adapter); if (*data) goto out; *data = e1000_setup_loopback_test(adapter); if (*data) goto err_loopback; *data = e1000_run_loopback_test(adapter); e1000_loopback_cleanup(adapter); err_loopback: e1000_free_desc_rings(adapter); out: return *data; } static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) { struct e1000_hw *hw = &adapter->hw; *data = 0; if (hw->phy.media_type == e1000_media_type_internal_serdes) { int i = 0; hw->mac.serdes_has_link = false; /* On some blade server designs, link establishment * could take as long as 2-3 minutes */ do { hw->mac.ops.check_for_link(hw); if (hw->mac.serdes_has_link) return *data; msleep(20); } while (i++ < 3750); *data = 1; } else { hw->mac.ops.check_for_link(hw); if (hw->mac.autoneg) /* On some Phy/switch combinations, link establishment * can take a few seconds more than expected. */ msleep_interruptible(5000); if (!(er32(STATUS) & E1000_STATUS_LU)) *data = 1; } return *data; } static int e1000e_get_sset_count(struct net_device __always_unused *netdev, int sset) { switch (sset) { case ETH_SS_TEST: return E1000_TEST_LEN; case ETH_SS_STATS: return E1000_STATS_LEN; default: return -EOPNOTSUPP; } } static void e1000_diag_test(struct net_device *netdev, struct ethtool_test *eth_test, u64 *data) { struct e1000_adapter *adapter = netdev_priv(netdev); u16 autoneg_advertised; u8 forced_speed_duplex; u8 autoneg; bool if_running = netif_running(netdev); pm_runtime_get_sync(netdev->dev.parent); set_bit(__E1000_TESTING, &adapter->state); if (!if_running) { /* Get control of and reset hardware */ if (adapter->flags & FLAG_HAS_AMT) e1000e_get_hw_control(adapter); e1000e_power_up_phy(adapter); adapter->hw.phy.autoneg_wait_to_complete = 1; e1000e_reset(adapter); adapter->hw.phy.autoneg_wait_to_complete = 0; } if (eth_test->flags == ETH_TEST_FL_OFFLINE) { /* Offline tests */ /* save speed, duplex, autoneg settings */ autoneg_advertised = adapter->hw.phy.autoneg_advertised; forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; autoneg = adapter->hw.mac.autoneg; e_info("offline testing starting\n"); if (if_running) /* indicate we're in test mode */ e1000e_close(netdev); if (e1000_reg_test(adapter, &data[0])) eth_test->flags |= ETH_TEST_FL_FAILED; e1000e_reset(adapter); if (e1000_eeprom_test(adapter, &data[1])) eth_test->flags |= ETH_TEST_FL_FAILED; e1000e_reset(adapter); if (e1000_intr_test(adapter, &data[2])) eth_test->flags |= ETH_TEST_FL_FAILED; e1000e_reset(adapter); if (e1000_loopback_test(adapter, &data[3])) eth_test->flags |= ETH_TEST_FL_FAILED; /* force this routine to wait until autoneg complete/timeout */ adapter->hw.phy.autoneg_wait_to_complete = 1; e1000e_reset(adapter); adapter->hw.phy.autoneg_wait_to_complete = 0; if (e1000_link_test(adapter, &data[4])) eth_test->flags |= ETH_TEST_FL_FAILED; /* restore speed, duplex, autoneg settings */ adapter->hw.phy.autoneg_advertised = autoneg_advertised; adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; adapter->hw.mac.autoneg = autoneg; e1000e_reset(adapter); clear_bit(__E1000_TESTING, &adapter->state); if (if_running) e1000e_open(netdev); } else { /* Online tests */ e_info("online testing starting\n"); /* register, eeprom, intr and loopback tests not run online */ data[0] = 0; data[1] = 0; data[2] = 0; data[3] = 0; if (e1000_link_test(adapter, &data[4])) eth_test->flags |= ETH_TEST_FL_FAILED; clear_bit(__E1000_TESTING, &adapter->state); } if (!if_running) { e1000e_reset(adapter); if (adapter->flags & FLAG_HAS_AMT) e1000e_release_hw_control(adapter); } msleep_interruptible(4 * 1000); pm_runtime_put_sync(netdev->dev.parent); } static void e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) { struct e1000_adapter *adapter = netdev_priv(netdev); wol->supported = 0; wol->wolopts = 0; if (!(adapter->flags & FLAG_HAS_WOL) || !device_can_wakeup(&adapter->pdev->dev)) return; wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC | WAKE_PHY; /* apply any specific unsupported masks here */ if (adapter->flags & FLAG_NO_WAKE_UCAST) { wol->supported &= ~WAKE_UCAST; if (adapter->wol & E1000_WUFC_EX) e_err("Interface does not support directed (unicast) frame wake-up packets\n"); } if (adapter->wol & E1000_WUFC_EX) wol->wolopts |= WAKE_UCAST; if (adapter->wol & E1000_WUFC_MC) wol->wolopts |= WAKE_MCAST; if (adapter->wol & E1000_WUFC_BC) wol->wolopts |= WAKE_BCAST; if (adapter->wol & E1000_WUFC_MAG) wol->wolopts |= WAKE_MAGIC; if (adapter->wol & E1000_WUFC_LNKC) wol->wolopts |= WAKE_PHY; } static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) { struct e1000_adapter *adapter = netdev_priv(netdev); if (!(adapter->flags & FLAG_HAS_WOL) || !device_can_wakeup(&adapter->pdev->dev) || (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC | WAKE_PHY))) return -EOPNOTSUPP; /* these settings will always override what we currently have */ adapter->wol = 0; if (wol->wolopts & WAKE_UCAST) adapter->wol |= E1000_WUFC_EX; if (wol->wolopts & WAKE_MCAST) adapter->wol |= E1000_WUFC_MC; if (wol->wolopts & WAKE_BCAST) adapter->wol |= E1000_WUFC_BC; if (wol->wolopts & WAKE_MAGIC) adapter->wol |= E1000_WUFC_MAG; if (wol->wolopts & WAKE_PHY) adapter->wol |= E1000_WUFC_LNKC; device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); return 0; } static int e1000_set_phys_id(struct net_device *netdev, enum ethtool_phys_id_state state) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; switch (state) { case ETHTOOL_ID_ACTIVE: pm_runtime_get_sync(netdev->dev.parent); if (!hw->mac.ops.blink_led) return 2; /* cycle on/off twice per second */ hw->mac.ops.blink_led(hw); break; case ETHTOOL_ID_INACTIVE: if (hw->phy.type == e1000_phy_ife) e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); hw->mac.ops.led_off(hw); hw->mac.ops.cleanup_led(hw); pm_runtime_put_sync(netdev->dev.parent); break; case ETHTOOL_ID_ON: hw->mac.ops.led_on(hw); break; case ETHTOOL_ID_OFF: hw->mac.ops.led_off(hw); break; } return 0; } static int e1000_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ec) { struct e1000_adapter *adapter = netdev_priv(netdev); if (adapter->itr_setting <= 4) ec->rx_coalesce_usecs = adapter->itr_setting; else ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; return 0; } static int e1000_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ec) { struct e1000_adapter *adapter = netdev_priv(netdev); if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || ((ec->rx_coalesce_usecs > 4) && (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || (ec->rx_coalesce_usecs == 2)) return -EINVAL; if (ec->rx_coalesce_usecs == 4) { adapter->itr_setting = 4; adapter->itr = adapter->itr_setting; } else if (ec->rx_coalesce_usecs <= 3) { adapter->itr = 20000; adapter->itr_setting = ec->rx_coalesce_usecs; } else { adapter->itr = (1000000 / ec->rx_coalesce_usecs); adapter->itr_setting = adapter->itr & ~3; } pm_runtime_get_sync(netdev->dev.parent); if (adapter->itr_setting != 0) e1000e_write_itr(adapter, adapter->itr); else e1000e_write_itr(adapter, 0); pm_runtime_put_sync(netdev->dev.parent); return 0; } static int e1000_nway_reset(struct net_device *netdev) { struct e1000_adapter *adapter = netdev_priv(netdev); if (!netif_running(netdev)) return -EAGAIN; if (!adapter->hw.mac.autoneg) return -EINVAL; pm_runtime_get_sync(netdev->dev.parent); e1000e_reinit_locked(adapter); pm_runtime_put_sync(netdev->dev.parent); return 0; } static void e1000_get_ethtool_stats(struct net_device *netdev, struct ethtool_stats __always_unused *stats, u64 *data) { struct e1000_adapter *adapter = netdev_priv(netdev); struct rtnl_link_stats64 net_stats; int i; char *p = NULL; pm_runtime_get_sync(netdev->dev.parent); dev_get_stats(netdev, &net_stats); pm_runtime_put_sync(netdev->dev.parent); for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { switch (e1000_gstrings_stats[i].type) { case NETDEV_STATS: p = (char *)&net_stats + e1000_gstrings_stats[i].stat_offset; break; case E1000_STATS: p = (char *)adapter + e1000_gstrings_stats[i].stat_offset; break; default: data[i] = 0; continue; } data[i] = (e1000_gstrings_stats[i].sizeof_stat == sizeof(u64)) ? *(u64 *)p : *(u32 *)p; } } static void e1000_get_strings(struct net_device __always_unused *netdev, u32 stringset, u8 *data) { u8 *p = data; int i; switch (stringset) { case ETH_SS_TEST: memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test)); break; case ETH_SS_STATS: for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { memcpy(p, e1000_gstrings_stats[i].stat_string, ETH_GSTRING_LEN); p += ETH_GSTRING_LEN; } break; } } static int e1000_get_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *info, u32 __always_unused *rule_locs) { info->data = 0; switch (info->cmd) { case ETHTOOL_GRXFH: { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; u32 mrqc; pm_runtime_get_sync(netdev->dev.parent); mrqc = er32(MRQC); pm_runtime_put_sync(netdev->dev.parent); if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK)) return 0; switch (info->flow_type) { case TCP_V4_FLOW: if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP) info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; fallthrough; case UDP_V4_FLOW: case SCTP_V4_FLOW: case AH_ESP_V4_FLOW: case IPV4_FLOW: if (mrqc & E1000_MRQC_RSS_FIELD_IPV4) info->data |= RXH_IP_SRC | RXH_IP_DST; break; case TCP_V6_FLOW: if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP) info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; fallthrough; case UDP_V6_FLOW: case SCTP_V6_FLOW: case AH_ESP_V6_FLOW: case IPV6_FLOW: if (mrqc & E1000_MRQC_RSS_FIELD_IPV6) info->data |= RXH_IP_SRC | RXH_IP_DST; break; default: break; } return 0; } default: return -EOPNOTSUPP; } } static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data; u32 ret_val; if (!(adapter->flags2 & FLAG2_HAS_EEE)) return -EOPNOTSUPP; switch (hw->phy.type) { case e1000_phy_82579: cap_addr = I82579_EEE_CAPABILITY; lpa_addr = I82579_EEE_LP_ABILITY; pcs_stat_addr = I82579_EEE_PCS_STATUS; break; case e1000_phy_i217: cap_addr = I217_EEE_CAPABILITY; lpa_addr = I217_EEE_LP_ABILITY; pcs_stat_addr = I217_EEE_PCS_STATUS; break; default: return -EOPNOTSUPP; } pm_runtime_get_sync(netdev->dev.parent); ret_val = hw->phy.ops.acquire(hw); if (ret_val) { pm_runtime_put_sync(netdev->dev.parent); return -EBUSY; } /* EEE Capability */ ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data); if (ret_val) goto release; edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data); /* EEE Advertised */ edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert); /* EEE Link Partner Advertised */ ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data); if (ret_val) goto release; edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data); /* EEE PCS Status */ ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data); if (ret_val) goto release; if (hw->phy.type == e1000_phy_82579) phy_data <<= 8; /* Result of the EEE auto negotiation - there is no register that * has the status of the EEE negotiation so do a best-guess based * on whether Tx or Rx LPI indications have been received. */ if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD)) edata->eee_active = true; edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable; edata->tx_lpi_enabled = true; edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT; release: hw->phy.ops.release(hw); if (ret_val) ret_val = -ENODATA; pm_runtime_put_sync(netdev->dev.parent); return ret_val; } static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata) { struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; struct ethtool_eee eee_curr; s32 ret_val; ret_val = e1000e_get_eee(netdev, &eee_curr); if (ret_val) return ret_val; if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) { e_err("Setting EEE tx-lpi is not supported\n"); return -EINVAL; } if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) { e_err("Setting EEE Tx LPI timer is not supported\n"); return -EINVAL; } if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) { e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n"); return -EINVAL; } adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised); hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled; pm_runtime_get_sync(netdev->dev.parent); /* reset the link */ if (netif_running(netdev)) e1000e_reinit_locked(adapter); else e1000e_reset(adapter); pm_runtime_put_sync(netdev->dev.parent); return 0; } static int e1000e_get_ts_info(struct net_device *netdev, struct ethtool_ts_info *info) { struct e1000_adapter *adapter = netdev_priv(netdev); ethtool_op_get_ts_info(netdev, info); if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP)) return 0; info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE | SOF_TIMESTAMPING_RX_HARDWARE | SOF_TIMESTAMPING_RAW_HARDWARE); info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON); info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) | BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) | BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) | BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) | BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) | BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) | BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) | BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) | BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) | BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) | BIT(HWTSTAMP_FILTER_ALL)); if (adapter->ptp_clock) info->phc_index = ptp_clock_index(adapter->ptp_clock); return 0; } static const struct ethtool_ops e1000_ethtool_ops = { .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS, .get_drvinfo = e1000_get_drvinfo, .get_regs_len = e1000_get_regs_len, .get_regs = e1000_get_regs, .get_wol = e1000_get_wol, .set_wol = e1000_set_wol, .get_msglevel = e1000_get_msglevel, .set_msglevel = e1000_set_msglevel, .nway_reset = e1000_nway_reset, .get_link = ethtool_op_get_link, .get_eeprom_len = e1000_get_eeprom_len, .get_eeprom = e1000_get_eeprom, .set_eeprom = e1000_set_eeprom, .get_ringparam = e1000_get_ringparam, .set_ringparam = e1000_set_ringparam, .get_pauseparam = e1000_get_pauseparam, .set_pauseparam = e1000_set_pauseparam, .self_test = e1000_diag_test, .get_strings = e1000_get_strings, .set_phys_id = e1000_set_phys_id, .get_ethtool_stats = e1000_get_ethtool_stats, .get_sset_count = e1000e_get_sset_count, .get_coalesce = e1000_get_coalesce, .set_coalesce = e1000_set_coalesce, .get_rxnfc = e1000_get_rxnfc, .get_ts_info = e1000e_get_ts_info, .get_eee = e1000e_get_eee, .set_eee = e1000e_set_eee, .get_link_ksettings = e1000_get_link_ksettings, .set_link_ksettings = e1000_set_link_ksettings, }; void e1000e_set_ethtool_ops(struct net_device *netdev) { netdev->ethtool_ops = &e1000_ethtool_ops; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1