Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Bruce W Allan | 12311 | 56.55% | 130 | 69.89% |
Dave Ertman | 5075 | 23.31% | 13 | 6.99% |
Auke-Jan H Kok | 3227 | 14.82% | 2 | 1.08% |
Yanir Lubetkin | 404 | 1.86% | 6 | 3.23% |
Raanan Avargil | 229 | 1.05% | 6 | 3.23% |
Sasha Neftin | 179 | 0.82% | 4 | 2.15% |
Jacob E Keller | 84 | 0.39% | 1 | 0.54% |
Benjamin Poirier | 57 | 0.26% | 2 | 1.08% |
Jeff Kirsher | 56 | 0.26% | 10 | 5.38% |
Kai-Heng Feng | 54 | 0.25% | 2 | 1.08% |
Jesse Brandeburg | 33 | 0.15% | 3 | 1.61% |
Matthew Vick | 18 | 0.08% | 1 | 0.54% |
Thomas Gleixner | 18 | 0.08% | 1 | 0.54% |
Arjan van de Ven | 10 | 0.05% | 1 | 0.54% |
Gustavo A. R. Silva | 7 | 0.03% | 1 | 0.54% |
Alexander Duyck | 5 | 0.02% | 1 | 0.54% |
Jarod Wilson | 4 | 0.02% | 2 | 1.08% |
Total | 21771 | 186 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 1999 - 2018 Intel Corporation. */ /* 82562G 10/100 Network Connection * 82562G-2 10/100 Network Connection * 82562GT 10/100 Network Connection * 82562GT-2 10/100 Network Connection * 82562V 10/100 Network Connection * 82562V-2 10/100 Network Connection * 82566DC-2 Gigabit Network Connection * 82566DC Gigabit Network Connection * 82566DM-2 Gigabit Network Connection * 82566DM Gigabit Network Connection * 82566MC Gigabit Network Connection * 82566MM Gigabit Network Connection * 82567LM Gigabit Network Connection * 82567LF Gigabit Network Connection * 82567V Gigabit Network Connection * 82567LM-2 Gigabit Network Connection * 82567LF-2 Gigabit Network Connection * 82567V-2 Gigabit Network Connection * 82567LF-3 Gigabit Network Connection * 82567LM-3 Gigabit Network Connection * 82567LM-4 Gigabit Network Connection * 82577LM Gigabit Network Connection * 82577LC Gigabit Network Connection * 82578DM Gigabit Network Connection * 82578DC Gigabit Network Connection * 82579LM Gigabit Network Connection * 82579V Gigabit Network Connection * Ethernet Connection I217-LM * Ethernet Connection I217-V * Ethernet Connection I218-V * Ethernet Connection I218-LM * Ethernet Connection (2) I218-LM * Ethernet Connection (2) I218-V * Ethernet Connection (3) I218-LM * Ethernet Connection (3) I218-V */ #include "e1000.h" /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */ /* Offset 04h HSFSTS */ union ich8_hws_flash_status { struct ich8_hsfsts { u16 flcdone:1; /* bit 0 Flash Cycle Done */ u16 flcerr:1; /* bit 1 Flash Cycle Error */ u16 dael:1; /* bit 2 Direct Access error Log */ u16 berasesz:2; /* bit 4:3 Sector Erase Size */ u16 flcinprog:1; /* bit 5 flash cycle in Progress */ u16 reserved1:2; /* bit 13:6 Reserved */ u16 reserved2:6; /* bit 13:6 Reserved */ u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */ u16 flockdn:1; /* bit 15 Flash Config Lock-Down */ } hsf_status; u16 regval; }; /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */ /* Offset 06h FLCTL */ union ich8_hws_flash_ctrl { struct ich8_hsflctl { u16 flcgo:1; /* 0 Flash Cycle Go */ u16 flcycle:2; /* 2:1 Flash Cycle */ u16 reserved:5; /* 7:3 Reserved */ u16 fldbcount:2; /* 9:8 Flash Data Byte Count */ u16 flockdn:6; /* 15:10 Reserved */ } hsf_ctrl; u16 regval; }; /* ICH Flash Region Access Permissions */ union ich8_hws_flash_regacc { struct ich8_flracc { u32 grra:8; /* 0:7 GbE region Read Access */ u32 grwa:8; /* 8:15 GbE region Write Access */ u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */ u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */ } hsf_flregacc; u16 regval; }; /* ICH Flash Protected Region */ union ich8_flash_protected_range { struct ich8_pr { u32 base:13; /* 0:12 Protected Range Base */ u32 reserved1:2; /* 13:14 Reserved */ u32 rpe:1; /* 15 Read Protection Enable */ u32 limit:13; /* 16:28 Protected Range Limit */ u32 reserved2:2; /* 29:30 Reserved */ u32 wpe:1; /* 31 Write Protection Enable */ } range; u32 regval; }; static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw); static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw); static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank); static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, u8 byte); static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, u8 *data); static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, u16 *data); static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, u8 size, u16 *data); static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, u32 *data); static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset, u32 *data); static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, u32 data); static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset, u32 dword); static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw); static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw); static s32 e1000_led_on_ich8lan(struct e1000_hw *hw); static s32 e1000_led_off_ich8lan(struct e1000_hw *hw); static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw); static s32 e1000_setup_led_pchlan(struct e1000_hw *hw); static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw); static s32 e1000_led_on_pchlan(struct e1000_hw *hw); static s32 e1000_led_off_pchlan(struct e1000_hw *hw); static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active); static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw); static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw); static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link); static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw); static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw); static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw); static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index); static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index); static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw); static s32 e1000_k1_workaround_lv(struct e1000_hw *hw); static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate); static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force); static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw); static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state); static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg) { return readw(hw->flash_address + reg); } static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg) { return readl(hw->flash_address + reg); } static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val) { writew(val, hw->flash_address + reg); } static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val) { writel(val, hw->flash_address + reg); } #define er16flash(reg) __er16flash(hw, (reg)) #define er32flash(reg) __er32flash(hw, (reg)) #define ew16flash(reg, val) __ew16flash(hw, (reg), (val)) #define ew32flash(reg, val) __ew32flash(hw, (reg), (val)) /** * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers * @hw: pointer to the HW structure * * Test access to the PHY registers by reading the PHY ID registers. If * the PHY ID is already known (e.g. resume path) compare it with known ID, * otherwise assume the read PHY ID is correct if it is valid. * * Assumes the sw/fw/hw semaphore is already acquired. **/ static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw) { u16 phy_reg = 0; u32 phy_id = 0; s32 ret_val = 0; u16 retry_count; u32 mac_reg = 0; for (retry_count = 0; retry_count < 2; retry_count++) { ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg); if (ret_val || (phy_reg == 0xFFFF)) continue; phy_id = (u32)(phy_reg << 16); ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg); if (ret_val || (phy_reg == 0xFFFF)) { phy_id = 0; continue; } phy_id |= (u32)(phy_reg & PHY_REVISION_MASK); break; } if (hw->phy.id) { if (hw->phy.id == phy_id) goto out; } else if (phy_id) { hw->phy.id = phy_id; hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK); goto out; } /* In case the PHY needs to be in mdio slow mode, * set slow mode and try to get the PHY id again. */ if (hw->mac.type < e1000_pch_lpt) { hw->phy.ops.release(hw); ret_val = e1000_set_mdio_slow_mode_hv(hw); if (!ret_val) ret_val = e1000e_get_phy_id(hw); hw->phy.ops.acquire(hw); } if (ret_val) return false; out: if (hw->mac.type >= e1000_pch_lpt) { /* Only unforce SMBus if ME is not active */ if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { /* Unforce SMBus mode in PHY */ e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg); phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS; e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg); /* Unforce SMBus mode in MAC */ mac_reg = er32(CTRL_EXT); mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; ew32(CTRL_EXT, mac_reg); } } return true; } /** * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value * @hw: pointer to the HW structure * * Toggling the LANPHYPC pin value fully power-cycles the PHY and is * used to reset the PHY to a quiescent state when necessary. **/ static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw) { u32 mac_reg; /* Set Phy Config Counter to 50msec */ mac_reg = er32(FEXTNVM3); mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK; mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC; ew32(FEXTNVM3, mac_reg); /* Toggle LANPHYPC Value bit */ mac_reg = er32(CTRL); mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE; mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE; ew32(CTRL, mac_reg); e1e_flush(); usleep_range(10, 20); mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE; ew32(CTRL, mac_reg); e1e_flush(); if (hw->mac.type < e1000_pch_lpt) { msleep(50); } else { u16 count = 20; do { usleep_range(5000, 6000); } while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--); msleep(30); } } /** * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds * @hw: pointer to the HW structure * * Workarounds/flow necessary for PHY initialization during driver load * and resume paths. **/ static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw) { struct e1000_adapter *adapter = hw->adapter; u32 mac_reg, fwsm = er32(FWSM); s32 ret_val; /* Gate automatic PHY configuration by hardware on managed and * non-managed 82579 and newer adapters. */ e1000_gate_hw_phy_config_ich8lan(hw, true); /* It is not possible to be certain of the current state of ULP * so forcibly disable it. */ hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown; ret_val = e1000_disable_ulp_lpt_lp(hw, true); if (ret_val) e_warn("Failed to disable ULP\n"); ret_val = hw->phy.ops.acquire(hw); if (ret_val) { e_dbg("Failed to initialize PHY flow\n"); goto out; } /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is * inaccessible and resetting the PHY is not blocked, toggle the * LANPHYPC Value bit to force the interconnect to PCIe mode. */ switch (hw->mac.type) { case e1000_pch_lpt: case e1000_pch_spt: case e1000_pch_cnp: case e1000_pch_tgp: case e1000_pch_adp: if (e1000_phy_is_accessible_pchlan(hw)) break; /* Before toggling LANPHYPC, see if PHY is accessible by * forcing MAC to SMBus mode first. */ mac_reg = er32(CTRL_EXT); mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; ew32(CTRL_EXT, mac_reg); /* Wait 50 milliseconds for MAC to finish any retries * that it might be trying to perform from previous * attempts to acknowledge any phy read requests. */ msleep(50); fallthrough; case e1000_pch2lan: if (e1000_phy_is_accessible_pchlan(hw)) break; fallthrough; case e1000_pchlan: if ((hw->mac.type == e1000_pchlan) && (fwsm & E1000_ICH_FWSM_FW_VALID)) break; if (hw->phy.ops.check_reset_block(hw)) { e_dbg("Required LANPHYPC toggle blocked by ME\n"); ret_val = -E1000_ERR_PHY; break; } /* Toggle LANPHYPC Value bit */ e1000_toggle_lanphypc_pch_lpt(hw); if (hw->mac.type >= e1000_pch_lpt) { if (e1000_phy_is_accessible_pchlan(hw)) break; /* Toggling LANPHYPC brings the PHY out of SMBus mode * so ensure that the MAC is also out of SMBus mode */ mac_reg = er32(CTRL_EXT); mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; ew32(CTRL_EXT, mac_reg); if (e1000_phy_is_accessible_pchlan(hw)) break; ret_val = -E1000_ERR_PHY; } break; default: break; } hw->phy.ops.release(hw); if (!ret_val) { /* Check to see if able to reset PHY. Print error if not */ if (hw->phy.ops.check_reset_block(hw)) { e_err("Reset blocked by ME\n"); goto out; } /* Reset the PHY before any access to it. Doing so, ensures * that the PHY is in a known good state before we read/write * PHY registers. The generic reset is sufficient here, * because we haven't determined the PHY type yet. */ ret_val = e1000e_phy_hw_reset_generic(hw); if (ret_val) goto out; /* On a successful reset, possibly need to wait for the PHY * to quiesce to an accessible state before returning control * to the calling function. If the PHY does not quiesce, then * return E1000E_BLK_PHY_RESET, as this is the condition that * the PHY is in. */ ret_val = hw->phy.ops.check_reset_block(hw); if (ret_val) e_err("ME blocked access to PHY after reset\n"); } out: /* Ungate automatic PHY configuration on non-managed 82579 */ if ((hw->mac.type == e1000_pch2lan) && !(fwsm & E1000_ICH_FWSM_FW_VALID)) { usleep_range(10000, 11000); e1000_gate_hw_phy_config_ich8lan(hw, false); } return ret_val; } /** * e1000_init_phy_params_pchlan - Initialize PHY function pointers * @hw: pointer to the HW structure * * Initialize family-specific PHY parameters and function pointers. **/ static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; phy->addr = 1; phy->reset_delay_us = 100; phy->ops.set_page = e1000_set_page_igp; phy->ops.read_reg = e1000_read_phy_reg_hv; phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked; phy->ops.read_reg_page = e1000_read_phy_reg_page_hv; phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan; phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan; phy->ops.write_reg = e1000_write_phy_reg_hv; phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked; phy->ops.write_reg_page = e1000_write_phy_reg_page_hv; phy->ops.power_up = e1000_power_up_phy_copper; phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; phy->id = e1000_phy_unknown; ret_val = e1000_init_phy_workarounds_pchlan(hw); if (ret_val) return ret_val; if (phy->id == e1000_phy_unknown) switch (hw->mac.type) { default: ret_val = e1000e_get_phy_id(hw); if (ret_val) return ret_val; if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK)) break; fallthrough; case e1000_pch2lan: case e1000_pch_lpt: case e1000_pch_spt: case e1000_pch_cnp: case e1000_pch_tgp: case e1000_pch_adp: /* In case the PHY needs to be in mdio slow mode, * set slow mode and try to get the PHY id again. */ ret_val = e1000_set_mdio_slow_mode_hv(hw); if (ret_val) return ret_val; ret_val = e1000e_get_phy_id(hw); if (ret_val) return ret_val; break; } phy->type = e1000e_get_phy_type_from_id(phy->id); switch (phy->type) { case e1000_phy_82577: case e1000_phy_82579: case e1000_phy_i217: phy->ops.check_polarity = e1000_check_polarity_82577; phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_82577; phy->ops.get_cable_length = e1000_get_cable_length_82577; phy->ops.get_info = e1000_get_phy_info_82577; phy->ops.commit = e1000e_phy_sw_reset; break; case e1000_phy_82578: phy->ops.check_polarity = e1000_check_polarity_m88; phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; phy->ops.get_cable_length = e1000e_get_cable_length_m88; phy->ops.get_info = e1000e_get_phy_info_m88; break; default: ret_val = -E1000_ERR_PHY; break; } return ret_val; } /** * e1000_init_phy_params_ich8lan - Initialize PHY function pointers * @hw: pointer to the HW structure * * Initialize family-specific PHY parameters and function pointers. **/ static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 i = 0; phy->addr = 1; phy->reset_delay_us = 100; phy->ops.power_up = e1000_power_up_phy_copper; phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; /* We may need to do this twice - once for IGP and if that fails, * we'll set BM func pointers and try again */ ret_val = e1000e_determine_phy_address(hw); if (ret_val) { phy->ops.write_reg = e1000e_write_phy_reg_bm; phy->ops.read_reg = e1000e_read_phy_reg_bm; ret_val = e1000e_determine_phy_address(hw); if (ret_val) { e_dbg("Cannot determine PHY addr. Erroring out\n"); return ret_val; } } phy->id = 0; while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) && (i++ < 100)) { usleep_range(1000, 1100); ret_val = e1000e_get_phy_id(hw); if (ret_val) return ret_val; } /* Verify phy id */ switch (phy->id) { case IGP03E1000_E_PHY_ID: phy->type = e1000_phy_igp_3; phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked; phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked; phy->ops.get_info = e1000e_get_phy_info_igp; phy->ops.check_polarity = e1000_check_polarity_igp; phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp; break; case IFE_E_PHY_ID: case IFE_PLUS_E_PHY_ID: case IFE_C_E_PHY_ID: phy->type = e1000_phy_ife; phy->autoneg_mask = E1000_ALL_NOT_GIG; phy->ops.get_info = e1000_get_phy_info_ife; phy->ops.check_polarity = e1000_check_polarity_ife; phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife; break; case BME1000_E_PHY_ID: phy->type = e1000_phy_bm; phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; phy->ops.read_reg = e1000e_read_phy_reg_bm; phy->ops.write_reg = e1000e_write_phy_reg_bm; phy->ops.commit = e1000e_phy_sw_reset; phy->ops.get_info = e1000e_get_phy_info_m88; phy->ops.check_polarity = e1000_check_polarity_m88; phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; break; default: return -E1000_ERR_PHY; } return 0; } /** * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers * @hw: pointer to the HW structure * * Initialize family-specific NVM parameters and function * pointers. **/ static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw) { struct e1000_nvm_info *nvm = &hw->nvm; struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; u32 gfpreg, sector_base_addr, sector_end_addr; u16 i; u32 nvm_size; nvm->type = e1000_nvm_flash_sw; if (hw->mac.type >= e1000_pch_spt) { /* in SPT, gfpreg doesn't exist. NVM size is taken from the * STRAP register. This is because in SPT the GbE Flash region * is no longer accessed through the flash registers. Instead, * the mechanism has changed, and the Flash region access * registers are now implemented in GbE memory space. */ nvm->flash_base_addr = 0; nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1) * NVM_SIZE_MULTIPLIER; nvm->flash_bank_size = nvm_size / 2; /* Adjust to word count */ nvm->flash_bank_size /= sizeof(u16); /* Set the base address for flash register access */ hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR; } else { /* Can't read flash registers if register set isn't mapped. */ if (!hw->flash_address) { e_dbg("ERROR: Flash registers not mapped\n"); return -E1000_ERR_CONFIG; } gfpreg = er32flash(ICH_FLASH_GFPREG); /* sector_X_addr is a "sector"-aligned address (4096 bytes) * Add 1 to sector_end_addr since this sector is included in * the overall size. */ sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK; sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1; /* flash_base_addr is byte-aligned */ nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT; /* find total size of the NVM, then cut in half since the total * size represents two separate NVM banks. */ nvm->flash_bank_size = ((sector_end_addr - sector_base_addr) << FLASH_SECTOR_ADDR_SHIFT); nvm->flash_bank_size /= 2; /* Adjust to word count */ nvm->flash_bank_size /= sizeof(u16); } nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS; /* Clear shadow ram */ for (i = 0; i < nvm->word_size; i++) { dev_spec->shadow_ram[i].modified = false; dev_spec->shadow_ram[i].value = 0xFFFF; } return 0; } /** * e1000_init_mac_params_ich8lan - Initialize MAC function pointers * @hw: pointer to the HW structure * * Initialize family-specific MAC parameters and function * pointers. **/ static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; /* Set media type function pointer */ hw->phy.media_type = e1000_media_type_copper; /* Set mta register count */ mac->mta_reg_count = 32; /* Set rar entry count */ mac->rar_entry_count = E1000_ICH_RAR_ENTRIES; if (mac->type == e1000_ich8lan) mac->rar_entry_count--; /* FWSM register */ mac->has_fwsm = true; /* ARC subsystem not supported */ mac->arc_subsystem_valid = false; /* Adaptive IFS supported */ mac->adaptive_ifs = true; /* LED and other operations */ switch (mac->type) { case e1000_ich8lan: case e1000_ich9lan: case e1000_ich10lan: /* check management mode */ mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan; /* ID LED init */ mac->ops.id_led_init = e1000e_id_led_init_generic; /* blink LED */ mac->ops.blink_led = e1000e_blink_led_generic; /* setup LED */ mac->ops.setup_led = e1000e_setup_led_generic; /* cleanup LED */ mac->ops.cleanup_led = e1000_cleanup_led_ich8lan; /* turn on/off LED */ mac->ops.led_on = e1000_led_on_ich8lan; mac->ops.led_off = e1000_led_off_ich8lan; break; case e1000_pch2lan: mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES; mac->ops.rar_set = e1000_rar_set_pch2lan; fallthrough; case e1000_pch_lpt: case e1000_pch_spt: case e1000_pch_cnp: case e1000_pch_tgp: case e1000_pch_adp: case e1000_pchlan: /* check management mode */ mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan; /* ID LED init */ mac->ops.id_led_init = e1000_id_led_init_pchlan; /* setup LED */ mac->ops.setup_led = e1000_setup_led_pchlan; /* cleanup LED */ mac->ops.cleanup_led = e1000_cleanup_led_pchlan; /* turn on/off LED */ mac->ops.led_on = e1000_led_on_pchlan; mac->ops.led_off = e1000_led_off_pchlan; break; default: break; } if (mac->type >= e1000_pch_lpt) { mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES; mac->ops.rar_set = e1000_rar_set_pch_lpt; mac->ops.setup_physical_interface = e1000_setup_copper_link_pch_lpt; mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt; } /* Enable PCS Lock-loss workaround for ICH8 */ if (mac->type == e1000_ich8lan) e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true); return 0; } /** * __e1000_access_emi_reg_locked - Read/write EMI register * @hw: pointer to the HW structure * @addr: EMI address to program * @data: pointer to value to read/write from/to the EMI address * @read: boolean flag to indicate read or write * * This helper function assumes the SW/FW/HW Semaphore is already acquired. **/ static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address, u16 *data, bool read) { s32 ret_val; ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address); if (ret_val) return ret_val; if (read) ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data); else ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data); return ret_val; } /** * e1000_read_emi_reg_locked - Read Extended Management Interface register * @hw: pointer to the HW structure * @addr: EMI address to program * @data: value to be read from the EMI address * * Assumes the SW/FW/HW Semaphore is already acquired. **/ s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data) { return __e1000_access_emi_reg_locked(hw, addr, data, true); } /** * e1000_write_emi_reg_locked - Write Extended Management Interface register * @hw: pointer to the HW structure * @addr: EMI address to program * @data: value to be written to the EMI address * * Assumes the SW/FW/HW Semaphore is already acquired. **/ s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data) { return __e1000_access_emi_reg_locked(hw, addr, &data, false); } /** * e1000_set_eee_pchlan - Enable/disable EEE support * @hw: pointer to the HW structure * * Enable/disable EEE based on setting in dev_spec structure, the duplex of * the link and the EEE capabilities of the link partner. The LPI Control * register bits will remain set only if/when link is up. * * EEE LPI must not be asserted earlier than one second after link is up. * On 82579, EEE LPI should not be enabled until such time otherwise there * can be link issues with some switches. Other devices can have EEE LPI * enabled immediately upon link up since they have a timer in hardware which * prevents LPI from being asserted too early. **/ s32 e1000_set_eee_pchlan(struct e1000_hw *hw) { struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; s32 ret_val; u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data; switch (hw->phy.type) { case e1000_phy_82579: lpa = I82579_EEE_LP_ABILITY; pcs_status = I82579_EEE_PCS_STATUS; adv_addr = I82579_EEE_ADVERTISEMENT; break; case e1000_phy_i217: lpa = I217_EEE_LP_ABILITY; pcs_status = I217_EEE_PCS_STATUS; adv_addr = I217_EEE_ADVERTISEMENT; break; default: return 0; } ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl); if (ret_val) goto release; /* Clear bits that enable EEE in various speeds */ lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK; /* Enable EEE if not disabled by user */ if (!dev_spec->eee_disable) { /* Save off link partner's EEE ability */ ret_val = e1000_read_emi_reg_locked(hw, lpa, &dev_spec->eee_lp_ability); if (ret_val) goto release; /* Read EEE advertisement */ ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv); if (ret_val) goto release; /* Enable EEE only for speeds in which the link partner is * EEE capable and for which we advertise EEE. */ if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED) lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE; if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) { e1e_rphy_locked(hw, MII_LPA, &data); if (data & LPA_100FULL) lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE; else /* EEE is not supported in 100Half, so ignore * partner's EEE in 100 ability if full-duplex * is not advertised. */ dev_spec->eee_lp_ability &= ~I82579_EEE_100_SUPPORTED; } } if (hw->phy.type == e1000_phy_82579) { ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT, &data); if (ret_val) goto release; data &= ~I82579_LPI_100_PLL_SHUT; ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT, data); } /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */ ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data); if (ret_val) goto release; ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl); release: hw->phy.ops.release(hw); return ret_val; } /** * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP * @hw: pointer to the HW structure * @link: link up bool flag * * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications * preventing further DMA write requests. Workaround the issue by disabling * the de-assertion of the clock request when in 1Gpbs mode. * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link * speeds in order to avoid Tx hangs. **/ static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link) { u32 fextnvm6 = er32(FEXTNVM6); u32 status = er32(STATUS); s32 ret_val = 0; u16 reg; if (link && (status & E1000_STATUS_SPEED_1000)) { ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, ®); if (ret_val) goto release; ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, reg & ~E1000_KMRNCTRLSTA_K1_ENABLE); if (ret_val) goto release; usleep_range(10, 20); ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK); ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, reg); release: hw->phy.ops.release(hw); } else { /* clear FEXTNVM6 bit 8 on link down or 10/100 */ fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK; if ((hw->phy.revision > 5) || !link || ((status & E1000_STATUS_SPEED_100) && (status & E1000_STATUS_FD))) goto update_fextnvm6; ret_val = e1e_rphy(hw, I217_INBAND_CTRL, ®); if (ret_val) return ret_val; /* Clear link status transmit timeout */ reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK; if (status & E1000_STATUS_SPEED_100) { /* Set inband Tx timeout to 5x10us for 100Half */ reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT; /* Do not extend the K1 entry latency for 100Half */ fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION; } else { /* Set inband Tx timeout to 50x10us for 10Full/Half */ reg |= 50 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT; /* Extend the K1 entry latency for 10 Mbps */ fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION; } ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg); if (ret_val) return ret_val; update_fextnvm6: ew32(FEXTNVM6, fextnvm6); } return ret_val; } /** * e1000_platform_pm_pch_lpt - Set platform power management values * @hw: pointer to the HW structure * @link: bool indicating link status * * Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like" * GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed * when link is up (which must not exceed the maximum latency supported * by the platform), otherwise specify there is no LTR requirement. * Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop * latencies in the LTR Extended Capability Structure in the PCIe Extended * Capability register set, on this device LTR is set by writing the * equivalent snoop/no-snoop latencies in the LTRV register in the MAC and * set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB) * message to the PMC. **/ static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link) { u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) | link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND; u16 lat_enc = 0; /* latency encoded */ if (link) { u16 speed, duplex, scale = 0; u16 max_snoop, max_nosnoop; u16 max_ltr_enc; /* max LTR latency encoded */ u64 value; u32 rxa; if (!hw->adapter->max_frame_size) { e_dbg("max_frame_size not set.\n"); return -E1000_ERR_CONFIG; } hw->mac.ops.get_link_up_info(hw, &speed, &duplex); if (!speed) { e_dbg("Speed not set.\n"); return -E1000_ERR_CONFIG; } /* Rx Packet Buffer Allocation size (KB) */ rxa = er32(PBA) & E1000_PBA_RXA_MASK; /* Determine the maximum latency tolerated by the device. * * Per the PCIe spec, the tolerated latencies are encoded as * a 3-bit encoded scale (only 0-5 are valid) multiplied by * a 10-bit value (0-1023) to provide a range from 1 ns to * 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns, * 1=2^5ns, 2=2^10ns,...5=2^25ns. */ rxa *= 512; value = (rxa > hw->adapter->max_frame_size) ? (rxa - hw->adapter->max_frame_size) * (16000 / speed) : 0; while (value > PCI_LTR_VALUE_MASK) { scale++; value = DIV_ROUND_UP(value, BIT(5)); } if (scale > E1000_LTRV_SCALE_MAX) { e_dbg("Invalid LTR latency scale %d\n", scale); return -E1000_ERR_CONFIG; } lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value); /* Determine the maximum latency tolerated by the platform */ pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT, &max_snoop); pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop); max_ltr_enc = max_t(u16, max_snoop, max_nosnoop); if (lat_enc > max_ltr_enc) lat_enc = max_ltr_enc; } /* Set Snoop and No-Snoop latencies the same */ reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT); ew32(LTRV, reg); return 0; } /** * e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP * @hw: pointer to the HW structure * @to_sx: boolean indicating a system power state transition to Sx * * When link is down, configure ULP mode to significantly reduce the power * to the PHY. If on a Manageability Engine (ME) enabled system, tell the * ME firmware to start the ULP configuration. If not on an ME enabled * system, configure the ULP mode by software. */ s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx) { u32 mac_reg; s32 ret_val = 0; u16 phy_reg; u16 oem_reg = 0; if ((hw->mac.type < e1000_pch_lpt) || (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) || (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) || (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) || (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) || (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on)) return 0; if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) { /* Request ME configure ULP mode in the PHY */ mac_reg = er32(H2ME); mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS; ew32(H2ME, mac_reg); goto out; } if (!to_sx) { int i = 0; /* Poll up to 5 seconds for Cable Disconnected indication */ while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) { /* Bail if link is re-acquired */ if (er32(STATUS) & E1000_STATUS_LU) return -E1000_ERR_PHY; if (i++ == 100) break; msleep(50); } e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n", (er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50); } ret_val = hw->phy.ops.acquire(hw); if (ret_val) goto out; /* Force SMBus mode in PHY */ ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg); if (ret_val) goto release; phy_reg |= CV_SMB_CTRL_FORCE_SMBUS; e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg); /* Force SMBus mode in MAC */ mac_reg = er32(CTRL_EXT); mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; ew32(CTRL_EXT, mac_reg); /* Si workaround for ULP entry flow on i127/rev6 h/w. Enable * LPLU and disable Gig speed when entering ULP */ if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) { ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS, &oem_reg); if (ret_val) goto release; phy_reg = oem_reg; phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS; ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS, phy_reg); if (ret_val) goto release; } /* Set Inband ULP Exit, Reset to SMBus mode and * Disable SMBus Release on PERST# in PHY */ ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg); if (ret_val) goto release; phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS | I218_ULP_CONFIG1_DISABLE_SMB_PERST); if (to_sx) { if (er32(WUFC) & E1000_WUFC_LNKC) phy_reg |= I218_ULP_CONFIG1_WOL_HOST; else phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST; phy_reg |= I218_ULP_CONFIG1_STICKY_ULP; phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT; } else { phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT; phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP; phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST; } e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); /* Set Disable SMBus Release on PERST# in MAC */ mac_reg = er32(FEXTNVM7); mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST; ew32(FEXTNVM7, mac_reg); /* Commit ULP changes in PHY by starting auto ULP configuration */ phy_reg |= I218_ULP_CONFIG1_START; e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) && to_sx && (er32(STATUS) & E1000_STATUS_LU)) { ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS, oem_reg); if (ret_val) goto release; } release: hw->phy.ops.release(hw); out: if (ret_val) e_dbg("Error in ULP enable flow: %d\n", ret_val); else hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on; return ret_val; } /** * e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP * @hw: pointer to the HW structure * @force: boolean indicating whether or not to force disabling ULP * * Un-configure ULP mode when link is up, the system is transitioned from * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled * system, poll for an indication from ME that ULP has been un-configured. * If not on an ME enabled system, un-configure the ULP mode by software. * * During nominal operation, this function is called when link is acquired * to disable ULP mode (force=false); otherwise, for example when unloading * the driver or during Sx->S0 transitions, this is called with force=true * to forcibly disable ULP. */ static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force) { s32 ret_val = 0; u32 mac_reg; u16 phy_reg; int i = 0; if ((hw->mac.type < e1000_pch_lpt) || (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) || (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) || (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) || (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) || (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off)) return 0; if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) { if (force) { /* Request ME un-configure ULP mode in the PHY */ mac_reg = er32(H2ME); mac_reg &= ~E1000_H2ME_ULP; mac_reg |= E1000_H2ME_ENFORCE_SETTINGS; ew32(H2ME, mac_reg); } /* Poll up to 300msec for ME to clear ULP_CFG_DONE. */ while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) { if (i++ == 30) { ret_val = -E1000_ERR_PHY; goto out; } usleep_range(10000, 11000); } e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10); if (force) { mac_reg = er32(H2ME); mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS; ew32(H2ME, mac_reg); } else { /* Clear H2ME.ULP after ME ULP configuration */ mac_reg = er32(H2ME); mac_reg &= ~E1000_H2ME_ULP; ew32(H2ME, mac_reg); } goto out; } ret_val = hw->phy.ops.acquire(hw); if (ret_val) goto out; if (force) /* Toggle LANPHYPC Value bit */ e1000_toggle_lanphypc_pch_lpt(hw); /* Unforce SMBus mode in PHY */ ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg); if (ret_val) { /* The MAC might be in PCIe mode, so temporarily force to * SMBus mode in order to access the PHY. */ mac_reg = er32(CTRL_EXT); mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; ew32(CTRL_EXT, mac_reg); msleep(50); ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg); if (ret_val) goto release; } phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS; e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg); /* Unforce SMBus mode in MAC */ mac_reg = er32(CTRL_EXT); mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; ew32(CTRL_EXT, mac_reg); /* When ULP mode was previously entered, K1 was disabled by the * hardware. Re-Enable K1 in the PHY when exiting ULP. */ ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg); if (ret_val) goto release; phy_reg |= HV_PM_CTRL_K1_ENABLE; e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg); /* Clear ULP enabled configuration */ ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg); if (ret_val) goto release; phy_reg &= ~(I218_ULP_CONFIG1_IND | I218_ULP_CONFIG1_STICKY_ULP | I218_ULP_CONFIG1_RESET_TO_SMBUS | I218_ULP_CONFIG1_WOL_HOST | I218_ULP_CONFIG1_INBAND_EXIT | I218_ULP_CONFIG1_EN_ULP_LANPHYPC | I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST | I218_ULP_CONFIG1_DISABLE_SMB_PERST); e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); /* Commit ULP changes by starting auto ULP configuration */ phy_reg |= I218_ULP_CONFIG1_START; e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); /* Clear Disable SMBus Release on PERST# in MAC */ mac_reg = er32(FEXTNVM7); mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST; ew32(FEXTNVM7, mac_reg); release: hw->phy.ops.release(hw); if (force) { e1000_phy_hw_reset(hw); msleep(50); } out: if (ret_val) e_dbg("Error in ULP disable flow: %d\n", ret_val); else hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off; return ret_val; } /** * e1000_check_for_copper_link_ich8lan - Check for link (Copper) * @hw: pointer to the HW structure * * Checks to see of the link status of the hardware has changed. If a * change in link status has been detected, then we read the PHY registers * to get the current speed/duplex if link exists. **/ static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; s32 ret_val, tipg_reg = 0; u16 emi_addr, emi_val = 0; bool link; u16 phy_reg; /* We only want to go out to the PHY registers to see if Auto-Neg * has completed and/or if our link status has changed. The * get_link_status flag is set upon receiving a Link Status * Change or Rx Sequence Error interrupt. */ if (!mac->get_link_status) return 0; mac->get_link_status = false; /* First we want to see if the MII Status Register reports * link. If so, then we want to get the current speed/duplex * of the PHY. */ ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); if (ret_val) goto out; if (hw->mac.type == e1000_pchlan) { ret_val = e1000_k1_gig_workaround_hv(hw, link); if (ret_val) goto out; } /* When connected at 10Mbps half-duplex, some parts are excessively * aggressive resulting in many collisions. To avoid this, increase * the IPG and reduce Rx latency in the PHY. */ if ((hw->mac.type >= e1000_pch2lan) && link) { u16 speed, duplex; e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex); tipg_reg = er32(TIPG); tipg_reg &= ~E1000_TIPG_IPGT_MASK; if (duplex == HALF_DUPLEX && speed == SPEED_10) { tipg_reg |= 0xFF; /* Reduce Rx latency in analog PHY */ emi_val = 0; } else if (hw->mac.type >= e1000_pch_spt && duplex == FULL_DUPLEX && speed != SPEED_1000) { tipg_reg |= 0xC; emi_val = 1; } else { /* Roll back the default values */ tipg_reg |= 0x08; emi_val = 1; } ew32(TIPG, tipg_reg); ret_val = hw->phy.ops.acquire(hw); if (ret_val) goto out; if (hw->mac.type == e1000_pch2lan) emi_addr = I82579_RX_CONFIG; else emi_addr = I217_RX_CONFIG; ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val); if (hw->mac.type >= e1000_pch_lpt) { u16 phy_reg; e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg); phy_reg &= ~I217_PLL_CLOCK_GATE_MASK; if (speed == SPEED_100 || speed == SPEED_10) phy_reg |= 0x3E8; else phy_reg |= 0xFA; e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg); if (speed == SPEED_1000) { hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL, &phy_reg); phy_reg |= HV_PM_CTRL_K1_CLK_REQ; hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL, phy_reg); } } hw->phy.ops.release(hw); if (ret_val) goto out; if (hw->mac.type >= e1000_pch_spt) { u16 data; u16 ptr_gap; if (speed == SPEED_1000) { ret_val = hw->phy.ops.acquire(hw); if (ret_val) goto out; ret_val = e1e_rphy_locked(hw, PHY_REG(776, 20), &data); if (ret_val) { hw->phy.ops.release(hw); goto out; } ptr_gap = (data & (0x3FF << 2)) >> 2; if (ptr_gap < 0x18) { data &= ~(0x3FF << 2); data |= (0x18 << 2); ret_val = e1e_wphy_locked(hw, PHY_REG(776, 20), data); } hw->phy.ops.release(hw); if (ret_val) goto out; } else { ret_val = hw->phy.ops.acquire(hw); if (ret_val) goto out; ret_val = e1e_wphy_locked(hw, PHY_REG(776, 20), 0xC023); hw->phy.ops.release(hw); if (ret_val) goto out; } } } /* I217 Packet Loss issue: * ensure that FEXTNVM4 Beacon Duration is set correctly * on power up. * Set the Beacon Duration for I217 to 8 usec */ if (hw->mac.type >= e1000_pch_lpt) { u32 mac_reg; mac_reg = er32(FEXTNVM4); mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC; ew32(FEXTNVM4, mac_reg); } /* Work-around I218 hang issue */ if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) || (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) || (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) || (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) { ret_val = e1000_k1_workaround_lpt_lp(hw, link); if (ret_val) goto out; } if (hw->mac.type >= e1000_pch_lpt) { /* Set platform power management values for * Latency Tolerance Reporting (LTR) */ ret_val = e1000_platform_pm_pch_lpt(hw, link); if (ret_val) goto out; } /* Clear link partner's EEE ability */ hw->dev_spec.ich8lan.eee_lp_ability = 0; if (hw->mac.type >= e1000_pch_lpt) { u32 fextnvm6 = er32(FEXTNVM6); if (hw->mac.type == e1000_pch_spt) { /* FEXTNVM6 K1-off workaround - for SPT only */ u32 pcieanacfg = er32(PCIEANACFG); if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE) fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE; else fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE; } ew32(FEXTNVM6, fextnvm6); } if (!link) goto out; switch (hw->mac.type) { case e1000_pch2lan: ret_val = e1000_k1_workaround_lv(hw); if (ret_val) return ret_val; fallthrough; case e1000_pchlan: if (hw->phy.type == e1000_phy_82578) { ret_val = e1000_link_stall_workaround_hv(hw); if (ret_val) return ret_val; } /* Workaround for PCHx parts in half-duplex: * Set the number of preambles removed from the packet * when it is passed from the PHY to the MAC to prevent * the MAC from misinterpreting the packet type. */ e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg); phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK; if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD) phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT); e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg); break; default: break; } /* Check if there was DownShift, must be checked * immediately after link-up */ e1000e_check_downshift(hw); /* Enable/Disable EEE after link up */ if (hw->phy.type > e1000_phy_82579) { ret_val = e1000_set_eee_pchlan(hw); if (ret_val) return ret_val; } /* If we are forcing speed/duplex, then we simply return since * we have already determined whether we have link or not. */ if (!mac->autoneg) return -E1000_ERR_CONFIG; /* Auto-Neg is enabled. Auto Speed Detection takes care * of MAC speed/duplex configuration. So we only need to * configure Collision Distance in the MAC. */ mac->ops.config_collision_dist(hw); /* Configure Flow Control now that Auto-Neg has completed. * First, we need to restore the desired flow control * settings because we may have had to re-autoneg with a * different link partner. */ ret_val = e1000e_config_fc_after_link_up(hw); if (ret_val) e_dbg("Error configuring flow control\n"); return ret_val; out: mac->get_link_status = true; return ret_val; } static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; s32 rc; rc = e1000_init_mac_params_ich8lan(hw); if (rc) return rc; rc = e1000_init_nvm_params_ich8lan(hw); if (rc) return rc; switch (hw->mac.type) { case e1000_ich8lan: case e1000_ich9lan: case e1000_ich10lan: rc = e1000_init_phy_params_ich8lan(hw); break; case e1000_pchlan: case e1000_pch2lan: case e1000_pch_lpt: case e1000_pch_spt: case e1000_pch_cnp: case e1000_pch_tgp: case e1000_pch_adp: rc = e1000_init_phy_params_pchlan(hw); break; default: break; } if (rc) return rc; /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or * on parts with MACsec enabled in NVM (reflected in CTRL_EXT). */ if ((adapter->hw.phy.type == e1000_phy_ife) || ((adapter->hw.mac.type >= e1000_pch2lan) && (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) { adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES; adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN; hw->mac.ops.blink_led = NULL; } if ((adapter->hw.mac.type == e1000_ich8lan) && (adapter->hw.phy.type != e1000_phy_ife)) adapter->flags |= FLAG_LSC_GIG_SPEED_DROP; /* Enable workaround for 82579 w/ ME enabled */ if ((adapter->hw.mac.type == e1000_pch2lan) && (er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA; return 0; } static DEFINE_MUTEX(nvm_mutex); /** * e1000_acquire_nvm_ich8lan - Acquire NVM mutex * @hw: pointer to the HW structure * * Acquires the mutex for performing NVM operations. **/ static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw) { mutex_lock(&nvm_mutex); return 0; } /** * e1000_release_nvm_ich8lan - Release NVM mutex * @hw: pointer to the HW structure * * Releases the mutex used while performing NVM operations. **/ static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw) { mutex_unlock(&nvm_mutex); } /** * e1000_acquire_swflag_ich8lan - Acquire software control flag * @hw: pointer to the HW structure * * Acquires the software control flag for performing PHY and select * MAC CSR accesses. **/ static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw) { u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT; s32 ret_val = 0; if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state)) { e_dbg("contention for Phy access\n"); return -E1000_ERR_PHY; } while (timeout) { extcnf_ctrl = er32(EXTCNF_CTRL); if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)) break; mdelay(1); timeout--; } if (!timeout) { e_dbg("SW has already locked the resource.\n"); ret_val = -E1000_ERR_CONFIG; goto out; } timeout = SW_FLAG_TIMEOUT; extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; ew32(EXTCNF_CTRL, extcnf_ctrl); while (timeout) { extcnf_ctrl = er32(EXTCNF_CTRL); if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) break; mdelay(1); timeout--; } if (!timeout) { e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n", er32(FWSM), extcnf_ctrl); extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; ew32(EXTCNF_CTRL, extcnf_ctrl); ret_val = -E1000_ERR_CONFIG; goto out; } out: if (ret_val) clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); return ret_val; } /** * e1000_release_swflag_ich8lan - Release software control flag * @hw: pointer to the HW structure * * Releases the software control flag for performing PHY and select * MAC CSR accesses. **/ static void e1000_release_swflag_ich8lan(struct e1000_hw *hw) { u32 extcnf_ctrl; extcnf_ctrl = er32(EXTCNF_CTRL); if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) { extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; ew32(EXTCNF_CTRL, extcnf_ctrl); } else { e_dbg("Semaphore unexpectedly released by sw/fw/hw\n"); } clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); } /** * e1000_check_mng_mode_ich8lan - Checks management mode * @hw: pointer to the HW structure * * This checks if the adapter has any manageability enabled. * This is a function pointer entry point only called by read/write * routines for the PHY and NVM parts. **/ static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw) { u32 fwsm; fwsm = er32(FWSM); return (fwsm & E1000_ICH_FWSM_FW_VALID) && ((fwsm & E1000_FWSM_MODE_MASK) == (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); } /** * e1000_check_mng_mode_pchlan - Checks management mode * @hw: pointer to the HW structure * * This checks if the adapter has iAMT enabled. * This is a function pointer entry point only called by read/write * routines for the PHY and NVM parts. **/ static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw) { u32 fwsm; fwsm = er32(FWSM); return (fwsm & E1000_ICH_FWSM_FW_VALID) && (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); } /** * e1000_rar_set_pch2lan - Set receive address register * @hw: pointer to the HW structure * @addr: pointer to the receive address * @index: receive address array register * * Sets the receive address array register at index to the address passed * in by addr. For 82579, RAR[0] is the base address register that is to * contain the MAC address but RAR[1-6] are reserved for manageability (ME). * Use SHRA[0-3] in place of those reserved for ME. **/ static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index) { u32 rar_low, rar_high; /* HW expects these in little endian so we reverse the byte order * from network order (big endian) to little endian */ rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) | ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); /* If MAC address zero, no need to set the AV bit */ if (rar_low || rar_high) rar_high |= E1000_RAH_AV; if (index == 0) { ew32(RAL(index), rar_low); e1e_flush(); ew32(RAH(index), rar_high); e1e_flush(); return 0; } /* RAR[1-6] are owned by manageability. Skip those and program the * next address into the SHRA register array. */ if (index < (u32)(hw->mac.rar_entry_count)) { s32 ret_val; ret_val = e1000_acquire_swflag_ich8lan(hw); if (ret_val) goto out; ew32(SHRAL(index - 1), rar_low); e1e_flush(); ew32(SHRAH(index - 1), rar_high); e1e_flush(); e1000_release_swflag_ich8lan(hw); /* verify the register updates */ if ((er32(SHRAL(index - 1)) == rar_low) && (er32(SHRAH(index - 1)) == rar_high)) return 0; e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n", (index - 1), er32(FWSM)); } out: e_dbg("Failed to write receive address at index %d\n", index); return -E1000_ERR_CONFIG; } /** * e1000_rar_get_count_pch_lpt - Get the number of available SHRA * @hw: pointer to the HW structure * * Get the number of available receive registers that the Host can * program. SHRA[0-10] are the shared receive address registers * that are shared between the Host and manageability engine (ME). * ME can reserve any number of addresses and the host needs to be * able to tell how many available registers it has access to. **/ static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw) { u32 wlock_mac; u32 num_entries; wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK; wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT; switch (wlock_mac) { case 0: /* All SHRA[0..10] and RAR[0] available */ num_entries = hw->mac.rar_entry_count; break; case 1: /* Only RAR[0] available */ num_entries = 1; break; default: /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */ num_entries = wlock_mac + 1; break; } return num_entries; } /** * e1000_rar_set_pch_lpt - Set receive address registers * @hw: pointer to the HW structure * @addr: pointer to the receive address * @index: receive address array register * * Sets the receive address register array at index to the address passed * in by addr. For LPT, RAR[0] is the base address register that is to * contain the MAC address. SHRA[0-10] are the shared receive address * registers that are shared between the Host and manageability engine (ME). **/ static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index) { u32 rar_low, rar_high; u32 wlock_mac; /* HW expects these in little endian so we reverse the byte order * from network order (big endian) to little endian */ rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) | ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); /* If MAC address zero, no need to set the AV bit */ if (rar_low || rar_high) rar_high |= E1000_RAH_AV; if (index == 0) { ew32(RAL(index), rar_low); e1e_flush(); ew32(RAH(index), rar_high); e1e_flush(); return 0; } /* The manageability engine (ME) can lock certain SHRAR registers that * it is using - those registers are unavailable for use. */ if (index < hw->mac.rar_entry_count) { wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK; wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT; /* Check if all SHRAR registers are locked */ if (wlock_mac == 1) goto out; if ((wlock_mac == 0) || (index <= wlock_mac)) { s32 ret_val; ret_val = e1000_acquire_swflag_ich8lan(hw); if (ret_val) goto out; ew32(SHRAL_PCH_LPT(index - 1), rar_low); e1e_flush(); ew32(SHRAH_PCH_LPT(index - 1), rar_high); e1e_flush(); e1000_release_swflag_ich8lan(hw); /* verify the register updates */ if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) && (er32(SHRAH_PCH_LPT(index - 1)) == rar_high)) return 0; } } out: e_dbg("Failed to write receive address at index %d\n", index); return -E1000_ERR_CONFIG; } /** * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked * @hw: pointer to the HW structure * * Checks if firmware is blocking the reset of the PHY. * This is a function pointer entry point only called by * reset routines. **/ static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw) { bool blocked = false; int i = 0; while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) && (i++ < 30)) usleep_range(10000, 11000); return blocked ? E1000_BLK_PHY_RESET : 0; } /** * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states * @hw: pointer to the HW structure * * Assumes semaphore already acquired. * **/ static s32 e1000_write_smbus_addr(struct e1000_hw *hw) { u16 phy_data; u32 strap = er32(STRAP); u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >> E1000_STRAP_SMT_FREQ_SHIFT; s32 ret_val; strap &= E1000_STRAP_SMBUS_ADDRESS_MASK; ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data); if (ret_val) return ret_val; phy_data &= ~HV_SMB_ADDR_MASK; phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT); phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID; if (hw->phy.type == e1000_phy_i217) { /* Restore SMBus frequency */ if (freq--) { phy_data &= ~HV_SMB_ADDR_FREQ_MASK; phy_data |= (freq & BIT(0)) << HV_SMB_ADDR_FREQ_LOW_SHIFT; phy_data |= (freq & BIT(1)) << (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1); } else { e_dbg("Unsupported SMB frequency in PHY\n"); } } return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data); } /** * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration * @hw: pointer to the HW structure * * SW should configure the LCD from the NVM extended configuration region * as a workaround for certain parts. **/ static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask; s32 ret_val = 0; u16 word_addr, reg_data, reg_addr, phy_page = 0; /* Initialize the PHY from the NVM on ICH platforms. This * is needed due to an issue where the NVM configuration is * not properly autoloaded after power transitions. * Therefore, after each PHY reset, we will load the * configuration data out of the NVM manually. */ switch (hw->mac.type) { case e1000_ich8lan: if (phy->type != e1000_phy_igp_3) return ret_val; if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) || (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) { sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG; break; } fallthrough; case e1000_pchlan: case e1000_pch2lan: case e1000_pch_lpt: case e1000_pch_spt: case e1000_pch_cnp: case e1000_pch_tgp: case e1000_pch_adp: sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M; break; default: return ret_val; } ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; data = er32(FEXTNVM); if (!(data & sw_cfg_mask)) goto release; /* Make sure HW does not configure LCD from PHY * extended configuration before SW configuration */ data = er32(EXTCNF_CTRL); if ((hw->mac.type < e1000_pch2lan) && (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)) goto release; cnf_size = er32(EXTCNF_SIZE); cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK; cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT; if (!cnf_size) goto release; cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK; cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT; if (((hw->mac.type == e1000_pchlan) && !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) || (hw->mac.type > e1000_pchlan)) { /* HW configures the SMBus address and LEDs when the * OEM and LCD Write Enable bits are set in the NVM. * When both NVM bits are cleared, SW will configure * them instead. */ ret_val = e1000_write_smbus_addr(hw); if (ret_val) goto release; data = er32(LEDCTL); ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG, (u16)data); if (ret_val) goto release; } /* Configure LCD from extended configuration region. */ /* cnf_base_addr is in DWORD */ word_addr = (u16)(cnf_base_addr << 1); for (i = 0; i < cnf_size; i++) { ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, ®_data); if (ret_val) goto release; ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1), 1, ®_addr); if (ret_val) goto release; /* Save off the PHY page for future writes. */ if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) { phy_page = reg_data; continue; } reg_addr &= PHY_REG_MASK; reg_addr |= phy_page; ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data); if (ret_val) goto release; } release: hw->phy.ops.release(hw); return ret_val; } /** * e1000_k1_gig_workaround_hv - K1 Si workaround * @hw: pointer to the HW structure * @link: link up bool flag * * If K1 is enabled for 1Gbps, the MAC might stall when transitioning * from a lower speed. This workaround disables K1 whenever link is at 1Gig * If link is down, the function will restore the default K1 setting located * in the NVM. **/ static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link) { s32 ret_val = 0; u16 status_reg = 0; bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled; if (hw->mac.type != e1000_pchlan) return 0; /* Wrap the whole flow with the sw flag */ ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */ if (link) { if (hw->phy.type == e1000_phy_82578) { ret_val = e1e_rphy_locked(hw, BM_CS_STATUS, &status_reg); if (ret_val) goto release; status_reg &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED | BM_CS_STATUS_SPEED_MASK); if (status_reg == (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED | BM_CS_STATUS_SPEED_1000)) k1_enable = false; } if (hw->phy.type == e1000_phy_82577) { ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg); if (ret_val) goto release; status_reg &= (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE | HV_M_STATUS_SPEED_MASK); if (status_reg == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE | HV_M_STATUS_SPEED_1000)) k1_enable = false; } /* Link stall fix for link up */ ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100); if (ret_val) goto release; } else { /* Link stall fix for link down */ ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100); if (ret_val) goto release; } ret_val = e1000_configure_k1_ich8lan(hw, k1_enable); release: hw->phy.ops.release(hw); return ret_val; } /** * e1000_configure_k1_ich8lan - Configure K1 power state * @hw: pointer to the HW structure * @enable: K1 state to configure * * Configure the K1 power state based on the provided parameter. * Assumes semaphore already acquired. * * Success returns 0, Failure returns -E1000_ERR_PHY (-2) **/ s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable) { s32 ret_val; u32 ctrl_reg = 0; u32 ctrl_ext = 0; u32 reg = 0; u16 kmrn_reg = 0; ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, &kmrn_reg); if (ret_val) return ret_val; if (k1_enable) kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE; else kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE; ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, kmrn_reg); if (ret_val) return ret_val; usleep_range(20, 40); ctrl_ext = er32(CTRL_EXT); ctrl_reg = er32(CTRL); reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); reg |= E1000_CTRL_FRCSPD; ew32(CTRL, reg); ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS); e1e_flush(); usleep_range(20, 40); ew32(CTRL, ctrl_reg); ew32(CTRL_EXT, ctrl_ext); e1e_flush(); usleep_range(20, 40); return 0; } /** * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration * @hw: pointer to the HW structure * @d0_state: boolean if entering d0 or d3 device state * * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are * collectively called OEM bits. The OEM Write Enable bit and SW Config bit * in NVM determines whether HW should configure LPLU and Gbe Disable. **/ static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state) { s32 ret_val = 0; u32 mac_reg; u16 oem_reg; if (hw->mac.type < e1000_pchlan) return ret_val; ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; if (hw->mac.type == e1000_pchlan) { mac_reg = er32(EXTCNF_CTRL); if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) goto release; } mac_reg = er32(FEXTNVM); if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M)) goto release; mac_reg = er32(PHY_CTRL); ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg); if (ret_val) goto release; oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU); if (d0_state) { if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE) oem_reg |= HV_OEM_BITS_GBE_DIS; if (mac_reg & E1000_PHY_CTRL_D0A_LPLU) oem_reg |= HV_OEM_BITS_LPLU; } else { if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE | E1000_PHY_CTRL_NOND0A_GBE_DISABLE)) oem_reg |= HV_OEM_BITS_GBE_DIS; if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU | E1000_PHY_CTRL_NOND0A_LPLU)) oem_reg |= HV_OEM_BITS_LPLU; } /* Set Restart auto-neg to activate the bits */ if ((d0_state || (hw->mac.type != e1000_pchlan)) && !hw->phy.ops.check_reset_block(hw)) oem_reg |= HV_OEM_BITS_RESTART_AN; ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg); release: hw->phy.ops.release(hw); return ret_val; } /** * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode * @hw: pointer to the HW structure **/ static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw) { s32 ret_val; u16 data; ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data); if (ret_val) return ret_val; data |= HV_KMRN_MDIO_SLOW; ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data); return ret_val; } /** * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be * done after every PHY reset. **/ static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw) { s32 ret_val = 0; u16 phy_data; if (hw->mac.type != e1000_pchlan) return 0; /* Set MDIO slow mode before any other MDIO access */ if (hw->phy.type == e1000_phy_82577) { ret_val = e1000_set_mdio_slow_mode_hv(hw); if (ret_val) return ret_val; } if (((hw->phy.type == e1000_phy_82577) && ((hw->phy.revision == 1) || (hw->phy.revision == 2))) || ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) { /* Disable generation of early preamble */ ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431); if (ret_val) return ret_val; /* Preamble tuning for SSC */ ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204); if (ret_val) return ret_val; } if (hw->phy.type == e1000_phy_82578) { /* Return registers to default by doing a soft reset then * writing 0x3140 to the control register. */ if (hw->phy.revision < 2) { e1000e_phy_sw_reset(hw); ret_val = e1e_wphy(hw, MII_BMCR, 0x3140); if (ret_val) return ret_val; } } /* Select page 0 */ ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; hw->phy.addr = 1; ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0); hw->phy.ops.release(hw); if (ret_val) return ret_val; /* Configure the K1 Si workaround during phy reset assuming there is * link so that it disables K1 if link is in 1Gbps. */ ret_val = e1000_k1_gig_workaround_hv(hw, true); if (ret_val) return ret_val; /* Workaround for link disconnects on a busy hub in half duplex */ ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data); if (ret_val) goto release; ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF); if (ret_val) goto release; /* set MSE higher to enable link to stay up when noise is high */ ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034); release: hw->phy.ops.release(hw); return ret_val; } /** * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY * @hw: pointer to the HW structure **/ void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw) { u32 mac_reg; u16 i, phy_reg = 0; s32 ret_val; ret_val = hw->phy.ops.acquire(hw); if (ret_val) return; ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); if (ret_val) goto release; /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */ for (i = 0; i < (hw->mac.rar_entry_count); i++) { mac_reg = er32(RAL(i)); hw->phy.ops.write_reg_page(hw, BM_RAR_L(i), (u16)(mac_reg & 0xFFFF)); hw->phy.ops.write_reg_page(hw, BM_RAR_M(i), (u16)((mac_reg >> 16) & 0xFFFF)); mac_reg = er32(RAH(i)); hw->phy.ops.write_reg_page(hw, BM_RAR_H(i), (u16)(mac_reg & 0xFFFF)); hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i), (u16)((mac_reg & E1000_RAH_AV) >> 16)); } e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); release: hw->phy.ops.release(hw); } /** * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation * with 82579 PHY * @hw: pointer to the HW structure * @enable: flag to enable/disable workaround when enabling/disabling jumbos **/ s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable) { s32 ret_val = 0; u16 phy_reg, data; u32 mac_reg; u16 i; if (hw->mac.type < e1000_pch2lan) return 0; /* disable Rx path while enabling/disabling workaround */ e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14)); if (ret_val) return ret_val; if (enable) { /* Write Rx addresses (rar_entry_count for RAL/H, and * SHRAL/H) and initial CRC values to the MAC */ for (i = 0; i < hw->mac.rar_entry_count; i++) { u8 mac_addr[ETH_ALEN] = { 0 }; u32 addr_high, addr_low; addr_high = er32(RAH(i)); if (!(addr_high & E1000_RAH_AV)) continue; addr_low = er32(RAL(i)); mac_addr[0] = (addr_low & 0xFF); mac_addr[1] = ((addr_low >> 8) & 0xFF); mac_addr[2] = ((addr_low >> 16) & 0xFF); mac_addr[3] = ((addr_low >> 24) & 0xFF); mac_addr[4] = (addr_high & 0xFF); mac_addr[5] = ((addr_high >> 8) & 0xFF); ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr)); } /* Write Rx addresses to the PHY */ e1000_copy_rx_addrs_to_phy_ich8lan(hw); /* Enable jumbo frame workaround in the MAC */ mac_reg = er32(FFLT_DBG); mac_reg &= ~BIT(14); mac_reg |= (7 << 15); ew32(FFLT_DBG, mac_reg); mac_reg = er32(RCTL); mac_reg |= E1000_RCTL_SECRC; ew32(RCTL, mac_reg); ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_CTRL_OFFSET, &data); if (ret_val) return ret_val; ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_CTRL_OFFSET, data | BIT(0)); if (ret_val) return ret_val; ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_HD_CTRL, &data); if (ret_val) return ret_val; data &= ~(0xF << 8); data |= (0xB << 8); ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_HD_CTRL, data); if (ret_val) return ret_val; /* Enable jumbo frame workaround in the PHY */ e1e_rphy(hw, PHY_REG(769, 23), &data); data &= ~(0x7F << 5); data |= (0x37 << 5); ret_val = e1e_wphy(hw, PHY_REG(769, 23), data); if (ret_val) return ret_val; e1e_rphy(hw, PHY_REG(769, 16), &data); data &= ~BIT(13); ret_val = e1e_wphy(hw, PHY_REG(769, 16), data); if (ret_val) return ret_val; e1e_rphy(hw, PHY_REG(776, 20), &data); data &= ~(0x3FF << 2); data |= (E1000_TX_PTR_GAP << 2); ret_val = e1e_wphy(hw, PHY_REG(776, 20), data); if (ret_val) return ret_val; ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100); if (ret_val) return ret_val; e1e_rphy(hw, HV_PM_CTRL, &data); ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10)); if (ret_val) return ret_val; } else { /* Write MAC register values back to h/w defaults */ mac_reg = er32(FFLT_DBG); mac_reg &= ~(0xF << 14); ew32(FFLT_DBG, mac_reg); mac_reg = er32(RCTL); mac_reg &= ~E1000_RCTL_SECRC; ew32(RCTL, mac_reg); ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_CTRL_OFFSET, &data); if (ret_val) return ret_val; ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_CTRL_OFFSET, data & ~BIT(0)); if (ret_val) return ret_val; ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_HD_CTRL, &data); if (ret_val) return ret_val; data &= ~(0xF << 8); data |= (0xB << 8); ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_HD_CTRL, data); if (ret_val) return ret_val; /* Write PHY register values back to h/w defaults */ e1e_rphy(hw, PHY_REG(769, 23), &data); data &= ~(0x7F << 5); ret_val = e1e_wphy(hw, PHY_REG(769, 23), data); if (ret_val) return ret_val; e1e_rphy(hw, PHY_REG(769, 16), &data); data |= BIT(13); ret_val = e1e_wphy(hw, PHY_REG(769, 16), data); if (ret_val) return ret_val; e1e_rphy(hw, PHY_REG(776, 20), &data); data &= ~(0x3FF << 2); data |= (0x8 << 2); ret_val = e1e_wphy(hw, PHY_REG(776, 20), data); if (ret_val) return ret_val; ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00); if (ret_val) return ret_val; e1e_rphy(hw, HV_PM_CTRL, &data); ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10)); if (ret_val) return ret_val; } /* re-enable Rx path after enabling/disabling workaround */ return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14)); } /** * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be * done after every PHY reset. **/ static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw) { s32 ret_val = 0; if (hw->mac.type != e1000_pch2lan) return 0; /* Set MDIO slow mode before any other MDIO access */ ret_val = e1000_set_mdio_slow_mode_hv(hw); if (ret_val) return ret_val; ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; /* set MSE higher to enable link to stay up when noise is high */ ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034); if (ret_val) goto release; /* drop link after 5 times MSE threshold was reached */ ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005); release: hw->phy.ops.release(hw); return ret_val; } /** * e1000_k1_gig_workaround_lv - K1 Si workaround * @hw: pointer to the HW structure * * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps * Disable K1 in 1000Mbps and 100Mbps **/ static s32 e1000_k1_workaround_lv(struct e1000_hw *hw) { s32 ret_val = 0; u16 status_reg = 0; if (hw->mac.type != e1000_pch2lan) return 0; /* Set K1 beacon duration based on 10Mbs speed */ ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg); if (ret_val) return ret_val; if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) { if (status_reg & (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) { u16 pm_phy_reg; /* LV 1G/100 Packet drop issue wa */ ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg); if (ret_val) return ret_val; pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE; ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg); if (ret_val) return ret_val; } else { u32 mac_reg; mac_reg = er32(FEXTNVM4); mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC; ew32(FEXTNVM4, mac_reg); } } return ret_val; } /** * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware * @hw: pointer to the HW structure * @gate: boolean set to true to gate, false to ungate * * Gate/ungate the automatic PHY configuration via hardware; perform * the configuration via software instead. **/ static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate) { u32 extcnf_ctrl; if (hw->mac.type < e1000_pch2lan) return; extcnf_ctrl = er32(EXTCNF_CTRL); if (gate) extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG; else extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG; ew32(EXTCNF_CTRL, extcnf_ctrl); } /** * e1000_lan_init_done_ich8lan - Check for PHY config completion * @hw: pointer to the HW structure * * Check the appropriate indication the MAC has finished configuring the * PHY after a software reset. **/ static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw) { u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT; /* Wait for basic configuration completes before proceeding */ do { data = er32(STATUS); data &= E1000_STATUS_LAN_INIT_DONE; usleep_range(100, 200); } while ((!data) && --loop); /* If basic configuration is incomplete before the above loop * count reaches 0, loading the configuration from NVM will * leave the PHY in a bad state possibly resulting in no link. */ if (loop == 0) e_dbg("LAN_INIT_DONE not set, increase timeout\n"); /* Clear the Init Done bit for the next init event */ data = er32(STATUS); data &= ~E1000_STATUS_LAN_INIT_DONE; ew32(STATUS, data); } /** * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset * @hw: pointer to the HW structure **/ static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw) { s32 ret_val = 0; u16 reg; if (hw->phy.ops.check_reset_block(hw)) return 0; /* Allow time for h/w to get to quiescent state after reset */ usleep_range(10000, 11000); /* Perform any necessary post-reset workarounds */ switch (hw->mac.type) { case e1000_pchlan: ret_val = e1000_hv_phy_workarounds_ich8lan(hw); if (ret_val) return ret_val; break; case e1000_pch2lan: ret_val = e1000_lv_phy_workarounds_ich8lan(hw); if (ret_val) return ret_val; break; default: break; } /* Clear the host wakeup bit after lcd reset */ if (hw->mac.type >= e1000_pchlan) { e1e_rphy(hw, BM_PORT_GEN_CFG, ®); reg &= ~BM_WUC_HOST_WU_BIT; e1e_wphy(hw, BM_PORT_GEN_CFG, reg); } /* Configure the LCD with the extended configuration region in NVM */ ret_val = e1000_sw_lcd_config_ich8lan(hw); if (ret_val) return ret_val; /* Configure the LCD with the OEM bits in NVM */ ret_val = e1000_oem_bits_config_ich8lan(hw, true); if (hw->mac.type == e1000_pch2lan) { /* Ungate automatic PHY configuration on non-managed 82579 */ if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { usleep_range(10000, 11000); e1000_gate_hw_phy_config_ich8lan(hw, false); } /* Set EEE LPI Update Timer to 200usec */ ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_UPDATE_TIMER, 0x1387); hw->phy.ops.release(hw); } return ret_val; } /** * e1000_phy_hw_reset_ich8lan - Performs a PHY reset * @hw: pointer to the HW structure * * Resets the PHY * This is a function pointer entry point called by drivers * or other shared routines. **/ static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw) { s32 ret_val = 0; /* Gate automatic PHY configuration by hardware on non-managed 82579 */ if ((hw->mac.type == e1000_pch2lan) && !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) e1000_gate_hw_phy_config_ich8lan(hw, true); ret_val = e1000e_phy_hw_reset_generic(hw); if (ret_val) return ret_val; return e1000_post_phy_reset_ich8lan(hw); } /** * e1000_set_lplu_state_pchlan - Set Low Power Link Up state * @hw: pointer to the HW structure * @active: true to enable LPLU, false to disable * * Sets the LPLU state according to the active flag. For PCH, if OEM write * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set * the phy speed. This function will manually set the LPLU bit and restart * auto-neg as hw would do. D3 and D0 LPLU will call the same function * since it configures the same bit. **/ static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active) { s32 ret_val; u16 oem_reg; ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg); if (ret_val) return ret_val; if (active) oem_reg |= HV_OEM_BITS_LPLU; else oem_reg &= ~HV_OEM_BITS_LPLU; if (!hw->phy.ops.check_reset_block(hw)) oem_reg |= HV_OEM_BITS_RESTART_AN; return e1e_wphy(hw, HV_OEM_BITS, oem_reg); } /** * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state * @hw: pointer to the HW structure * @active: true to enable LPLU, false to disable * * Sets the LPLU D0 state according to the active flag. When * activating LPLU this function also disables smart speed * and vice versa. LPLU will not be activated unless the * device autonegotiation advertisement meets standards of * either 10 or 10/100 or 10/100/1000 at all duplexes. * This is a function pointer entry point only called by * PHY setup routines. **/ static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active) { struct e1000_phy_info *phy = &hw->phy; u32 phy_ctrl; s32 ret_val = 0; u16 data; if (phy->type == e1000_phy_ife) return 0; phy_ctrl = er32(PHY_CTRL); if (active) { phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; ew32(PHY_CTRL, phy_ctrl); if (phy->type != e1000_phy_igp_3) return 0; /* Call gig speed drop workaround on LPLU before accessing * any PHY registers */ if (hw->mac.type == e1000_ich8lan) e1000e_gig_downshift_workaround_ich8lan(hw); /* When LPLU is enabled, we should disable SmartSpeed */ ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) return ret_val; data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); if (ret_val) return ret_val; } else { phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; ew32(PHY_CTRL, phy_ctrl); if (phy->type != e1000_phy_igp_3) return 0; /* LPLU and SmartSpeed are mutually exclusive. LPLU is used * during Dx states where the power conservation is most * important. During driver activity we should enable * SmartSpeed, so performance is maintained. */ if (phy->smart_speed == e1000_smart_speed_on) { ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) return ret_val; data |= IGP01E1000_PSCFR_SMART_SPEED; ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); if (ret_val) return ret_val; } else if (phy->smart_speed == e1000_smart_speed_off) { ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) return ret_val; data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); if (ret_val) return ret_val; } } return 0; } /** * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state * @hw: pointer to the HW structure * @active: true to enable LPLU, false to disable * * Sets the LPLU D3 state according to the active flag. When * activating LPLU this function also disables smart speed * and vice versa. LPLU will not be activated unless the * device autonegotiation advertisement meets standards of * either 10 or 10/100 or 10/100/1000 at all duplexes. * This is a function pointer entry point only called by * PHY setup routines. **/ static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active) { struct e1000_phy_info *phy = &hw->phy; u32 phy_ctrl; s32 ret_val = 0; u16 data; phy_ctrl = er32(PHY_CTRL); if (!active) { phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; ew32(PHY_CTRL, phy_ctrl); if (phy->type != e1000_phy_igp_3) return 0; /* LPLU and SmartSpeed are mutually exclusive. LPLU is used * during Dx states where the power conservation is most * important. During driver activity we should enable * SmartSpeed, so performance is maintained. */ if (phy->smart_speed == e1000_smart_speed_on) { ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) return ret_val; data |= IGP01E1000_PSCFR_SMART_SPEED; ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); if (ret_val) return ret_val; } else if (phy->smart_speed == e1000_smart_speed_off) { ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) return ret_val; data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); if (ret_val) return ret_val; } } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; ew32(PHY_CTRL, phy_ctrl); if (phy->type != e1000_phy_igp_3) return 0; /* Call gig speed drop workaround on LPLU before accessing * any PHY registers */ if (hw->mac.type == e1000_ich8lan) e1000e_gig_downshift_workaround_ich8lan(hw); /* When LPLU is enabled, we should disable SmartSpeed */ ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) return ret_val; data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); } return ret_val; } /** * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1 * @hw: pointer to the HW structure * @bank: pointer to the variable that returns the active bank * * Reads signature byte from the NVM using the flash access registers. * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank. **/ static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank) { u32 eecd; struct e1000_nvm_info *nvm = &hw->nvm; u32 bank1_offset = nvm->flash_bank_size * sizeof(u16); u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1; u32 nvm_dword = 0; u8 sig_byte = 0; s32 ret_val; switch (hw->mac.type) { case e1000_pch_spt: case e1000_pch_cnp: case e1000_pch_tgp: case e1000_pch_adp: bank1_offset = nvm->flash_bank_size; act_offset = E1000_ICH_NVM_SIG_WORD; /* set bank to 0 in case flash read fails */ *bank = 0; /* Check bank 0 */ ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &nvm_dword); if (ret_val) return ret_val; sig_byte = (u8)((nvm_dword & 0xFF00) >> 8); if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == E1000_ICH_NVM_SIG_VALUE) { *bank = 0; return 0; } /* Check bank 1 */ ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset + bank1_offset, &nvm_dword); if (ret_val) return ret_val; sig_byte = (u8)((nvm_dword & 0xFF00) >> 8); if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == E1000_ICH_NVM_SIG_VALUE) { *bank = 1; return 0; } e_dbg("ERROR: No valid NVM bank present\n"); return -E1000_ERR_NVM; case e1000_ich8lan: case e1000_ich9lan: eecd = er32(EECD); if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) == E1000_EECD_SEC1VAL_VALID_MASK) { if (eecd & E1000_EECD_SEC1VAL) *bank = 1; else *bank = 0; return 0; } e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n"); fallthrough; default: /* set bank to 0 in case flash read fails */ *bank = 0; /* Check bank 0 */ ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset, &sig_byte); if (ret_val) return ret_val; if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == E1000_ICH_NVM_SIG_VALUE) { *bank = 0; return 0; } /* Check bank 1 */ ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset + bank1_offset, &sig_byte); if (ret_val) return ret_val; if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == E1000_ICH_NVM_SIG_VALUE) { *bank = 1; return 0; } e_dbg("ERROR: No valid NVM bank present\n"); return -E1000_ERR_NVM; } } /** * e1000_read_nvm_spt - NVM access for SPT * @hw: pointer to the HW structure * @offset: The offset (in bytes) of the word(s) to read. * @words: Size of data to read in words. * @data: pointer to the word(s) to read at offset. * * Reads a word(s) from the NVM **/ static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { struct e1000_nvm_info *nvm = &hw->nvm; struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; u32 act_offset; s32 ret_val = 0; u32 bank = 0; u32 dword = 0; u16 offset_to_read; u16 i; if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || (words == 0)) { e_dbg("nvm parameter(s) out of bounds\n"); ret_val = -E1000_ERR_NVM; goto out; } nvm->ops.acquire(hw); ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); if (ret_val) { e_dbg("Could not detect valid bank, assuming bank 0\n"); bank = 0; } act_offset = (bank) ? nvm->flash_bank_size : 0; act_offset += offset; ret_val = 0; for (i = 0; i < words; i += 2) { if (words - i == 1) { if (dev_spec->shadow_ram[offset + i].modified) { data[i] = dev_spec->shadow_ram[offset + i].value; } else { offset_to_read = act_offset + i - ((act_offset + i) % 2); ret_val = e1000_read_flash_dword_ich8lan(hw, offset_to_read, &dword); if (ret_val) break; if ((act_offset + i) % 2 == 0) data[i] = (u16)(dword & 0xFFFF); else data[i] = (u16)((dword >> 16) & 0xFFFF); } } else { offset_to_read = act_offset + i; if (!(dev_spec->shadow_ram[offset + i].modified) || !(dev_spec->shadow_ram[offset + i + 1].modified)) { ret_val = e1000_read_flash_dword_ich8lan(hw, offset_to_read, &dword); if (ret_val) break; } if (dev_spec->shadow_ram[offset + i].modified) data[i] = dev_spec->shadow_ram[offset + i].value; else data[i] = (u16)(dword & 0xFFFF); if (dev_spec->shadow_ram[offset + i].modified) data[i + 1] = dev_spec->shadow_ram[offset + i + 1].value; else data[i + 1] = (u16)(dword >> 16 & 0xFFFF); } } nvm->ops.release(hw); out: if (ret_val) e_dbg("NVM read error: %d\n", ret_val); return ret_val; } /** * e1000_read_nvm_ich8lan - Read word(s) from the NVM * @hw: pointer to the HW structure * @offset: The offset (in bytes) of the word(s) to read. * @words: Size of data to read in words * @data: Pointer to the word(s) to read at offset. * * Reads a word(s) from the NVM using the flash access registers. **/ static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { struct e1000_nvm_info *nvm = &hw->nvm; struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; u32 act_offset; s32 ret_val = 0; u32 bank = 0; u16 i, word; if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || (words == 0)) { e_dbg("nvm parameter(s) out of bounds\n"); ret_val = -E1000_ERR_NVM; goto out; } nvm->ops.acquire(hw); ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); if (ret_val) { e_dbg("Could not detect valid bank, assuming bank 0\n"); bank = 0; } act_offset = (bank) ? nvm->flash_bank_size : 0; act_offset += offset; ret_val = 0; for (i = 0; i < words; i++) { if (dev_spec->shadow_ram[offset + i].modified) { data[i] = dev_spec->shadow_ram[offset + i].value; } else { ret_val = e1000_read_flash_word_ich8lan(hw, act_offset + i, &word); if (ret_val) break; data[i] = word; } } nvm->ops.release(hw); out: if (ret_val) e_dbg("NVM read error: %d\n", ret_val); return ret_val; } /** * e1000_flash_cycle_init_ich8lan - Initialize flash * @hw: pointer to the HW structure * * This function does initial flash setup so that a new read/write/erase cycle * can be started. **/ static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw) { union ich8_hws_flash_status hsfsts; s32 ret_val = -E1000_ERR_NVM; hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); /* Check if the flash descriptor is valid */ if (!hsfsts.hsf_status.fldesvalid) { e_dbg("Flash descriptor invalid. SW Sequencing must be used.\n"); return -E1000_ERR_NVM; } /* Clear FCERR and DAEL in hw status by writing 1 */ hsfsts.hsf_status.flcerr = 1; hsfsts.hsf_status.dael = 1; if (hw->mac.type >= e1000_pch_spt) ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF); else ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); /* Either we should have a hardware SPI cycle in progress * bit to check against, in order to start a new cycle or * FDONE bit should be changed in the hardware so that it * is 1 after hardware reset, which can then be used as an * indication whether a cycle is in progress or has been * completed. */ if (!hsfsts.hsf_status.flcinprog) { /* There is no cycle running at present, * so we can start a cycle. * Begin by setting Flash Cycle Done. */ hsfsts.hsf_status.flcdone = 1; if (hw->mac.type >= e1000_pch_spt) ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF); else ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); ret_val = 0; } else { s32 i; /* Otherwise poll for sometime so the current * cycle has a chance to end before giving up. */ for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) { hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); if (!hsfsts.hsf_status.flcinprog) { ret_val = 0; break; } udelay(1); } if (!ret_val) { /* Successful in waiting for previous cycle to timeout, * now set the Flash Cycle Done. */ hsfsts.hsf_status.flcdone = 1; if (hw->mac.type >= e1000_pch_spt) ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF); else ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); } else { e_dbg("Flash controller busy, cannot get access\n"); } } return ret_val; } /** * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase) * @hw: pointer to the HW structure * @timeout: maximum time to wait for completion * * This function starts a flash cycle and waits for its completion. **/ static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout) { union ich8_hws_flash_ctrl hsflctl; union ich8_hws_flash_status hsfsts; u32 i = 0; /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ if (hw->mac.type >= e1000_pch_spt) hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16; else hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); hsflctl.hsf_ctrl.flcgo = 1; if (hw->mac.type >= e1000_pch_spt) ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16); else ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); /* wait till FDONE bit is set to 1 */ do { hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); if (hsfsts.hsf_status.flcdone) break; udelay(1); } while (i++ < timeout); if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr) return 0; return -E1000_ERR_NVM; } /** * e1000_read_flash_dword_ich8lan - Read dword from flash * @hw: pointer to the HW structure * @offset: offset to data location * @data: pointer to the location for storing the data * * Reads the flash dword at offset into data. Offset is converted * to bytes before read. **/ static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset, u32 *data) { /* Must convert word offset into bytes. */ offset <<= 1; return e1000_read_flash_data32_ich8lan(hw, offset, data); } /** * e1000_read_flash_word_ich8lan - Read word from flash * @hw: pointer to the HW structure * @offset: offset to data location * @data: pointer to the location for storing the data * * Reads the flash word at offset into data. Offset is converted * to bytes before read. **/ static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, u16 *data) { /* Must convert offset into bytes. */ offset <<= 1; return e1000_read_flash_data_ich8lan(hw, offset, 2, data); } /** * e1000_read_flash_byte_ich8lan - Read byte from flash * @hw: pointer to the HW structure * @offset: The offset of the byte to read. * @data: Pointer to a byte to store the value read. * * Reads a single byte from the NVM using the flash access registers. **/ static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, u8 *data) { s32 ret_val; u16 word = 0; /* In SPT, only 32 bits access is supported, * so this function should not be called. */ if (hw->mac.type >= e1000_pch_spt) return -E1000_ERR_NVM; else ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word); if (ret_val) return ret_val; *data = (u8)word; return 0; } /** * e1000_read_flash_data_ich8lan - Read byte or word from NVM * @hw: pointer to the HW structure * @offset: The offset (in bytes) of the byte or word to read. * @size: Size of data to read, 1=byte 2=word * @data: Pointer to the word to store the value read. * * Reads a byte or word from the NVM using the flash access registers. **/ static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, u8 size, u16 *data) { union ich8_hws_flash_status hsfsts; union ich8_hws_flash_ctrl hsflctl; u32 flash_linear_addr; u32 flash_data = 0; s32 ret_val = -E1000_ERR_NVM; u8 count = 0; if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) return -E1000_ERR_NVM; flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + hw->nvm.flash_base_addr); do { udelay(1); /* Steps */ ret_val = e1000_flash_cycle_init_ich8lan(hw); if (ret_val) break; hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ hsflctl.hsf_ctrl.fldbcount = size - 1; hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); ew32flash(ICH_FLASH_FADDR, flash_linear_addr); ret_val = e1000_flash_cycle_ich8lan(hw, ICH_FLASH_READ_COMMAND_TIMEOUT); /* Check if FCERR is set to 1, if set to 1, clear it * and try the whole sequence a few more times, else * read in (shift in) the Flash Data0, the order is * least significant byte first msb to lsb */ if (!ret_val) { flash_data = er32flash(ICH_FLASH_FDATA0); if (size == 1) *data = (u8)(flash_data & 0x000000FF); else if (size == 2) *data = (u16)(flash_data & 0x0000FFFF); break; } else { /* If we've gotten here, then things are probably * completely hosed, but if the error condition is * detected, it won't hurt to give it another try... * ICH_FLASH_CYCLE_REPEAT_COUNT times. */ hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); if (hsfsts.hsf_status.flcerr) { /* Repeat for some time before giving up. */ continue; } else if (!hsfsts.hsf_status.flcdone) { e_dbg("Timeout error - flash cycle did not complete.\n"); break; } } } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); return ret_val; } /** * e1000_read_flash_data32_ich8lan - Read dword from NVM * @hw: pointer to the HW structure * @offset: The offset (in bytes) of the dword to read. * @data: Pointer to the dword to store the value read. * * Reads a byte or word from the NVM using the flash access registers. **/ static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, u32 *data) { union ich8_hws_flash_status hsfsts; union ich8_hws_flash_ctrl hsflctl; u32 flash_linear_addr; s32 ret_val = -E1000_ERR_NVM; u8 count = 0; if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt) return -E1000_ERR_NVM; flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + hw->nvm.flash_base_addr); do { udelay(1); /* Steps */ ret_val = e1000_flash_cycle_init_ich8lan(hw); if (ret_val) break; /* In SPT, This register is in Lan memory space, not flash. * Therefore, only 32 bit access is supported */ hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16; /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1; hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; /* In SPT, This register is in Lan memory space, not flash. * Therefore, only 32 bit access is supported */ ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16); ew32flash(ICH_FLASH_FADDR, flash_linear_addr); ret_val = e1000_flash_cycle_ich8lan(hw, ICH_FLASH_READ_COMMAND_TIMEOUT); /* Check if FCERR is set to 1, if set to 1, clear it * and try the whole sequence a few more times, else * read in (shift in) the Flash Data0, the order is * least significant byte first msb to lsb */ if (!ret_val) { *data = er32flash(ICH_FLASH_FDATA0); break; } else { /* If we've gotten here, then things are probably * completely hosed, but if the error condition is * detected, it won't hurt to give it another try... * ICH_FLASH_CYCLE_REPEAT_COUNT times. */ hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); if (hsfsts.hsf_status.flcerr) { /* Repeat for some time before giving up. */ continue; } else if (!hsfsts.hsf_status.flcdone) { e_dbg("Timeout error - flash cycle did not complete.\n"); break; } } } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); return ret_val; } /** * e1000_write_nvm_ich8lan - Write word(s) to the NVM * @hw: pointer to the HW structure * @offset: The offset (in bytes) of the word(s) to write. * @words: Size of data to write in words * @data: Pointer to the word(s) to write at offset. * * Writes a byte or word to the NVM using the flash access registers. **/ static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { struct e1000_nvm_info *nvm = &hw->nvm; struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; u16 i; if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || (words == 0)) { e_dbg("nvm parameter(s) out of bounds\n"); return -E1000_ERR_NVM; } nvm->ops.acquire(hw); for (i = 0; i < words; i++) { dev_spec->shadow_ram[offset + i].modified = true; dev_spec->shadow_ram[offset + i].value = data[i]; } nvm->ops.release(hw); return 0; } /** * e1000_update_nvm_checksum_spt - Update the checksum for NVM * @hw: pointer to the HW structure * * The NVM checksum is updated by calling the generic update_nvm_checksum, * which writes the checksum to the shadow ram. The changes in the shadow * ram are then committed to the EEPROM by processing each bank at a time * checking for the modified bit and writing only the pending changes. * After a successful commit, the shadow ram is cleared and is ready for * future writes. **/ static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw) { struct e1000_nvm_info *nvm = &hw->nvm; struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; u32 i, act_offset, new_bank_offset, old_bank_offset, bank; s32 ret_val; u32 dword = 0; ret_val = e1000e_update_nvm_checksum_generic(hw); if (ret_val) goto out; if (nvm->type != e1000_nvm_flash_sw) goto out; nvm->ops.acquire(hw); /* We're writing to the opposite bank so if we're on bank 1, * write to bank 0 etc. We also need to erase the segment that * is going to be written */ ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); if (ret_val) { e_dbg("Could not detect valid bank, assuming bank 0\n"); bank = 0; } if (bank == 0) { new_bank_offset = nvm->flash_bank_size; old_bank_offset = 0; ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); if (ret_val) goto release; } else { old_bank_offset = nvm->flash_bank_size; new_bank_offset = 0; ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); if (ret_val) goto release; } for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) { /* Determine whether to write the value stored * in the other NVM bank or a modified value stored * in the shadow RAM */ ret_val = e1000_read_flash_dword_ich8lan(hw, i + old_bank_offset, &dword); if (dev_spec->shadow_ram[i].modified) { dword &= 0xffff0000; dword |= (dev_spec->shadow_ram[i].value & 0xffff); } if (dev_spec->shadow_ram[i + 1].modified) { dword &= 0x0000ffff; dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff) << 16); } if (ret_val) break; /* If the word is 0x13, then make sure the signature bits * (15:14) are 11b until the commit has completed. * This will allow us to write 10b which indicates the * signature is valid. We want to do this after the write * has completed so that we don't mark the segment valid * while the write is still in progress */ if (i == E1000_ICH_NVM_SIG_WORD - 1) dword |= E1000_ICH_NVM_SIG_MASK << 16; /* Convert offset to bytes. */ act_offset = (i + new_bank_offset) << 1; usleep_range(100, 200); /* Write the data to the new bank. Offset in words */ act_offset = i + new_bank_offset; ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword); if (ret_val) break; } /* Don't bother writing the segment valid bits if sector * programming failed. */ if (ret_val) { /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */ e_dbg("Flash commit failed.\n"); goto release; } /* Finally validate the new segment by setting bit 15:14 * to 10b in word 0x13 , this can be done without an * erase as well since these bits are 11 to start with * and we need to change bit 14 to 0b */ act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; /*offset in words but we read dword */ --act_offset; ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword); if (ret_val) goto release; dword &= 0xBFFFFFFF; ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword); if (ret_val) goto release; /* And invalidate the previously valid segment by setting * its signature word (0x13) high_byte to 0b. This can be * done without an erase because flash erase sets all bits * to 1's. We can write 1's to 0's without an erase */ act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; /* offset in words but we read dword */ act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1; ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword); if (ret_val) goto release; dword &= 0x00FFFFFF; ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword); if (ret_val) goto release; /* Great! Everything worked, we can now clear the cached entries. */ for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { dev_spec->shadow_ram[i].modified = false; dev_spec->shadow_ram[i].value = 0xFFFF; } release: nvm->ops.release(hw); /* Reload the EEPROM, or else modifications will not appear * until after the next adapter reset. */ if (!ret_val) { nvm->ops.reload(hw); usleep_range(10000, 11000); } out: if (ret_val) e_dbg("NVM update error: %d\n", ret_val); return ret_val; } /** * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM * @hw: pointer to the HW structure * * The NVM checksum is updated by calling the generic update_nvm_checksum, * which writes the checksum to the shadow ram. The changes in the shadow * ram are then committed to the EEPROM by processing each bank at a time * checking for the modified bit and writing only the pending changes. * After a successful commit, the shadow ram is cleared and is ready for * future writes. **/ static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw) { struct e1000_nvm_info *nvm = &hw->nvm; struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; u32 i, act_offset, new_bank_offset, old_bank_offset, bank; s32 ret_val; u16 data = 0; ret_val = e1000e_update_nvm_checksum_generic(hw); if (ret_val) goto out; if (nvm->type != e1000_nvm_flash_sw) goto out; nvm->ops.acquire(hw); /* We're writing to the opposite bank so if we're on bank 1, * write to bank 0 etc. We also need to erase the segment that * is going to be written */ ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); if (ret_val) { e_dbg("Could not detect valid bank, assuming bank 0\n"); bank = 0; } if (bank == 0) { new_bank_offset = nvm->flash_bank_size; old_bank_offset = 0; ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); if (ret_val) goto release; } else { old_bank_offset = nvm->flash_bank_size; new_bank_offset = 0; ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); if (ret_val) goto release; } for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { if (dev_spec->shadow_ram[i].modified) { data = dev_spec->shadow_ram[i].value; } else { ret_val = e1000_read_flash_word_ich8lan(hw, i + old_bank_offset, &data); if (ret_val) break; } /* If the word is 0x13, then make sure the signature bits * (15:14) are 11b until the commit has completed. * This will allow us to write 10b which indicates the * signature is valid. We want to do this after the write * has completed so that we don't mark the segment valid * while the write is still in progress */ if (i == E1000_ICH_NVM_SIG_WORD) data |= E1000_ICH_NVM_SIG_MASK; /* Convert offset to bytes. */ act_offset = (i + new_bank_offset) << 1; usleep_range(100, 200); /* Write the bytes to the new bank. */ ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, (u8)data); if (ret_val) break; usleep_range(100, 200); ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset + 1, (u8)(data >> 8)); if (ret_val) break; } /* Don't bother writing the segment valid bits if sector * programming failed. */ if (ret_val) { /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */ e_dbg("Flash commit failed.\n"); goto release; } /* Finally validate the new segment by setting bit 15:14 * to 10b in word 0x13 , this can be done without an * erase as well since these bits are 11 to start with * and we need to change bit 14 to 0b */ act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data); if (ret_val) goto release; data &= 0xBFFF; ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset * 2 + 1, (u8)(data >> 8)); if (ret_val) goto release; /* And invalidate the previously valid segment by setting * its signature word (0x13) high_byte to 0b. This can be * done without an erase because flash erase sets all bits * to 1's. We can write 1's to 0's without an erase */ act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0); if (ret_val) goto release; /* Great! Everything worked, we can now clear the cached entries. */ for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { dev_spec->shadow_ram[i].modified = false; dev_spec->shadow_ram[i].value = 0xFFFF; } release: nvm->ops.release(hw); /* Reload the EEPROM, or else modifications will not appear * until after the next adapter reset. */ if (!ret_val) { nvm->ops.reload(hw); usleep_range(10000, 11000); } out: if (ret_val) e_dbg("NVM update error: %d\n", ret_val); return ret_val; } /** * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum * @hw: pointer to the HW structure * * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19. * If the bit is 0, that the EEPROM had been modified, but the checksum was not * calculated, in which case we need to calculate the checksum and set bit 6. **/ static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw) { s32 ret_val; u16 data; u16 word; u16 valid_csum_mask; /* Read NVM and check Invalid Image CSUM bit. If this bit is 0, * the checksum needs to be fixed. This bit is an indication that * the NVM was prepared by OEM software and did not calculate * the checksum...a likely scenario. */ switch (hw->mac.type) { case e1000_pch_lpt: case e1000_pch_spt: case e1000_pch_cnp: case e1000_pch_tgp: case e1000_pch_adp: word = NVM_COMPAT; valid_csum_mask = NVM_COMPAT_VALID_CSUM; break; default: word = NVM_FUTURE_INIT_WORD1; valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM; break; } ret_val = e1000_read_nvm(hw, word, 1, &data); if (ret_val) return ret_val; if (!(data & valid_csum_mask)) { data |= valid_csum_mask; ret_val = e1000_write_nvm(hw, word, 1, &data); if (ret_val) return ret_val; ret_val = e1000e_update_nvm_checksum(hw); if (ret_val) return ret_val; } return e1000e_validate_nvm_checksum_generic(hw); } /** * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only * @hw: pointer to the HW structure * * To prevent malicious write/erase of the NVM, set it to be read-only * so that the hardware ignores all write/erase cycles of the NVM via * the flash control registers. The shadow-ram copy of the NVM will * still be updated, however any updates to this copy will not stick * across driver reloads. **/ void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw) { struct e1000_nvm_info *nvm = &hw->nvm; union ich8_flash_protected_range pr0; union ich8_hws_flash_status hsfsts; u32 gfpreg; nvm->ops.acquire(hw); gfpreg = er32flash(ICH_FLASH_GFPREG); /* Write-protect GbE Sector of NVM */ pr0.regval = er32flash(ICH_FLASH_PR0); pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK; pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK); pr0.range.wpe = true; ew32flash(ICH_FLASH_PR0, pr0.regval); /* Lock down a subset of GbE Flash Control Registers, e.g. * PR0 to prevent the write-protection from being lifted. * Once FLOCKDN is set, the registers protected by it cannot * be written until FLOCKDN is cleared by a hardware reset. */ hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); hsfsts.hsf_status.flockdn = true; ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval); nvm->ops.release(hw); } /** * e1000_write_flash_data_ich8lan - Writes bytes to the NVM * @hw: pointer to the HW structure * @offset: The offset (in bytes) of the byte/word to read. * @size: Size of data to read, 1=byte 2=word * @data: The byte(s) to write to the NVM. * * Writes one/two bytes to the NVM using the flash access registers. **/ static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, u8 size, u16 data) { union ich8_hws_flash_status hsfsts; union ich8_hws_flash_ctrl hsflctl; u32 flash_linear_addr; u32 flash_data = 0; s32 ret_val; u8 count = 0; if (hw->mac.type >= e1000_pch_spt) { if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK) return -E1000_ERR_NVM; } else { if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) return -E1000_ERR_NVM; } flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + hw->nvm.flash_base_addr); do { udelay(1); /* Steps */ ret_val = e1000_flash_cycle_init_ich8lan(hw); if (ret_val) break; /* In SPT, This register is in Lan memory space, not * flash. Therefore, only 32 bit access is supported */ if (hw->mac.type >= e1000_pch_spt) hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16; else hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ hsflctl.hsf_ctrl.fldbcount = size - 1; hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; /* In SPT, This register is in Lan memory space, * not flash. Therefore, only 32 bit access is * supported */ if (hw->mac.type >= e1000_pch_spt) ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16); else ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); ew32flash(ICH_FLASH_FADDR, flash_linear_addr); if (size == 1) flash_data = (u32)data & 0x00FF; else flash_data = (u32)data; ew32flash(ICH_FLASH_FDATA0, flash_data); /* check if FCERR is set to 1 , if set to 1, clear it * and try the whole sequence a few more times else done */ ret_val = e1000_flash_cycle_ich8lan(hw, ICH_FLASH_WRITE_COMMAND_TIMEOUT); if (!ret_val) break; /* If we're here, then things are most likely * completely hosed, but if the error condition * is detected, it won't hurt to give it another * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. */ hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); if (hsfsts.hsf_status.flcerr) /* Repeat for some time before giving up. */ continue; if (!hsfsts.hsf_status.flcdone) { e_dbg("Timeout error - flash cycle did not complete.\n"); break; } } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); return ret_val; } /** * e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM * @hw: pointer to the HW structure * @offset: The offset (in bytes) of the dwords to read. * @data: The 4 bytes to write to the NVM. * * Writes one/two/four bytes to the NVM using the flash access registers. **/ static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, u32 data) { union ich8_hws_flash_status hsfsts; union ich8_hws_flash_ctrl hsflctl; u32 flash_linear_addr; s32 ret_val; u8 count = 0; if (hw->mac.type >= e1000_pch_spt) { if (offset > ICH_FLASH_LINEAR_ADDR_MASK) return -E1000_ERR_NVM; } flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + hw->nvm.flash_base_addr); do { udelay(1); /* Steps */ ret_val = e1000_flash_cycle_init_ich8lan(hw); if (ret_val) break; /* In SPT, This register is in Lan memory space, not * flash. Therefore, only 32 bit access is supported */ if (hw->mac.type >= e1000_pch_spt) hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16; else hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1; hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; /* In SPT, This register is in Lan memory space, * not flash. Therefore, only 32 bit access is * supported */ if (hw->mac.type >= e1000_pch_spt) ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16); else ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); ew32flash(ICH_FLASH_FADDR, flash_linear_addr); ew32flash(ICH_FLASH_FDATA0, data); /* check if FCERR is set to 1 , if set to 1, clear it * and try the whole sequence a few more times else done */ ret_val = e1000_flash_cycle_ich8lan(hw, ICH_FLASH_WRITE_COMMAND_TIMEOUT); if (!ret_val) break; /* If we're here, then things are most likely * completely hosed, but if the error condition * is detected, it won't hurt to give it another * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. */ hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); if (hsfsts.hsf_status.flcerr) /* Repeat for some time before giving up. */ continue; if (!hsfsts.hsf_status.flcdone) { e_dbg("Timeout error - flash cycle did not complete.\n"); break; } } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); return ret_val; } /** * e1000_write_flash_byte_ich8lan - Write a single byte to NVM * @hw: pointer to the HW structure * @offset: The index of the byte to read. * @data: The byte to write to the NVM. * * Writes a single byte to the NVM using the flash access registers. **/ static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, u8 data) { u16 word = (u16)data; return e1000_write_flash_data_ich8lan(hw, offset, 1, word); } /** * e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM * @hw: pointer to the HW structure * @offset: The offset of the word to write. * @dword: The dword to write to the NVM. * * Writes a single dword to the NVM using the flash access registers. * Goes through a retry algorithm before giving up. **/ static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset, u32 dword) { s32 ret_val; u16 program_retries; /* Must convert word offset into bytes. */ offset <<= 1; ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword); if (!ret_val) return ret_val; for (program_retries = 0; program_retries < 100; program_retries++) { e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset); usleep_range(100, 200); ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword); if (!ret_val) break; } if (program_retries == 100) return -E1000_ERR_NVM; return 0; } /** * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM * @hw: pointer to the HW structure * @offset: The offset of the byte to write. * @byte: The byte to write to the NVM. * * Writes a single byte to the NVM using the flash access registers. * Goes through a retry algorithm before giving up. **/ static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, u8 byte) { s32 ret_val; u16 program_retries; ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); if (!ret_val) return ret_val; for (program_retries = 0; program_retries < 100; program_retries++) { e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset); usleep_range(100, 200); ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); if (!ret_val) break; } if (program_retries == 100) return -E1000_ERR_NVM; return 0; } /** * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM * @hw: pointer to the HW structure * @bank: 0 for first bank, 1 for second bank, etc. * * Erases the bank specified. Each bank is a 4k block. Banks are 0 based. * bank N is 4096 * N + flash_reg_addr. **/ static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank) { struct e1000_nvm_info *nvm = &hw->nvm; union ich8_hws_flash_status hsfsts; union ich8_hws_flash_ctrl hsflctl; u32 flash_linear_addr; /* bank size is in 16bit words - adjust to bytes */ u32 flash_bank_size = nvm->flash_bank_size * 2; s32 ret_val; s32 count = 0; s32 j, iteration, sector_size; hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); /* Determine HW Sector size: Read BERASE bits of hw flash status * register * 00: The Hw sector is 256 bytes, hence we need to erase 16 * consecutive sectors. The start index for the nth Hw sector * can be calculated as = bank * 4096 + n * 256 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. * The start index for the nth Hw sector can be calculated * as = bank * 4096 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192 * (ich9 only, otherwise error condition) * 11: The Hw sector is 64K bytes, nth sector = bank * 65536 */ switch (hsfsts.hsf_status.berasesz) { case 0: /* Hw sector size 256 */ sector_size = ICH_FLASH_SEG_SIZE_256; iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256; break; case 1: sector_size = ICH_FLASH_SEG_SIZE_4K; iteration = 1; break; case 2: sector_size = ICH_FLASH_SEG_SIZE_8K; iteration = 1; break; case 3: sector_size = ICH_FLASH_SEG_SIZE_64K; iteration = 1; break; default: return -E1000_ERR_NVM; } /* Start with the base address, then add the sector offset. */ flash_linear_addr = hw->nvm.flash_base_addr; flash_linear_addr += (bank) ? flash_bank_size : 0; for (j = 0; j < iteration; j++) { do { u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT; /* Steps */ ret_val = e1000_flash_cycle_init_ich8lan(hw); if (ret_val) return ret_val; /* Write a value 11 (block Erase) in Flash * Cycle field in hw flash control */ if (hw->mac.type >= e1000_pch_spt) hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16; else hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; if (hw->mac.type >= e1000_pch_spt) ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16); else ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); /* Write the last 24 bits of an index within the * block into Flash Linear address field in Flash * Address. */ flash_linear_addr += (j * sector_size); ew32flash(ICH_FLASH_FADDR, flash_linear_addr); ret_val = e1000_flash_cycle_ich8lan(hw, timeout); if (!ret_val) break; /* Check if FCERR is set to 1. If 1, * clear it and try the whole sequence * a few more times else Done */ hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); if (hsfsts.hsf_status.flcerr) /* repeat for some time before giving up */ continue; else if (!hsfsts.hsf_status.flcdone) return ret_val; } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT); } return 0; } /** * e1000_valid_led_default_ich8lan - Set the default LED settings * @hw: pointer to the HW structure * @data: Pointer to the LED settings * * Reads the LED default settings from the NVM to data. If the NVM LED * settings is all 0's or F's, set the LED default to a valid LED default * setting. **/ static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data) { s32 ret_val; ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); if (ret_val) { e_dbg("NVM Read Error\n"); return ret_val; } if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) *data = ID_LED_DEFAULT_ICH8LAN; return 0; } /** * e1000_id_led_init_pchlan - store LED configurations * @hw: pointer to the HW structure * * PCH does not control LEDs via the LEDCTL register, rather it uses * the PHY LED configuration register. * * PCH also does not have an "always on" or "always off" mode which * complicates the ID feature. Instead of using the "on" mode to indicate * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()), * use "link_up" mode. The LEDs will still ID on request if there is no * link based on logic in e1000_led_[on|off]_pchlan(). **/ static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; s32 ret_val; const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP; const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT; u16 data, i, temp, shift; /* Get default ID LED modes */ ret_val = hw->nvm.ops.valid_led_default(hw, &data); if (ret_val) return ret_val; mac->ledctl_default = er32(LEDCTL); mac->ledctl_mode1 = mac->ledctl_default; mac->ledctl_mode2 = mac->ledctl_default; for (i = 0; i < 4; i++) { temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK; shift = (i * 5); switch (temp) { case ID_LED_ON1_DEF2: case ID_LED_ON1_ON2: case ID_LED_ON1_OFF2: mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); mac->ledctl_mode1 |= (ledctl_on << shift); break; case ID_LED_OFF1_DEF2: case ID_LED_OFF1_ON2: case ID_LED_OFF1_OFF2: mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); mac->ledctl_mode1 |= (ledctl_off << shift); break; default: /* Do nothing */ break; } switch (temp) { case ID_LED_DEF1_ON2: case ID_LED_ON1_ON2: case ID_LED_OFF1_ON2: mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); mac->ledctl_mode2 |= (ledctl_on << shift); break; case ID_LED_DEF1_OFF2: case ID_LED_ON1_OFF2: case ID_LED_OFF1_OFF2: mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); mac->ledctl_mode2 |= (ledctl_off << shift); break; default: /* Do nothing */ break; } } return 0; } /** * e1000_get_bus_info_ich8lan - Get/Set the bus type and width * @hw: pointer to the HW structure * * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability * register, so the the bus width is hard coded. **/ static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw) { struct e1000_bus_info *bus = &hw->bus; s32 ret_val; ret_val = e1000e_get_bus_info_pcie(hw); /* ICH devices are "PCI Express"-ish. They have * a configuration space, but do not contain * PCI Express Capability registers, so bus width * must be hardcoded. */ if (bus->width == e1000_bus_width_unknown) bus->width = e1000_bus_width_pcie_x1; return ret_val; } /** * e1000_reset_hw_ich8lan - Reset the hardware * @hw: pointer to the HW structure * * Does a full reset of the hardware which includes a reset of the PHY and * MAC. **/ static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw) { struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; u16 kum_cfg; u32 ctrl, reg; s32 ret_val; /* Prevent the PCI-E bus from sticking if there is no TLP connection * on the last TLP read/write transaction when MAC is reset. */ ret_val = e1000e_disable_pcie_master(hw); if (ret_val) e_dbg("PCI-E Master disable polling has failed.\n"); e_dbg("Masking off all interrupts\n"); ew32(IMC, 0xffffffff); /* Disable the Transmit and Receive units. Then delay to allow * any pending transactions to complete before we hit the MAC * with the global reset. */ ew32(RCTL, 0); ew32(TCTL, E1000_TCTL_PSP); e1e_flush(); usleep_range(10000, 11000); /* Workaround for ICH8 bit corruption issue in FIFO memory */ if (hw->mac.type == e1000_ich8lan) { /* Set Tx and Rx buffer allocation to 8k apiece. */ ew32(PBA, E1000_PBA_8K); /* Set Packet Buffer Size to 16k. */ ew32(PBS, E1000_PBS_16K); } if (hw->mac.type == e1000_pchlan) { /* Save the NVM K1 bit setting */ ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg); if (ret_val) return ret_val; if (kum_cfg & E1000_NVM_K1_ENABLE) dev_spec->nvm_k1_enabled = true; else dev_spec->nvm_k1_enabled = false; } ctrl = er32(CTRL); if (!hw->phy.ops.check_reset_block(hw)) { /* Full-chip reset requires MAC and PHY reset at the same * time to make sure the interface between MAC and the * external PHY is reset. */ ctrl |= E1000_CTRL_PHY_RST; /* Gate automatic PHY configuration by hardware on * non-managed 82579 */ if ((hw->mac.type == e1000_pch2lan) && !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) e1000_gate_hw_phy_config_ich8lan(hw, true); } ret_val = e1000_acquire_swflag_ich8lan(hw); e_dbg("Issuing a global reset to ich8lan\n"); ew32(CTRL, (ctrl | E1000_CTRL_RST)); /* cannot issue a flush here because it hangs the hardware */ msleep(20); /* Set Phy Config Counter to 50msec */ if (hw->mac.type == e1000_pch2lan) { reg = er32(FEXTNVM3); reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK; reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC; ew32(FEXTNVM3, reg); } if (!ret_val) clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); if (ctrl & E1000_CTRL_PHY_RST) { ret_val = hw->phy.ops.get_cfg_done(hw); if (ret_val) return ret_val; ret_val = e1000_post_phy_reset_ich8lan(hw); if (ret_val) return ret_val; } /* For PCH, this write will make sure that any noise * will be detected as a CRC error and be dropped rather than show up * as a bad packet to the DMA engine. */ if (hw->mac.type == e1000_pchlan) ew32(CRC_OFFSET, 0x65656565); ew32(IMC, 0xffffffff); er32(ICR); reg = er32(KABGTXD); reg |= E1000_KABGTXD_BGSQLBIAS; ew32(KABGTXD, reg); return 0; } /** * e1000_init_hw_ich8lan - Initialize the hardware * @hw: pointer to the HW structure * * Prepares the hardware for transmit and receive by doing the following: * - initialize hardware bits * - initialize LED identification * - setup receive address registers * - setup flow control * - setup transmit descriptors * - clear statistics **/ static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; u32 ctrl_ext, txdctl, snoop; s32 ret_val; u16 i; e1000_initialize_hw_bits_ich8lan(hw); /* Initialize identification LED */ ret_val = mac->ops.id_led_init(hw); /* An error is not fatal and we should not stop init due to this */ if (ret_val) e_dbg("Error initializing identification LED\n"); /* Setup the receive address. */ e1000e_init_rx_addrs(hw, mac->rar_entry_count); /* Zero out the Multicast HASH table */ e_dbg("Zeroing the MTA\n"); for (i = 0; i < mac->mta_reg_count; i++) E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); /* The 82578 Rx buffer will stall if wakeup is enabled in host and * the ME. Disable wakeup by clearing the host wakeup bit. * Reset the phy after disabling host wakeup to reset the Rx buffer. */ if (hw->phy.type == e1000_phy_82578) { e1e_rphy(hw, BM_PORT_GEN_CFG, &i); i &= ~BM_WUC_HOST_WU_BIT; e1e_wphy(hw, BM_PORT_GEN_CFG, i); ret_val = e1000_phy_hw_reset_ich8lan(hw); if (ret_val) return ret_val; } /* Setup link and flow control */ ret_val = mac->ops.setup_link(hw); /* Set the transmit descriptor write-back policy for both queues */ txdctl = er32(TXDCTL(0)); txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB); txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) | E1000_TXDCTL_MAX_TX_DESC_PREFETCH); ew32(TXDCTL(0), txdctl); txdctl = er32(TXDCTL(1)); txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB); txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) | E1000_TXDCTL_MAX_TX_DESC_PREFETCH); ew32(TXDCTL(1), txdctl); /* ICH8 has opposite polarity of no_snoop bits. * By default, we should use snoop behavior. */ if (mac->type == e1000_ich8lan) snoop = PCIE_ICH8_SNOOP_ALL; else snoop = (u32)~(PCIE_NO_SNOOP_ALL); e1000e_set_pcie_no_snoop(hw, snoop); ctrl_ext = er32(CTRL_EXT); ctrl_ext |= E1000_CTRL_EXT_RO_DIS; ew32(CTRL_EXT, ctrl_ext); /* Clear all of the statistics registers (clear on read). It is * important that we do this after we have tried to establish link * because the symbol error count will increment wildly if there * is no link. */ e1000_clear_hw_cntrs_ich8lan(hw); return ret_val; } /** * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits * @hw: pointer to the HW structure * * Sets/Clears required hardware bits necessary for correctly setting up the * hardware for transmit and receive. **/ static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw) { u32 reg; /* Extended Device Control */ reg = er32(CTRL_EXT); reg |= BIT(22); /* Enable PHY low-power state when MAC is at D3 w/o WoL */ if (hw->mac.type >= e1000_pchlan) reg |= E1000_CTRL_EXT_PHYPDEN; ew32(CTRL_EXT, reg); /* Transmit Descriptor Control 0 */ reg = er32(TXDCTL(0)); reg |= BIT(22); ew32(TXDCTL(0), reg); /* Transmit Descriptor Control 1 */ reg = er32(TXDCTL(1)); reg |= BIT(22); ew32(TXDCTL(1), reg); /* Transmit Arbitration Control 0 */ reg = er32(TARC(0)); if (hw->mac.type == e1000_ich8lan) reg |= BIT(28) | BIT(29); reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27); ew32(TARC(0), reg); /* Transmit Arbitration Control 1 */ reg = er32(TARC(1)); if (er32(TCTL) & E1000_TCTL_MULR) reg &= ~BIT(28); else reg |= BIT(28); reg |= BIT(24) | BIT(26) | BIT(30); ew32(TARC(1), reg); /* Device Status */ if (hw->mac.type == e1000_ich8lan) { reg = er32(STATUS); reg &= ~BIT(31); ew32(STATUS, reg); } /* work-around descriptor data corruption issue during nfs v2 udp * traffic, just disable the nfs filtering capability */ reg = er32(RFCTL); reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS); /* Disable IPv6 extension header parsing because some malformed * IPv6 headers can hang the Rx. */ if (hw->mac.type == e1000_ich8lan) reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS); ew32(RFCTL, reg); /* Enable ECC on Lynxpoint */ if (hw->mac.type >= e1000_pch_lpt) { reg = er32(PBECCSTS); reg |= E1000_PBECCSTS_ECC_ENABLE; ew32(PBECCSTS, reg); reg = er32(CTRL); reg |= E1000_CTRL_MEHE; ew32(CTRL, reg); } } /** * e1000_setup_link_ich8lan - Setup flow control and link settings * @hw: pointer to the HW structure * * Determines which flow control settings to use, then configures flow * control. Calls the appropriate media-specific link configuration * function. Assuming the adapter has a valid link partner, a valid link * should be established. Assumes the hardware has previously been reset * and the transmitter and receiver are not enabled. **/ static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw) { s32 ret_val; if (hw->phy.ops.check_reset_block(hw)) return 0; /* ICH parts do not have a word in the NVM to determine * the default flow control setting, so we explicitly * set it to full. */ if (hw->fc.requested_mode == e1000_fc_default) { /* Workaround h/w hang when Tx flow control enabled */ if (hw->mac.type == e1000_pchlan) hw->fc.requested_mode = e1000_fc_rx_pause; else hw->fc.requested_mode = e1000_fc_full; } /* Save off the requested flow control mode for use later. Depending * on the link partner's capabilities, we may or may not use this mode. */ hw->fc.current_mode = hw->fc.requested_mode; e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode); /* Continue to configure the copper link. */ ret_val = hw->mac.ops.setup_physical_interface(hw); if (ret_val) return ret_val; ew32(FCTTV, hw->fc.pause_time); if ((hw->phy.type == e1000_phy_82578) || (hw->phy.type == e1000_phy_82579) || (hw->phy.type == e1000_phy_i217) || (hw->phy.type == e1000_phy_82577)) { ew32(FCRTV_PCH, hw->fc.refresh_time); ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27), hw->fc.pause_time); if (ret_val) return ret_val; } return e1000e_set_fc_watermarks(hw); } /** * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface * @hw: pointer to the HW structure * * Configures the kumeran interface to the PHY to wait the appropriate time * when polling the PHY, then call the generic setup_copper_link to finish * configuring the copper link. **/ static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw) { u32 ctrl; s32 ret_val; u16 reg_data; ctrl = er32(CTRL); ctrl |= E1000_CTRL_SLU; ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); ew32(CTRL, ctrl); /* Set the mac to wait the maximum time between each iteration * and increase the max iterations when polling the phy; * this fixes erroneous timeouts at 10Mbps. */ ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF); if (ret_val) return ret_val; ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, ®_data); if (ret_val) return ret_val; reg_data |= 0x3F; ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, reg_data); if (ret_val) return ret_val; switch (hw->phy.type) { case e1000_phy_igp_3: ret_val = e1000e_copper_link_setup_igp(hw); if (ret_val) return ret_val; break; case e1000_phy_bm: case e1000_phy_82578: ret_val = e1000e_copper_link_setup_m88(hw); if (ret_val) return ret_val; break; case e1000_phy_82577: case e1000_phy_82579: ret_val = e1000_copper_link_setup_82577(hw); if (ret_val) return ret_val; break; case e1000_phy_ife: ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, ®_data); if (ret_val) return ret_val; reg_data &= ~IFE_PMC_AUTO_MDIX; switch (hw->phy.mdix) { case 1: reg_data &= ~IFE_PMC_FORCE_MDIX; break; case 2: reg_data |= IFE_PMC_FORCE_MDIX; break; case 0: default: reg_data |= IFE_PMC_AUTO_MDIX; break; } ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data); if (ret_val) return ret_val; break; default: break; } return e1000e_setup_copper_link(hw); } /** * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface * @hw: pointer to the HW structure * * Calls the PHY specific link setup function and then calls the * generic setup_copper_link to finish configuring the link for * Lynxpoint PCH devices **/ static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw) { u32 ctrl; s32 ret_val; ctrl = er32(CTRL); ctrl |= E1000_CTRL_SLU; ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); ew32(CTRL, ctrl); ret_val = e1000_copper_link_setup_82577(hw); if (ret_val) return ret_val; return e1000e_setup_copper_link(hw); } /** * e1000_get_link_up_info_ich8lan - Get current link speed and duplex * @hw: pointer to the HW structure * @speed: pointer to store current link speed * @duplex: pointer to store the current link duplex * * Calls the generic get_speed_and_duplex to retrieve the current link * information and then calls the Kumeran lock loss workaround for links at * gigabit speeds. **/ static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed, u16 *duplex) { s32 ret_val; ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex); if (ret_val) return ret_val; if ((hw->mac.type == e1000_ich8lan) && (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) { ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw); } return ret_val; } /** * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround * @hw: pointer to the HW structure * * Work-around for 82566 Kumeran PCS lock loss: * On link status change (i.e. PCI reset, speed change) and link is up and * speed is gigabit- * 0) if workaround is optionally disabled do nothing * 1) wait 1ms for Kumeran link to come up * 2) check Kumeran Diagnostic register PCS lock loss bit * 3) if not set the link is locked (all is good), otherwise... * 4) reset the PHY * 5) repeat up to 10 times * Note: this is only called for IGP3 copper when speed is 1gb. **/ static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw) { struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; u32 phy_ctrl; s32 ret_val; u16 i, data; bool link; if (!dev_spec->kmrn_lock_loss_workaround_enabled) return 0; /* Make sure link is up before proceeding. If not just return. * Attempting this while link is negotiating fouled up link * stability */ ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); if (!link) return 0; for (i = 0; i < 10; i++) { /* read once to clear */ ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); if (ret_val) return ret_val; /* and again to get new status */ ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); if (ret_val) return ret_val; /* check for PCS lock */ if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) return 0; /* Issue PHY reset */ e1000_phy_hw_reset(hw); mdelay(5); } /* Disable GigE link negotiation */ phy_ctrl = er32(PHY_CTRL); phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE | E1000_PHY_CTRL_NOND0A_GBE_DISABLE); ew32(PHY_CTRL, phy_ctrl); /* Call gig speed drop workaround on Gig disable before accessing * any PHY registers */ e1000e_gig_downshift_workaround_ich8lan(hw); /* unable to acquire PCS lock */ return -E1000_ERR_PHY; } /** * e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state * @hw: pointer to the HW structure * @state: boolean value used to set the current Kumeran workaround state * * If ICH8, set the current Kumeran workaround state (enabled - true * /disabled - false). **/ void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw, bool state) { struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; if (hw->mac.type != e1000_ich8lan) { e_dbg("Workaround applies to ICH8 only.\n"); return; } dev_spec->kmrn_lock_loss_workaround_enabled = state; } /** * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3 * @hw: pointer to the HW structure * * Workaround for 82566 power-down on D3 entry: * 1) disable gigabit link * 2) write VR power-down enable * 3) read it back * Continue if successful, else issue LCD reset and repeat **/ void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw) { u32 reg; u16 data; u8 retry = 0; if (hw->phy.type != e1000_phy_igp_3) return; /* Try the workaround twice (if needed) */ do { /* Disable link */ reg = er32(PHY_CTRL); reg |= (E1000_PHY_CTRL_GBE_DISABLE | E1000_PHY_CTRL_NOND0A_GBE_DISABLE); ew32(PHY_CTRL, reg); /* Call gig speed drop workaround on Gig disable before * accessing any PHY registers */ if (hw->mac.type == e1000_ich8lan) e1000e_gig_downshift_workaround_ich8lan(hw); /* Write VR power-down enable */ e1e_rphy(hw, IGP3_VR_CTRL, &data); data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN); /* Read it back and test */ e1e_rphy(hw, IGP3_VR_CTRL, &data); data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry) break; /* Issue PHY reset and repeat at most one more time */ reg = er32(CTRL); ew32(CTRL, reg | E1000_CTRL_PHY_RST); retry++; } while (retry); } /** * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working * @hw: pointer to the HW structure * * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC), * LPLU, Gig disable, MDIC PHY reset): * 1) Set Kumeran Near-end loopback * 2) Clear Kumeran Near-end loopback * Should only be called for ICH8[m] devices with any 1G Phy. **/ void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw) { s32 ret_val; u16 reg_data; if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife)) return; ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, ®_data); if (ret_val) return; reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK; ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data); if (ret_val) return; reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK; e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data); } /** * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx * @hw: pointer to the HW structure * * During S0 to Sx transition, it is possible the link remains at gig * instead of negotiating to a lower speed. Before going to Sx, set * 'Gig Disable' to force link speed negotiation to a lower speed based on * the LPLU setting in the NVM or custom setting. For PCH and newer parts, * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also * needs to be written. * Parts that support (and are linked to a partner which support) EEE in * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power * than 10Mbps w/o EEE. **/ void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw) { struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; u32 phy_ctrl; s32 ret_val; phy_ctrl = er32(PHY_CTRL); phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE; if (hw->phy.type == e1000_phy_i217) { u16 phy_reg, device_id = hw->adapter->pdev->device; if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) || (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) || (device_id == E1000_DEV_ID_PCH_I218_LM3) || (device_id == E1000_DEV_ID_PCH_I218_V3) || (hw->mac.type >= e1000_pch_spt)) { u32 fextnvm6 = er32(FEXTNVM6); ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK); } ret_val = hw->phy.ops.acquire(hw); if (ret_val) goto out; if (!dev_spec->eee_disable) { u16 eee_advert; ret_val = e1000_read_emi_reg_locked(hw, I217_EEE_ADVERTISEMENT, &eee_advert); if (ret_val) goto release; /* Disable LPLU if both link partners support 100BaseT * EEE and 100Full is advertised on both ends of the * link, and enable Auto Enable LPI since there will * be no driver to enable LPI while in Sx. */ if ((eee_advert & I82579_EEE_100_SUPPORTED) && (dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) && (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) { phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU | E1000_PHY_CTRL_NOND0A_LPLU); /* Set Auto Enable LPI after link up */ e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg); phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI; e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg); } } /* For i217 Intel Rapid Start Technology support, * when the system is going into Sx and no manageability engine * is present, the driver must configure proxy to reset only on * power good. LPI (Low Power Idle) state must also reset only * on power good, as well as the MTA (Multicast table array). * The SMBus release must also be disabled on LCD reset. */ if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { /* Enable proxy to reset only on power good. */ e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg); phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE; e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg); /* Set bit enable LPI (EEE) to reset only on * power good. */ e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg); phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET; e1e_wphy_locked(hw, I217_SxCTRL, phy_reg); /* Disable the SMB release on LCD reset. */ e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg); phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE; e1e_wphy_locked(hw, I217_MEMPWR, phy_reg); } /* Enable MTA to reset for Intel Rapid Start Technology * Support */ e1e_rphy_locked(hw, I217_CGFREG, &phy_reg); phy_reg |= I217_CGFREG_ENABLE_MTA_RESET; e1e_wphy_locked(hw, I217_CGFREG, phy_reg); release: hw->phy.ops.release(hw); } out: ew32(PHY_CTRL, phy_ctrl); if (hw->mac.type == e1000_ich8lan) e1000e_gig_downshift_workaround_ich8lan(hw); if (hw->mac.type >= e1000_pchlan) { e1000_oem_bits_config_ich8lan(hw, false); /* Reset PHY to activate OEM bits on 82577/8 */ if (hw->mac.type == e1000_pchlan) e1000e_phy_hw_reset_generic(hw); ret_val = hw->phy.ops.acquire(hw); if (ret_val) return; e1000_write_smbus_addr(hw); hw->phy.ops.release(hw); } } /** * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0 * @hw: pointer to the HW structure * * During Sx to S0 transitions on non-managed devices or managed devices * on which PHY resets are not blocked, if the PHY registers cannot be * accessed properly by the s/w toggle the LANPHYPC value to power cycle * the PHY. * On i217, setup Intel Rapid Start Technology. **/ void e1000_resume_workarounds_pchlan(struct e1000_hw *hw) { s32 ret_val; if (hw->mac.type < e1000_pch2lan) return; ret_val = e1000_init_phy_workarounds_pchlan(hw); if (ret_val) { e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val); return; } /* For i217 Intel Rapid Start Technology support when the system * is transitioning from Sx and no manageability engine is present * configure SMBus to restore on reset, disable proxy, and enable * the reset on MTA (Multicast table array). */ if (hw->phy.type == e1000_phy_i217) { u16 phy_reg; ret_val = hw->phy.ops.acquire(hw); if (ret_val) { e_dbg("Failed to setup iRST\n"); return; } /* Clear Auto Enable LPI after link up */ e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg); phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI; e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg); if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { /* Restore clear on SMB if no manageability engine * is present */ ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg); if (ret_val) goto release; phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE; e1e_wphy_locked(hw, I217_MEMPWR, phy_reg); /* Disable Proxy */ e1e_wphy_locked(hw, I217_PROXY_CTRL, 0); } /* Enable reset on MTA */ ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg); if (ret_val) goto release; phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET; e1e_wphy_locked(hw, I217_CGFREG, phy_reg); release: if (ret_val) e_dbg("Error %d in resume workarounds\n", ret_val); hw->phy.ops.release(hw); } } /** * e1000_cleanup_led_ich8lan - Restore the default LED operation * @hw: pointer to the HW structure * * Return the LED back to the default configuration. **/ static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw) { if (hw->phy.type == e1000_phy_ife) return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); ew32(LEDCTL, hw->mac.ledctl_default); return 0; } /** * e1000_led_on_ich8lan - Turn LEDs on * @hw: pointer to the HW structure * * Turn on the LEDs. **/ static s32 e1000_led_on_ich8lan(struct e1000_hw *hw) { if (hw->phy.type == e1000_phy_ife) return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); ew32(LEDCTL, hw->mac.ledctl_mode2); return 0; } /** * e1000_led_off_ich8lan - Turn LEDs off * @hw: pointer to the HW structure * * Turn off the LEDs. **/ static s32 e1000_led_off_ich8lan(struct e1000_hw *hw) { if (hw->phy.type == e1000_phy_ife) return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF)); ew32(LEDCTL, hw->mac.ledctl_mode1); return 0; } /** * e1000_setup_led_pchlan - Configures SW controllable LED * @hw: pointer to the HW structure * * This prepares the SW controllable LED for use. **/ static s32 e1000_setup_led_pchlan(struct e1000_hw *hw) { return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1); } /** * e1000_cleanup_led_pchlan - Restore the default LED operation * @hw: pointer to the HW structure * * Return the LED back to the default configuration. **/ static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw) { return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default); } /** * e1000_led_on_pchlan - Turn LEDs on * @hw: pointer to the HW structure * * Turn on the LEDs. **/ static s32 e1000_led_on_pchlan(struct e1000_hw *hw) { u16 data = (u16)hw->mac.ledctl_mode2; u32 i, led; /* If no link, then turn LED on by setting the invert bit * for each LED that's mode is "link_up" in ledctl_mode2. */ if (!(er32(STATUS) & E1000_STATUS_LU)) { for (i = 0; i < 3; i++) { led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; if ((led & E1000_PHY_LED0_MODE_MASK) != E1000_LEDCTL_MODE_LINK_UP) continue; if (led & E1000_PHY_LED0_IVRT) data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); else data |= (E1000_PHY_LED0_IVRT << (i * 5)); } } return e1e_wphy(hw, HV_LED_CONFIG, data); } /** * e1000_led_off_pchlan - Turn LEDs off * @hw: pointer to the HW structure * * Turn off the LEDs. **/ static s32 e1000_led_off_pchlan(struct e1000_hw *hw) { u16 data = (u16)hw->mac.ledctl_mode1; u32 i, led; /* If no link, then turn LED off by clearing the invert bit * for each LED that's mode is "link_up" in ledctl_mode1. */ if (!(er32(STATUS) & E1000_STATUS_LU)) { for (i = 0; i < 3; i++) { led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; if ((led & E1000_PHY_LED0_MODE_MASK) != E1000_LEDCTL_MODE_LINK_UP) continue; if (led & E1000_PHY_LED0_IVRT) data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); else data |= (E1000_PHY_LED0_IVRT << (i * 5)); } } return e1e_wphy(hw, HV_LED_CONFIG, data); } /** * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset * @hw: pointer to the HW structure * * Read appropriate register for the config done bit for completion status * and configure the PHY through s/w for EEPROM-less parts. * * NOTE: some silicon which is EEPROM-less will fail trying to read the * config done bit, so only an error is logged and continues. If we were * to return with error, EEPROM-less silicon would not be able to be reset * or change link. **/ static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw) { s32 ret_val = 0; u32 bank = 0; u32 status; e1000e_get_cfg_done_generic(hw); /* Wait for indication from h/w that it has completed basic config */ if (hw->mac.type >= e1000_ich10lan) { e1000_lan_init_done_ich8lan(hw); } else { ret_val = e1000e_get_auto_rd_done(hw); if (ret_val) { /* When auto config read does not complete, do not * return with an error. This can happen in situations * where there is no eeprom and prevents getting link. */ e_dbg("Auto Read Done did not complete\n"); ret_val = 0; } } /* Clear PHY Reset Asserted bit */ status = er32(STATUS); if (status & E1000_STATUS_PHYRA) ew32(STATUS, status & ~E1000_STATUS_PHYRA); else e_dbg("PHY Reset Asserted not set - needs delay\n"); /* If EEPROM is not marked present, init the IGP 3 PHY manually */ if (hw->mac.type <= e1000_ich9lan) { if (!(er32(EECD) & E1000_EECD_PRES) && (hw->phy.type == e1000_phy_igp_3)) { e1000e_phy_init_script_igp3(hw); } } else { if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) { /* Maybe we should do a basic PHY config */ e_dbg("EEPROM not present\n"); ret_val = -E1000_ERR_CONFIG; } } return ret_val; } /** * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down * @hw: pointer to the HW structure * * In the case of a PHY power down to save power, or to turn off link during a * driver unload, or wake on lan is not enabled, remove the link. **/ static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw) { /* If the management interface is not enabled, then power down */ if (!(hw->mac.ops.check_mng_mode(hw) || hw->phy.ops.check_reset_block(hw))) e1000_power_down_phy_copper(hw); } /** * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters * @hw: pointer to the HW structure * * Clears hardware counters specific to the silicon family and calls * clear_hw_cntrs_generic to clear all general purpose counters. **/ static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw) { u16 phy_data; s32 ret_val; e1000e_clear_hw_cntrs_base(hw); er32(ALGNERRC); er32(RXERRC); er32(TNCRS); er32(CEXTERR); er32(TSCTC); er32(TSCTFC); er32(MGTPRC); er32(MGTPDC); er32(MGTPTC); er32(IAC); er32(ICRXOC); /* Clear PHY statistics registers */ if ((hw->phy.type == e1000_phy_82578) || (hw->phy.type == e1000_phy_82579) || (hw->phy.type == e1000_phy_i217) || (hw->phy.type == e1000_phy_82577)) { ret_val = hw->phy.ops.acquire(hw); if (ret_val) return; ret_val = hw->phy.ops.set_page(hw, HV_STATS_PAGE << IGP_PAGE_SHIFT); if (ret_val) goto release; hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data); hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data); hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data); hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data); hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data); hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data); hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data); hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data); hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data); hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data); hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data); hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data); hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data); hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data); release: hw->phy.ops.release(hw); } } static const struct e1000_mac_operations ich8_mac_ops = { /* check_mng_mode dependent on mac type */ .check_for_link = e1000_check_for_copper_link_ich8lan, /* cleanup_led dependent on mac type */ .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan, .get_bus_info = e1000_get_bus_info_ich8lan, .set_lan_id = e1000_set_lan_id_single_port, .get_link_up_info = e1000_get_link_up_info_ich8lan, /* led_on dependent on mac type */ /* led_off dependent on mac type */ .update_mc_addr_list = e1000e_update_mc_addr_list_generic, .reset_hw = e1000_reset_hw_ich8lan, .init_hw = e1000_init_hw_ich8lan, .setup_link = e1000_setup_link_ich8lan, .setup_physical_interface = e1000_setup_copper_link_ich8lan, /* id_led_init dependent on mac type */ .config_collision_dist = e1000e_config_collision_dist_generic, .rar_set = e1000e_rar_set_generic, .rar_get_count = e1000e_rar_get_count_generic, }; static const struct e1000_phy_operations ich8_phy_ops = { .acquire = e1000_acquire_swflag_ich8lan, .check_reset_block = e1000_check_reset_block_ich8lan, .commit = NULL, .get_cfg_done = e1000_get_cfg_done_ich8lan, .get_cable_length = e1000e_get_cable_length_igp_2, .read_reg = e1000e_read_phy_reg_igp, .release = e1000_release_swflag_ich8lan, .reset = e1000_phy_hw_reset_ich8lan, .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan, .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan, .write_reg = e1000e_write_phy_reg_igp, }; static const struct e1000_nvm_operations ich8_nvm_ops = { .acquire = e1000_acquire_nvm_ich8lan, .read = e1000_read_nvm_ich8lan, .release = e1000_release_nvm_ich8lan, .reload = e1000e_reload_nvm_generic, .update = e1000_update_nvm_checksum_ich8lan, .valid_led_default = e1000_valid_led_default_ich8lan, .validate = e1000_validate_nvm_checksum_ich8lan, .write = e1000_write_nvm_ich8lan, }; static const struct e1000_nvm_operations spt_nvm_ops = { .acquire = e1000_acquire_nvm_ich8lan, .release = e1000_release_nvm_ich8lan, .read = e1000_read_nvm_spt, .update = e1000_update_nvm_checksum_spt, .reload = e1000e_reload_nvm_generic, .valid_led_default = e1000_valid_led_default_ich8lan, .validate = e1000_validate_nvm_checksum_ich8lan, .write = e1000_write_nvm_ich8lan, }; const struct e1000_info e1000_ich8_info = { .mac = e1000_ich8lan, .flags = FLAG_HAS_WOL | FLAG_IS_ICH | FLAG_HAS_CTRLEXT_ON_LOAD | FLAG_HAS_AMT | FLAG_HAS_FLASH | FLAG_APME_IN_WUC, .pba = 8, .max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN, .get_variants = e1000_get_variants_ich8lan, .mac_ops = &ich8_mac_ops, .phy_ops = &ich8_phy_ops, .nvm_ops = &ich8_nvm_ops, }; const struct e1000_info e1000_ich9_info = { .mac = e1000_ich9lan, .flags = FLAG_HAS_JUMBO_FRAMES | FLAG_IS_ICH | FLAG_HAS_WOL | FLAG_HAS_CTRLEXT_ON_LOAD | FLAG_HAS_AMT | FLAG_HAS_FLASH | FLAG_APME_IN_WUC, .pba = 18, .max_hw_frame_size = DEFAULT_JUMBO, .get_variants = e1000_get_variants_ich8lan, .mac_ops = &ich8_mac_ops, .phy_ops = &ich8_phy_ops, .nvm_ops = &ich8_nvm_ops, }; const struct e1000_info e1000_ich10_info = { .mac = e1000_ich10lan, .flags = FLAG_HAS_JUMBO_FRAMES | FLAG_IS_ICH | FLAG_HAS_WOL | FLAG_HAS_CTRLEXT_ON_LOAD | FLAG_HAS_AMT | FLAG_HAS_FLASH | FLAG_APME_IN_WUC, .pba = 18, .max_hw_frame_size = DEFAULT_JUMBO, .get_variants = e1000_get_variants_ich8lan, .mac_ops = &ich8_mac_ops, .phy_ops = &ich8_phy_ops, .nvm_ops = &ich8_nvm_ops, }; const struct e1000_info e1000_pch_info = { .mac = e1000_pchlan, .flags = FLAG_IS_ICH | FLAG_HAS_WOL | FLAG_HAS_CTRLEXT_ON_LOAD | FLAG_HAS_AMT | FLAG_HAS_FLASH | FLAG_HAS_JUMBO_FRAMES | FLAG_DISABLE_FC_PAUSE_TIME /* errata */ | FLAG_APME_IN_WUC, .flags2 = FLAG2_HAS_PHY_STATS, .pba = 26, .max_hw_frame_size = 4096, .get_variants = e1000_get_variants_ich8lan, .mac_ops = &ich8_mac_ops, .phy_ops = &ich8_phy_ops, .nvm_ops = &ich8_nvm_ops, }; const struct e1000_info e1000_pch2_info = { .mac = e1000_pch2lan, .flags = FLAG_IS_ICH | FLAG_HAS_WOL | FLAG_HAS_HW_TIMESTAMP | FLAG_HAS_CTRLEXT_ON_LOAD | FLAG_HAS_AMT | FLAG_HAS_FLASH | FLAG_HAS_JUMBO_FRAMES | FLAG_APME_IN_WUC, .flags2 = FLAG2_HAS_PHY_STATS | FLAG2_HAS_EEE | FLAG2_CHECK_SYSTIM_OVERFLOW, .pba = 26, .max_hw_frame_size = 9022, .get_variants = e1000_get_variants_ich8lan, .mac_ops = &ich8_mac_ops, .phy_ops = &ich8_phy_ops, .nvm_ops = &ich8_nvm_ops, }; const struct e1000_info e1000_pch_lpt_info = { .mac = e1000_pch_lpt, .flags = FLAG_IS_ICH | FLAG_HAS_WOL | FLAG_HAS_HW_TIMESTAMP | FLAG_HAS_CTRLEXT_ON_LOAD | FLAG_HAS_AMT | FLAG_HAS_FLASH | FLAG_HAS_JUMBO_FRAMES | FLAG_APME_IN_WUC, .flags2 = FLAG2_HAS_PHY_STATS | FLAG2_HAS_EEE | FLAG2_CHECK_SYSTIM_OVERFLOW, .pba = 26, .max_hw_frame_size = 9022, .get_variants = e1000_get_variants_ich8lan, .mac_ops = &ich8_mac_ops, .phy_ops = &ich8_phy_ops, .nvm_ops = &ich8_nvm_ops, }; const struct e1000_info e1000_pch_spt_info = { .mac = e1000_pch_spt, .flags = FLAG_IS_ICH | FLAG_HAS_WOL | FLAG_HAS_HW_TIMESTAMP | FLAG_HAS_CTRLEXT_ON_LOAD | FLAG_HAS_AMT | FLAG_HAS_FLASH | FLAG_HAS_JUMBO_FRAMES | FLAG_APME_IN_WUC, .flags2 = FLAG2_HAS_PHY_STATS | FLAG2_HAS_EEE, .pba = 26, .max_hw_frame_size = 9022, .get_variants = e1000_get_variants_ich8lan, .mac_ops = &ich8_mac_ops, .phy_ops = &ich8_phy_ops, .nvm_ops = &spt_nvm_ops, }; const struct e1000_info e1000_pch_cnp_info = { .mac = e1000_pch_cnp, .flags = FLAG_IS_ICH | FLAG_HAS_WOL | FLAG_HAS_HW_TIMESTAMP | FLAG_HAS_CTRLEXT_ON_LOAD | FLAG_HAS_AMT | FLAG_HAS_FLASH | FLAG_HAS_JUMBO_FRAMES | FLAG_APME_IN_WUC, .flags2 = FLAG2_HAS_PHY_STATS | FLAG2_HAS_EEE, .pba = 26, .max_hw_frame_size = 9022, .get_variants = e1000_get_variants_ich8lan, .mac_ops = &ich8_mac_ops, .phy_ops = &ich8_phy_ops, .nvm_ops = &spt_nvm_ops, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1