Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alex Elder | 571 | 100.00% | 4 | 100.00% |
Total | 571 | 4 |
/* SPDX-License-Identifier: GPL-2.0 */ /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved. * Copyright (C) 2018-2020 Linaro Ltd. */ #ifndef _GSI_H_ #define _GSI_H_ #include <linux/types.h> #include <linux/spinlock.h> #include <linux/mutex.h> #include <linux/completion.h> #include <linux/platform_device.h> #include <linux/netdevice.h> /* Maximum number of channels and event rings supported by the driver */ #define GSI_CHANNEL_COUNT_MAX 17 #define GSI_EVT_RING_COUNT_MAX 13 /* Maximum TLV FIFO size for a channel; 64 here is arbitrary (and high) */ #define GSI_TLV_MAX 64 struct device; struct scatterlist; struct platform_device; struct gsi; struct gsi_trans; struct gsi_channel_data; struct ipa_gsi_endpoint_data; /* Execution environment IDs */ enum gsi_ee_id { GSI_EE_AP = 0, GSI_EE_MODEM = 1, GSI_EE_UC = 2, GSI_EE_TZ = 3, }; struct gsi_ring { void *virt; /* ring array base address */ dma_addr_t addr; /* primarily low 32 bits used */ u32 count; /* number of elements in ring */ /* The ring index value indicates the next "open" entry in the ring. * * A channel ring consists of TRE entries filled by the AP and passed * to the hardware for processing. For a channel ring, the ring index * identifies the next unused entry to be filled by the AP. * * An event ring consists of event structures filled by the hardware * and passed to the AP. For event rings, the ring index identifies * the next ring entry that is not known to have been filled by the * hardware. */ u32 index; }; /* Transactions use several resources that can be allocated dynamically * but taken from a fixed-size pool. The number of elements required for * the pool is limited by the total number of TREs that can be outstanding. * * If sufficient TREs are available to reserve for a transaction, * allocation from these pools is guaranteed to succeed. Furthermore, * these resources are implicitly freed whenever the TREs in the * transaction they're associated with are released. * * The result of a pool allocation of multiple elements is always * contiguous. */ struct gsi_trans_pool { void *base; /* base address of element pool */ u32 count; /* # elements in the pool */ u32 free; /* next free element in pool (modulo) */ u32 size; /* size (bytes) of an element */ u32 max_alloc; /* max allocation request */ dma_addr_t addr; /* DMA address if DMA pool (or 0) */ }; struct gsi_trans_info { atomic_t tre_avail; /* TREs available for allocation */ struct gsi_trans_pool pool; /* transaction pool */ struct gsi_trans_pool sg_pool; /* scatterlist pool */ struct gsi_trans_pool cmd_pool; /* command payload DMA pool */ struct gsi_trans_pool info_pool;/* command information pool */ struct gsi_trans **map; /* TRE -> transaction map */ spinlock_t spinlock; /* protects updates to the lists */ struct list_head alloc; /* allocated, not committed */ struct list_head pending; /* committed, awaiting completion */ struct list_head complete; /* completed, awaiting poll */ struct list_head polled; /* returned by gsi_channel_poll_one() */ }; /* Hardware values signifying the state of a channel */ enum gsi_channel_state { GSI_CHANNEL_STATE_NOT_ALLOCATED = 0x0, GSI_CHANNEL_STATE_ALLOCATED = 0x1, GSI_CHANNEL_STATE_STARTED = 0x2, GSI_CHANNEL_STATE_STOPPED = 0x3, GSI_CHANNEL_STATE_STOP_IN_PROC = 0x4, GSI_CHANNEL_STATE_ERROR = 0xf, }; /* We only care about channels between IPA and AP */ struct gsi_channel { struct gsi *gsi; bool toward_ipa; bool command; /* AP command TX channel or not */ bool use_prefetch; /* use prefetch (else escape buf) */ u8 tlv_count; /* # entries in TLV FIFO */ u16 tre_count; u16 event_count; struct completion completion; /* signals channel command completion */ struct gsi_ring tre_ring; u32 evt_ring_id; u64 byte_count; /* total # bytes transferred */ u64 trans_count; /* total # transactions */ /* The following counts are used only for TX endpoints */ u64 queued_byte_count; /* last reported queued byte count */ u64 queued_trans_count; /* ...and queued trans count */ u64 compl_byte_count; /* last reported completed byte count */ u64 compl_trans_count; /* ...and completed trans count */ struct gsi_trans_info trans_info; struct napi_struct napi; }; /* Hardware values signifying the state of an event ring */ enum gsi_evt_ring_state { GSI_EVT_RING_STATE_NOT_ALLOCATED = 0x0, GSI_EVT_RING_STATE_ALLOCATED = 0x1, GSI_EVT_RING_STATE_ERROR = 0xf, }; struct gsi_evt_ring { struct gsi_channel *channel; struct completion completion; /* signals event ring state changes */ enum gsi_evt_ring_state state; struct gsi_ring ring; }; struct gsi { struct device *dev; /* Same as IPA device */ struct net_device dummy_dev; /* needed for NAPI */ void __iomem *virt; u32 irq; bool irq_wake_enabled; u32 channel_count; u32 evt_ring_count; struct gsi_channel channel[GSI_CHANNEL_COUNT_MAX]; struct gsi_evt_ring evt_ring[GSI_EVT_RING_COUNT_MAX]; u32 event_bitmap; u32 event_enable_bitmap; u32 modem_channel_bitmap; struct completion completion; /* for global EE commands */ struct mutex mutex; /* protects commands, programming */ }; /** * gsi_setup() - Set up the GSI subsystem * @gsi: Address of GSI structure embedded in an IPA structure * @legacy: Set up for legacy hardware * * Return: 0 if successful, or a negative error code * * Performs initialization that must wait until the GSI hardware is * ready (including firmware loaded). */ int gsi_setup(struct gsi *gsi, bool legacy); /** * gsi_teardown() - Tear down GSI subsystem * @gsi: GSI address previously passed to a successful gsi_setup() call */ void gsi_teardown(struct gsi *gsi); /** * gsi_channel_tre_max() - Channel maximum number of in-flight TREs * @gsi: GSI pointer * @channel_id: Channel whose limit is to be returned * * Return: The maximum number of TREs oustanding on the channel */ u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id); /** * gsi_channel_trans_tre_max() - Maximum TREs in a single transaction * @gsi: GSI pointer * @channel_id: Channel whose limit is to be returned * * Return: The maximum TRE count per transaction on the channel */ u32 gsi_channel_trans_tre_max(struct gsi *gsi, u32 channel_id); /** * gsi_channel_start() - Start an allocated GSI channel * @gsi: GSI pointer * @channel_id: Channel to start * * Return: 0 if successful, or a negative error code */ int gsi_channel_start(struct gsi *gsi, u32 channel_id); /** * gsi_channel_stop() - Stop a started GSI channel * @gsi: GSI pointer returned by gsi_setup() * @channel_id: Channel to stop * * Return: 0 if successful, or a negative error code */ int gsi_channel_stop(struct gsi *gsi, u32 channel_id); /** * gsi_channel_reset() - Reset an allocated GSI channel * @gsi: GSI pointer * @channel_id: Channel to be reset * @legacy: Legacy behavior * * Reset a channel and reconfigure it. The @legacy flag indicates * that some steps should be done differently for legacy hardware. * * GSI hardware relinquishes ownership of all pending receive buffer * transactions and they will complete with their cancelled flag set. */ void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool legacy); int gsi_channel_suspend(struct gsi *gsi, u32 channel_id, bool stop); int gsi_channel_resume(struct gsi *gsi, u32 channel_id, bool start); /** * gsi_init() - Initialize the GSI subsystem * @gsi: Address of GSI structure embedded in an IPA structure * @pdev: IPA platform device * * Return: 0 if successful, or a negative error code * * Early stage initialization of the GSI subsystem, performing tasks * that can be done before the GSI hardware is ready to use. */ int gsi_init(struct gsi *gsi, struct platform_device *pdev, bool prefetch, u32 count, const struct ipa_gsi_endpoint_data *data, bool modem_alloc); /** * gsi_exit() - Exit the GSI subsystem * @gsi: GSI address previously passed to a successful gsi_init() call */ void gsi_exit(struct gsi *gsi); #endif /* _GSI_H_ */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1