Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alex Elder | 2389 | 99.83% | 2 | 66.67% |
Vadym Kochan | 4 | 0.17% | 1 | 33.33% |
Total | 2393 | 3 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. * Copyright (C) 2018-2020 Linaro Ltd. */ #include <linux/types.h> #include <linux/kernel.h> #include <linux/bits.h> #include <linux/bitops.h> #include <linux/bitfield.h> #include <linux/io.h> #include <linux/build_bug.h> #include <linux/device.h> #include <linux/dma-mapping.h> #include "ipa.h" #include "ipa_version.h" #include "ipa_endpoint.h" #include "ipa_table.h" #include "ipa_reg.h" #include "ipa_mem.h" #include "ipa_cmd.h" #include "gsi.h" #include "gsi_trans.h" /** * DOC: IPA Filter and Route Tables * * The IPA has tables defined in its local shared memory that define filter * and routing rules. Each entry in these tables contains a 64-bit DMA * address that refers to DRAM (system memory) containing a rule definition. * A rule consists of a contiguous block of 32-bit values terminated with * 32 zero bits. A special "zero entry" rule consisting of 64 zero bits * represents "no filtering" or "no routing," and is the reset value for * filter or route table rules. Separate tables (both filter and route) * used for IPv4 and IPv6. Additionally, there can be hashed filter or * route tables, which are used when a hash of message metadata matches. * Hashed operation is not supported by all IPA hardware. * * Each filter rule is associated with an AP or modem TX endpoint, though * not all TX endpoints support filtering. The first 64-bit entry in a * filter table is a bitmap indicating which endpoints have entries in * the table. The low-order bit (bit 0) in this bitmap represents a * special global filter, which applies to all traffic. This is not * used in the current code. Bit 1, if set, indicates that there is an * entry (i.e. a DMA address referring to a rule) for endpoint 0 in the * table. Bit 2, if set, indicates there is an entry for endpoint 1, * and so on. Space is set aside in IPA local memory to hold as many * filter table entries as might be required, but typically they are not * all used. * * The AP initializes all entries in a filter table to refer to a "zero" * entry. Once initialized the modem and AP update the entries for * endpoints they "own" directly. Currently the AP does not use the * IPA filtering functionality. * * IPA Filter Table * ---------------------- * endpoint bitmap | 0x0000000000000048 | Bits 3 and 6 set (endpoints 2 and 5) * |--------------------| * 1st endpoint | 0x000123456789abc0 | DMA address for modem endpoint 2 rule * |--------------------| * 2nd endpoint | 0x000123456789abf0 | DMA address for AP endpoint 5 rule * |--------------------| * (unused) | | (Unused space in filter table) * |--------------------| * . . . * |--------------------| * (unused) | | (Unused space in filter table) * ---------------------- * * The set of available route rules is divided about equally between the AP * and modem. The AP initializes all entries in a route table to refer to * a "zero entry". Once initialized, the modem and AP are responsible for * updating their own entries. All entries in a route table are usable, * though the AP currently does not use the IPA routing functionality. * * IPA Route Table * ---------------------- * 1st modem route | 0x0001234500001100 | DMA address for first route rule * |--------------------| * 2nd modem route | 0x0001234500001140 | DMA address for second route rule * |--------------------| * . . . * |--------------------| * Last modem route| 0x0001234500002280 | DMA address for Nth route rule * |--------------------| * 1st AP route | 0x0001234500001100 | DMA address for route rule (N+1) * |--------------------| * 2nd AP route | 0x0001234500001140 | DMA address for next route rule * |--------------------| * . . . * |--------------------| * Last AP route | 0x0001234500002280 | DMA address for last route rule * ---------------------- */ /* IPA hardware constrains filter and route tables alignment */ #define IPA_TABLE_ALIGN 128 /* Minimum table alignment */ /* Assignment of route table entries to the modem and AP */ #define IPA_ROUTE_MODEM_MIN 0 #define IPA_ROUTE_MODEM_COUNT 8 #define IPA_ROUTE_AP_MIN IPA_ROUTE_MODEM_COUNT #define IPA_ROUTE_AP_COUNT \ (IPA_ROUTE_COUNT_MAX - IPA_ROUTE_MODEM_COUNT) /* Filter or route rules consist of a set of 32-bit values followed by a * 32-bit all-zero rule list terminator. The "zero rule" is simply an * all-zero rule followed by the list terminator. */ #define IPA_ZERO_RULE_SIZE (2 * sizeof(__le32)) #ifdef IPA_VALIDATE /* Check things that can be validated at build time. */ static void ipa_table_validate_build(void) { /* IPA hardware accesses memory 128 bytes at a time. Addresses * referred to by entries in filter and route tables must be * aligned on 128-byte byte boundaries. The only rule address * ever use is the "zero rule", and it's aligned at the base * of a coherent DMA allocation. */ BUILD_BUG_ON(ARCH_DMA_MINALIGN % IPA_TABLE_ALIGN); /* Filter and route tables contain DMA addresses that refer to * filter or route rules. We use a fixed constant to represent * the size of either type of table entry. Code in ipa_table_init() * uses a pointer to __le64 to initialize table entriews. */ BUILD_BUG_ON(IPA_TABLE_ENTRY_SIZE != sizeof(dma_addr_t)); BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(__le64)); /* A "zero rule" is used to represent no filtering or no routing. * It is a 64-bit block of zeroed memory. Code in ipa_table_init() * assumes that it can be written using a pointer to __le64. */ BUILD_BUG_ON(IPA_ZERO_RULE_SIZE != sizeof(__le64)); /* Impose a practical limit on the number of routes */ BUILD_BUG_ON(IPA_ROUTE_COUNT_MAX > 32); /* The modem must be allotted at least one route table entry */ BUILD_BUG_ON(!IPA_ROUTE_MODEM_COUNT); /* But it can't have more than what is available */ BUILD_BUG_ON(IPA_ROUTE_MODEM_COUNT > IPA_ROUTE_COUNT_MAX); } static bool ipa_table_valid_one(struct ipa *ipa, bool route, bool ipv6, bool hashed) { struct device *dev = &ipa->pdev->dev; const struct ipa_mem *mem; u32 size; if (route) { if (ipv6) mem = hashed ? &ipa->mem[IPA_MEM_V6_ROUTE_HASHED] : &ipa->mem[IPA_MEM_V6_ROUTE]; else mem = hashed ? &ipa->mem[IPA_MEM_V4_ROUTE_HASHED] : &ipa->mem[IPA_MEM_V4_ROUTE]; size = IPA_ROUTE_COUNT_MAX * IPA_TABLE_ENTRY_SIZE; } else { if (ipv6) mem = hashed ? &ipa->mem[IPA_MEM_V6_FILTER_HASHED] : &ipa->mem[IPA_MEM_V6_FILTER]; else mem = hashed ? &ipa->mem[IPA_MEM_V4_FILTER_HASHED] : &ipa->mem[IPA_MEM_V4_FILTER]; size = (1 + IPA_FILTER_COUNT_MAX) * IPA_TABLE_ENTRY_SIZE; } if (!ipa_cmd_table_valid(ipa, mem, route, ipv6, hashed)) return false; /* mem->size >= size is sufficient, but we'll demand more */ if (mem->size == size) return true; /* Hashed table regions can be zero size if hashing is not supported */ if (hashed && !mem->size) return true; dev_err(dev, "IPv%c %s%s table region size 0x%02x, expected 0x%02x\n", ipv6 ? '6' : '4', hashed ? "hashed " : "", route ? "route" : "filter", mem->size, size); return false; } /* Verify the filter and route table memory regions are the expected size */ bool ipa_table_valid(struct ipa *ipa) { bool valid = true; valid = valid && ipa_table_valid_one(ipa, false, false, false); valid = valid && ipa_table_valid_one(ipa, false, false, true); valid = valid && ipa_table_valid_one(ipa, false, true, false); valid = valid && ipa_table_valid_one(ipa, false, true, true); valid = valid && ipa_table_valid_one(ipa, true, false, false); valid = valid && ipa_table_valid_one(ipa, true, false, true); valid = valid && ipa_table_valid_one(ipa, true, true, false); valid = valid && ipa_table_valid_one(ipa, true, true, true); return valid; } bool ipa_filter_map_valid(struct ipa *ipa, u32 filter_map) { struct device *dev = &ipa->pdev->dev; u32 count; if (!filter_map) { dev_err(dev, "at least one filtering endpoint is required\n"); return false; } count = hweight32(filter_map); if (count > IPA_FILTER_COUNT_MAX) { dev_err(dev, "too many filtering endpoints (%u, max %u)\n", count, IPA_FILTER_COUNT_MAX); return false; } return true; } #else /* !IPA_VALIDATE */ static void ipa_table_validate_build(void) { } #endif /* !IPA_VALIDATE */ /* Zero entry count means no table, so just return a 0 address */ static dma_addr_t ipa_table_addr(struct ipa *ipa, bool filter_mask, u16 count) { u32 skip; if (!count) return 0; /* assert(count <= max_t(u32, IPA_FILTER_COUNT_MAX, IPA_ROUTE_COUNT_MAX)); */ /* Skip over the zero rule and possibly the filter mask */ skip = filter_mask ? 1 : 2; return ipa->table_addr + skip * sizeof(*ipa->table_virt); } static void ipa_table_reset_add(struct gsi_trans *trans, bool filter, u16 first, u16 count, const struct ipa_mem *mem) { struct ipa *ipa = container_of(trans->gsi, struct ipa, gsi); dma_addr_t addr; u32 offset; u16 size; /* Nothing to do if the table memory regions is empty */ if (!mem->size) return; if (filter) first++; /* skip over bitmap */ offset = mem->offset + first * IPA_TABLE_ENTRY_SIZE; size = count * IPA_TABLE_ENTRY_SIZE; addr = ipa_table_addr(ipa, false, count); ipa_cmd_dma_shared_mem_add(trans, offset, size, addr, true); } /* Reset entries in a single filter table belonging to either the AP or * modem to refer to the zero entry. The memory region supplied will be * for the IPv4 and IPv6 non-hashed and hashed filter tables. */ static int ipa_filter_reset_table(struct ipa *ipa, const struct ipa_mem *mem, bool modem) { u32 ep_mask = ipa->filter_map; u32 count = hweight32(ep_mask); struct gsi_trans *trans; enum gsi_ee_id ee_id; if (!mem->size) return 0; trans = ipa_cmd_trans_alloc(ipa, count); if (!trans) { dev_err(&ipa->pdev->dev, "no transaction for %s filter reset\n", modem ? "modem" : "AP"); return -EBUSY; } ee_id = modem ? GSI_EE_MODEM : GSI_EE_AP; while (ep_mask) { u32 endpoint_id = __ffs(ep_mask); struct ipa_endpoint *endpoint; ep_mask ^= BIT(endpoint_id); endpoint = &ipa->endpoint[endpoint_id]; if (endpoint->ee_id != ee_id) continue; ipa_table_reset_add(trans, true, endpoint_id, 1, mem); } gsi_trans_commit_wait(trans); return 0; } /* Theoretically, each filter table could have more filter slots to * update than the maximum number of commands in a transaction. So * we do each table separately. */ static int ipa_filter_reset(struct ipa *ipa, bool modem) { int ret; ret = ipa_filter_reset_table(ipa, &ipa->mem[IPA_MEM_V4_FILTER], modem); if (ret) return ret; ret = ipa_filter_reset_table(ipa, &ipa->mem[IPA_MEM_V4_FILTER_HASHED], modem); if (ret) return ret; ret = ipa_filter_reset_table(ipa, &ipa->mem[IPA_MEM_V6_FILTER], modem); if (ret) return ret; ret = ipa_filter_reset_table(ipa, &ipa->mem[IPA_MEM_V6_FILTER_HASHED], modem); return ret; } /* The AP routes and modem routes are each contiguous within the * table. We can update each table with a single command, and we * won't exceed the per-transaction command limit. * */ static int ipa_route_reset(struct ipa *ipa, bool modem) { struct gsi_trans *trans; u16 first; u16 count; trans = ipa_cmd_trans_alloc(ipa, 4); if (!trans) { dev_err(&ipa->pdev->dev, "no transaction for %s route reset\n", modem ? "modem" : "AP"); return -EBUSY; } if (modem) { first = IPA_ROUTE_MODEM_MIN; count = IPA_ROUTE_MODEM_COUNT; } else { first = IPA_ROUTE_AP_MIN; count = IPA_ROUTE_AP_COUNT; } ipa_table_reset_add(trans, false, first, count, &ipa->mem[IPA_MEM_V4_ROUTE]); ipa_table_reset_add(trans, false, first, count, &ipa->mem[IPA_MEM_V4_ROUTE_HASHED]); ipa_table_reset_add(trans, false, first, count, &ipa->mem[IPA_MEM_V6_ROUTE]); ipa_table_reset_add(trans, false, first, count, &ipa->mem[IPA_MEM_V6_ROUTE_HASHED]); gsi_trans_commit_wait(trans); return 0; } void ipa_table_reset(struct ipa *ipa, bool modem) { struct device *dev = &ipa->pdev->dev; const char *ee_name; int ret; ee_name = modem ? "modem" : "AP"; /* Report errors, but reset filter and route tables */ ret = ipa_filter_reset(ipa, modem); if (ret) dev_err(dev, "error %d resetting filter table for %s\n", ret, ee_name); ret = ipa_route_reset(ipa, modem); if (ret) dev_err(dev, "error %d resetting route table for %s\n", ret, ee_name); } int ipa_table_hash_flush(struct ipa *ipa) { u32 offset = ipa_reg_filt_rout_hash_flush_offset(ipa->version); struct gsi_trans *trans; u32 val; /* IPA version 4.2 does not support hashed tables */ if (ipa->version == IPA_VERSION_4_2) return 0; trans = ipa_cmd_trans_alloc(ipa, 1); if (!trans) { dev_err(&ipa->pdev->dev, "no transaction for hash flush\n"); return -EBUSY; } val = IPV4_FILTER_HASH_FLUSH | IPV6_FILTER_HASH_FLUSH; val |= IPV6_ROUTER_HASH_FLUSH | IPV4_ROUTER_HASH_FLUSH; ipa_cmd_register_write_add(trans, offset, val, val, false); gsi_trans_commit_wait(trans); return 0; } static void ipa_table_init_add(struct gsi_trans *trans, bool filter, enum ipa_cmd_opcode opcode, const struct ipa_mem *mem, const struct ipa_mem *hash_mem) { struct ipa *ipa = container_of(trans->gsi, struct ipa, gsi); dma_addr_t hash_addr; dma_addr_t addr; u16 hash_count; u16 hash_size; u16 count; u16 size; /* The number of filtering endpoints determines number of entries * in the filter table. The hashed and non-hashed filter table * will have the same number of entries. The size of the route * table region determines the number of entries it has. */ if (filter) { count = hweight32(ipa->filter_map); hash_count = hash_mem->size ? count : 0; } else { count = mem->size / IPA_TABLE_ENTRY_SIZE; hash_count = hash_mem->size / IPA_TABLE_ENTRY_SIZE; } size = count * IPA_TABLE_ENTRY_SIZE; hash_size = hash_count * IPA_TABLE_ENTRY_SIZE; addr = ipa_table_addr(ipa, filter, count); hash_addr = ipa_table_addr(ipa, filter, hash_count); ipa_cmd_table_init_add(trans, opcode, size, mem->offset, addr, hash_size, hash_mem->offset, hash_addr); } int ipa_table_setup(struct ipa *ipa) { struct gsi_trans *trans; trans = ipa_cmd_trans_alloc(ipa, 4); if (!trans) { dev_err(&ipa->pdev->dev, "no transaction for table setup\n"); return -EBUSY; } ipa_table_init_add(trans, false, IPA_CMD_IP_V4_ROUTING_INIT, &ipa->mem[IPA_MEM_V4_ROUTE], &ipa->mem[IPA_MEM_V4_ROUTE_HASHED]); ipa_table_init_add(trans, false, IPA_CMD_IP_V6_ROUTING_INIT, &ipa->mem[IPA_MEM_V6_ROUTE], &ipa->mem[IPA_MEM_V6_ROUTE_HASHED]); ipa_table_init_add(trans, true, IPA_CMD_IP_V4_FILTER_INIT, &ipa->mem[IPA_MEM_V4_FILTER], &ipa->mem[IPA_MEM_V4_FILTER_HASHED]); ipa_table_init_add(trans, true, IPA_CMD_IP_V6_FILTER_INIT, &ipa->mem[IPA_MEM_V6_FILTER], &ipa->mem[IPA_MEM_V6_FILTER_HASHED]); gsi_trans_commit_wait(trans); return 0; } void ipa_table_teardown(struct ipa *ipa) { /* Nothing to do */ /* XXX Maybe reset the tables? */ } /** * ipa_filter_tuple_zero() - Zero an endpoint's hashed filter tuple * @endpoint: Endpoint whose filter hash tuple should be zeroed * * Endpoint must be for the AP (not modem) and support filtering. Updates * the filter hash values without changing route ones. */ static void ipa_filter_tuple_zero(struct ipa_endpoint *endpoint) { u32 endpoint_id = endpoint->endpoint_id; u32 offset; u32 val; offset = IPA_REG_ENDP_FILTER_ROUTER_HSH_CFG_N_OFFSET(endpoint_id); val = ioread32(endpoint->ipa->reg_virt + offset); /* Zero all filter-related fields, preserving the rest */ u32p_replace_bits(&val, 0, IPA_REG_ENDP_FILTER_HASH_MSK_ALL); iowrite32(val, endpoint->ipa->reg_virt + offset); } static void ipa_filter_config(struct ipa *ipa, bool modem) { enum gsi_ee_id ee_id = modem ? GSI_EE_MODEM : GSI_EE_AP; u32 ep_mask = ipa->filter_map; /* IPA version 4.2 has no hashed route tables */ if (ipa->version == IPA_VERSION_4_2) return; while (ep_mask) { u32 endpoint_id = __ffs(ep_mask); struct ipa_endpoint *endpoint; ep_mask ^= BIT(endpoint_id); endpoint = &ipa->endpoint[endpoint_id]; if (endpoint->ee_id == ee_id) ipa_filter_tuple_zero(endpoint); } } static void ipa_filter_deconfig(struct ipa *ipa, bool modem) { /* Nothing to do */ } static bool ipa_route_id_modem(u32 route_id) { return route_id >= IPA_ROUTE_MODEM_MIN && route_id <= IPA_ROUTE_MODEM_MIN + IPA_ROUTE_MODEM_COUNT - 1; } /** * ipa_route_tuple_zero() - Zero a hashed route table entry tuple * @ipa: IPA pointer * @route_id: Route table entry whose hash tuple should be zeroed * * Updates the route hash values without changing filter ones. */ static void ipa_route_tuple_zero(struct ipa *ipa, u32 route_id) { u32 offset = IPA_REG_ENDP_FILTER_ROUTER_HSH_CFG_N_OFFSET(route_id); u32 val; val = ioread32(ipa->reg_virt + offset); /* Zero all route-related fields, preserving the rest */ u32p_replace_bits(&val, 0, IPA_REG_ENDP_ROUTER_HASH_MSK_ALL); iowrite32(val, ipa->reg_virt + offset); } static void ipa_route_config(struct ipa *ipa, bool modem) { u32 route_id; /* IPA version 4.2 has no hashed route tables */ if (ipa->version == IPA_VERSION_4_2) return; for (route_id = 0; route_id < IPA_ROUTE_COUNT_MAX; route_id++) if (ipa_route_id_modem(route_id) == modem) ipa_route_tuple_zero(ipa, route_id); } static void ipa_route_deconfig(struct ipa *ipa, bool modem) { /* Nothing to do */ } void ipa_table_config(struct ipa *ipa) { ipa_filter_config(ipa, false); ipa_filter_config(ipa, true); ipa_route_config(ipa, false); ipa_route_config(ipa, true); } void ipa_table_deconfig(struct ipa *ipa) { ipa_route_deconfig(ipa, true); ipa_route_deconfig(ipa, false); ipa_filter_deconfig(ipa, true); ipa_filter_deconfig(ipa, false); } /* * Initialize a coherent DMA allocation containing initialized filter and * route table data. This is used when initializing or resetting the IPA * filter or route table. * * The first entry in a filter table contains a bitmap indicating which * endpoints contain entries in the table. In addition to that first entry, * there are at most IPA_FILTER_COUNT_MAX entries that follow. Filter table * entries are 64 bits wide, and (other than the bitmap) contain the DMA * address of a filter rule. A "zero rule" indicates no filtering, and * consists of 64 bits of zeroes. When a filter table is initialized (or * reset) its entries are made to refer to the zero rule. * * Each entry in a route table is the DMA address of a routing rule. For * routing there is also a 64-bit "zero rule" that means no routing, and * when a route table is initialized or reset, its entries are made to refer * to the zero rule. The zero rule is shared for route and filter tables. * * Note that the IPA hardware requires a filter or route rule address to be * aligned on a 128 byte boundary. The coherent DMA buffer we allocate here * has a minimum alignment, and we place the zero rule at the base of that * allocated space. In ipa_table_init() we verify the minimum DMA allocation * meets our requirement. * * +-------------------+ * --> | zero rule | * / |-------------------| * | | filter mask | * |\ |-------------------| * | ---- zero rule address | \ * |\ |-------------------| | * | ---- zero rule address | | IPA_FILTER_COUNT_MAX * | |-------------------| > or IPA_ROUTE_COUNT_MAX, * | ... | whichever is greater * \ |-------------------| | * ---- zero rule address | / * +-------------------+ */ int ipa_table_init(struct ipa *ipa) { u32 count = max_t(u32, IPA_FILTER_COUNT_MAX, IPA_ROUTE_COUNT_MAX); struct device *dev = &ipa->pdev->dev; dma_addr_t addr; __le64 le_addr; __le64 *virt; size_t size; ipa_table_validate_build(); size = IPA_ZERO_RULE_SIZE + (1 + count) * IPA_TABLE_ENTRY_SIZE; virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL); if (!virt) return -ENOMEM; ipa->table_virt = virt; ipa->table_addr = addr; /* First slot is the zero rule */ *virt++ = 0; /* Next is the filter table bitmap. The "soft" bitmap value * must be converted to the hardware representation by shifting * it left one position. (Bit 0 repesents global filtering, * which is possible but not used.) */ *virt++ = cpu_to_le64((u64)ipa->filter_map << 1); /* All the rest contain the DMA address of the zero rule */ le_addr = cpu_to_le64(addr); while (count--) *virt++ = le_addr; return 0; } void ipa_table_exit(struct ipa *ipa) { u32 count = max_t(u32, 1 + IPA_FILTER_COUNT_MAX, IPA_ROUTE_COUNT_MAX); struct device *dev = &ipa->pdev->dev; size_t size; size = IPA_ZERO_RULE_SIZE + (1 + count) * IPA_TABLE_ENTRY_SIZE; dma_free_coherent(dev, size, ipa->table_virt, ipa->table_addr); ipa->table_addr = 0; ipa->table_virt = NULL; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1