Contributors: 20
	  
        
          | Author | 
          Tokens | 
          Token Proportion | 
          Commits | 
          Commit Proportion | 
        
	  
	  
        
        
          | Marek Szyprowski | 
          1161 | 
          64.11% | 
          6 | 
          18.18% | 
        
        
          | Mitchel Humpherys | 
          208 | 
          11.49% | 
          1 | 
          3.03% | 
        
        
          | Thierry Reding | 
          91 | 
          5.02% | 
          2 | 
          6.06% | 
        
        
          | Björn Andersson | 
          83 | 
          4.58% | 
          1 | 
          3.03% | 
        
        
          | Pierre Kuo | 
          81 | 
          4.47% | 
          1 | 
          3.03% | 
        
        
          | Jason Liu | 
          28 | 
          1.55% | 
          1 | 
          3.03% | 
        
        
          | Mike Rapoport | 
          24 | 
          1.33% | 
          4 | 
          12.12% | 
        
        
          | Michael Ellerman | 
          23 | 
          1.27% | 
          2 | 
          6.06% | 
        
        
          | Rob Herring | 
          21 | 
          1.16% | 
          4 | 
          12.12% | 
        
        
          | Yue Hu | 
          17 | 
          0.94% | 
          1 | 
          3.03% | 
        
        
          | Stephen Rothwell | 
          17 | 
          0.94% | 
          1 | 
          3.03% | 
        
        
          | Vinayak Menon | 
          13 | 
          0.72% | 
          1 | 
          3.03% | 
        
        
          | Krishna Reddy | 
          11 | 
          0.61% | 
          1 | 
          3.03% | 
        
        
          | Jaewon Kim | 
          11 | 
          0.61% | 
          1 | 
          3.03% | 
        
        
          | George G. Davis | 
          9 | 
          0.50% | 
          1 | 
          3.03% | 
        
        
          | Chris Goldsworthy | 
          7 | 
          0.39% | 
          1 | 
          3.03% | 
        
        
          | chenqiwu | 
          3 | 
          0.17% | 
          1 | 
          3.03% | 
        
        
          | Danny Lin | 
          1 | 
          0.06% | 
          1 | 
          3.03% | 
        
        
          | Patrick Daly | 
          1 | 
          0.06% | 
          1 | 
          3.03% | 
        
        
          | Christoph Hellwig | 
          1 | 
          0.06% | 
          1 | 
          3.03% | 
        
	  
	  
        
          | Total | 
          1811 | 
           | 
          33 | 
           | 
	    
	  
    
 
// SPDX-License-Identifier: GPL-2.0+
/*
 * Device tree based initialization code for reserved memory.
 *
 * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
 * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
 * Author: Marek Szyprowski <m.szyprowski@samsung.com>
 * Author: Josh Cartwright <joshc@codeaurora.org>
 */
#define pr_fmt(fmt)	"OF: reserved mem: " fmt
#include <linux/err.h>
#include <linux/of.h>
#include <linux/of_fdt.h>
#include <linux/of_platform.h>
#include <linux/mm.h>
#include <linux/sizes.h>
#include <linux/of_reserved_mem.h>
#include <linux/sort.h>
#include <linux/slab.h>
#include <linux/memblock.h>
#define MAX_RESERVED_REGIONS	64
static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
static int reserved_mem_count;
static int __init early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
	phys_addr_t *res_base)
{
	phys_addr_t base;
	end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
	align = !align ? SMP_CACHE_BYTES : align;
	base = memblock_find_in_range(start, end, size, align);
	if (!base)
		return -ENOMEM;
	*res_base = base;
	if (nomap)
		return memblock_remove(base, size);
	return memblock_reserve(base, size);
}
/**
 * fdt_reserved_mem_save_node() - save fdt node for second pass initialization
 */
void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
				      phys_addr_t base, phys_addr_t size)
{
	struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
	if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
		pr_err("not enough space for all defined regions.\n");
		return;
	}
	rmem->fdt_node = node;
	rmem->name = uname;
	rmem->base = base;
	rmem->size = size;
	reserved_mem_count++;
	return;
}
/**
 * __reserved_mem_alloc_size() - allocate reserved memory described by
 *	'size', 'alignment'  and 'alloc-ranges' properties.
 */
static int __init __reserved_mem_alloc_size(unsigned long node,
	const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
{
	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
	phys_addr_t start = 0, end = 0;
	phys_addr_t base = 0, align = 0, size;
	int len;
	const __be32 *prop;
	bool nomap;
	int ret;
	prop = of_get_flat_dt_prop(node, "size", &len);
	if (!prop)
		return -EINVAL;
	if (len != dt_root_size_cells * sizeof(__be32)) {
		pr_err("invalid size property in '%s' node.\n", uname);
		return -EINVAL;
	}
	size = dt_mem_next_cell(dt_root_size_cells, &prop);
	prop = of_get_flat_dt_prop(node, "alignment", &len);
	if (prop) {
		if (len != dt_root_addr_cells * sizeof(__be32)) {
			pr_err("invalid alignment property in '%s' node.\n",
				uname);
			return -EINVAL;
		}
		align = dt_mem_next_cell(dt_root_addr_cells, &prop);
	}
	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
	/* Need adjust the alignment to satisfy the CMA requirement */
	if (IS_ENABLED(CONFIG_CMA)
	    && of_flat_dt_is_compatible(node, "shared-dma-pool")
	    && of_get_flat_dt_prop(node, "reusable", NULL)
	    && !nomap) {
		unsigned long order =
			max_t(unsigned long, MAX_ORDER - 1, pageblock_order);
		align = max(align, (phys_addr_t)PAGE_SIZE << order);
	}
	prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
	if (prop) {
		if (len % t_len != 0) {
			pr_err("invalid alloc-ranges property in '%s', skipping node.\n",
			       uname);
			return -EINVAL;
		}
		base = 0;
		while (len > 0) {
			start = dt_mem_next_cell(dt_root_addr_cells, &prop);
			end = start + dt_mem_next_cell(dt_root_size_cells,
						       &prop);
			ret = early_init_dt_alloc_reserved_memory_arch(size,
					align, start, end, nomap, &base);
			if (ret == 0) {
				pr_debug("allocated memory for '%s' node: base %pa, size %ld MiB\n",
					uname, &base,
					(unsigned long)size / SZ_1M);
				break;
			}
			len -= t_len;
		}
	} else {
		ret = early_init_dt_alloc_reserved_memory_arch(size, align,
							0, 0, nomap, &base);
		if (ret == 0)
			pr_debug("allocated memory for '%s' node: base %pa, size %ld MiB\n",
				uname, &base, (unsigned long)size / SZ_1M);
	}
	if (base == 0) {
		pr_info("failed to allocate memory for node '%s'\n", uname);
		return -ENOMEM;
	}
	*res_base = base;
	*res_size = size;
	return 0;
}
static const struct of_device_id __rmem_of_table_sentinel
	__used __section(__reservedmem_of_table_end);
/**
 * __reserved_mem_init_node() - call region specific reserved memory init code
 */
static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
{
	extern const struct of_device_id __reservedmem_of_table[];
	const struct of_device_id *i;
	int ret = -ENOENT;
	for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
		reservedmem_of_init_fn initfn = i->data;
		const char *compat = i->compatible;
		if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
			continue;
		ret = initfn(rmem);
		if (ret == 0) {
			pr_info("initialized node %s, compatible id %s\n",
				rmem->name, compat);
			break;
		}
	}
	return ret;
}
static int __init __rmem_cmp(const void *a, const void *b)
{
	const struct reserved_mem *ra = a, *rb = b;
	if (ra->base < rb->base)
		return -1;
	if (ra->base > rb->base)
		return 1;
	return 0;
}
static void __init __rmem_check_for_overlap(void)
{
	int i;
	if (reserved_mem_count < 2)
		return;
	sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
	     __rmem_cmp, NULL);
	for (i = 0; i < reserved_mem_count - 1; i++) {
		struct reserved_mem *this, *next;
		this = &reserved_mem[i];
		next = &reserved_mem[i + 1];
		if (!(this->base && next->base))
			continue;
		if (this->base + this->size > next->base) {
			phys_addr_t this_end, next_end;
			this_end = this->base + this->size;
			next_end = next->base + next->size;
			pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
			       this->name, &this->base, &this_end,
			       next->name, &next->base, &next_end);
		}
	}
}
/**
 * fdt_init_reserved_mem() - allocate and init all saved reserved memory regions
 */
void __init fdt_init_reserved_mem(void)
{
	int i;
	/* check for overlapping reserved regions */
	__rmem_check_for_overlap();
	for (i = 0; i < reserved_mem_count; i++) {
		struct reserved_mem *rmem = &reserved_mem[i];
		unsigned long node = rmem->fdt_node;
		int len;
		const __be32 *prop;
		int err = 0;
		bool nomap;
		nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
		prop = of_get_flat_dt_prop(node, "phandle", &len);
		if (!prop)
			prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
		if (prop)
			rmem->phandle = of_read_number(prop, len/4);
		if (rmem->size == 0)
			err = __reserved_mem_alloc_size(node, rmem->name,
						 &rmem->base, &rmem->size);
		if (err == 0) {
			err = __reserved_mem_init_node(rmem);
			if (err != 0 && err != -ENOENT) {
				pr_info("node %s compatible matching fail\n",
					rmem->name);
				memblock_free(rmem->base, rmem->size);
				if (nomap)
					memblock_add(rmem->base, rmem->size);
			}
		}
	}
}
static inline struct reserved_mem *__find_rmem(struct device_node *node)
{
	unsigned int i;
	if (!node->phandle)
		return NULL;
	for (i = 0; i < reserved_mem_count; i++)
		if (reserved_mem[i].phandle == node->phandle)
			return &reserved_mem[i];
	return NULL;
}
struct rmem_assigned_device {
	struct device *dev;
	struct reserved_mem *rmem;
	struct list_head list;
};
static LIST_HEAD(of_rmem_assigned_device_list);
static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
/**
 * of_reserved_mem_device_init_by_idx() - assign reserved memory region to
 *					  given device
 * @dev:	Pointer to the device to configure
 * @np:		Pointer to the device_node with 'reserved-memory' property
 * @idx:	Index of selected region
 *
 * This function assigns respective DMA-mapping operations based on reserved
 * memory region specified by 'memory-region' property in @np node to the @dev
 * device. When driver needs to use more than one reserved memory region, it
 * should allocate child devices and initialize regions by name for each of
 * child device.
 *
 * Returns error code or zero on success.
 */
int of_reserved_mem_device_init_by_idx(struct device *dev,
				       struct device_node *np, int idx)
{
	struct rmem_assigned_device *rd;
	struct device_node *target;
	struct reserved_mem *rmem;
	int ret;
	if (!np || !dev)
		return -EINVAL;
	target = of_parse_phandle(np, "memory-region", idx);
	if (!target)
		return -ENODEV;
	if (!of_device_is_available(target)) {
		of_node_put(target);
		return 0;
	}
	rmem = __find_rmem(target);
	of_node_put(target);
	if (!rmem || !rmem->ops || !rmem->ops->device_init)
		return -EINVAL;
	rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
	if (!rd)
		return -ENOMEM;
	ret = rmem->ops->device_init(rmem, dev);
	if (ret == 0) {
		rd->dev = dev;
		rd->rmem = rmem;
		mutex_lock(&of_rmem_assigned_device_mutex);
		list_add(&rd->list, &of_rmem_assigned_device_list);
		mutex_unlock(&of_rmem_assigned_device_mutex);
		dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
	} else {
		kfree(rd);
	}
	return ret;
}
EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
/**
 * of_reserved_mem_device_init_by_name() - assign named reserved memory region
 *					   to given device
 * @dev: pointer to the device to configure
 * @np: pointer to the device node with 'memory-region' property
 * @name: name of the selected memory region
 *
 * Returns: 0 on success or a negative error-code on failure.
 */
int of_reserved_mem_device_init_by_name(struct device *dev,
					struct device_node *np,
					const char *name)
{
	int idx = of_property_match_string(np, "memory-region-names", name);
	return of_reserved_mem_device_init_by_idx(dev, np, idx);
}
EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_name);
/**
 * of_reserved_mem_device_release() - release reserved memory device structures
 * @dev:	Pointer to the device to deconfigure
 *
 * This function releases structures allocated for memory region handling for
 * the given device.
 */
void of_reserved_mem_device_release(struct device *dev)
{
	struct rmem_assigned_device *rd, *tmp;
	LIST_HEAD(release_list);
	mutex_lock(&of_rmem_assigned_device_mutex);
	list_for_each_entry_safe(rd, tmp, &of_rmem_assigned_device_list, list) {
		if (rd->dev == dev)
			list_move_tail(&rd->list, &release_list);
	}
	mutex_unlock(&of_rmem_assigned_device_mutex);
	list_for_each_entry_safe(rd, tmp, &release_list, list) {
		if (rd->rmem && rd->rmem->ops && rd->rmem->ops->device_release)
			rd->rmem->ops->device_release(rd->rmem, dev);
		kfree(rd);
	}
}
EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
/**
 * of_reserved_mem_lookup() - acquire reserved_mem from a device node
 * @np:		node pointer of the desired reserved-memory region
 *
 * This function allows drivers to acquire a reference to the reserved_mem
 * struct based on a device node handle.
 *
 * Returns a reserved_mem reference, or NULL on error.
 */
struct reserved_mem *of_reserved_mem_lookup(struct device_node *np)
{
	const char *name;
	int i;
	if (!np->full_name)
		return NULL;
	name = kbasename(np->full_name);
	for (i = 0; i < reserved_mem_count; i++)
		if (!strcmp(reserved_mem[i].name, name))
			return &reserved_mem[i];
	return NULL;
}
EXPORT_SYMBOL_GPL(of_reserved_mem_lookup);