Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Suzuki K. Poulose | 3544 | 99.55% | 2 | 28.57% |
Andrew Murray | 5 | 0.14% | 1 | 14.29% |
Qi Liu | 5 | 0.14% | 1 | 14.29% |
Yury Norov | 2 | 0.06% | 1 | 14.29% |
Thomas Gleixner | 2 | 0.06% | 1 | 14.29% |
Peter Zijlstra | 2 | 0.06% | 1 | 14.29% |
Total | 3560 | 7 |
// SPDX-License-Identifier: GPL-2.0-only /* * ARM DynamIQ Shared Unit (DSU) PMU driver * * Copyright (C) ARM Limited, 2017. * * Based on ARM CCI-PMU, ARMv8 PMU-v3 drivers. */ #define PMUNAME "arm_dsu" #define DRVNAME PMUNAME "_pmu" #define pr_fmt(fmt) DRVNAME ": " fmt #include <linux/bitmap.h> #include <linux/bitops.h> #include <linux/bug.h> #include <linux/cpumask.h> #include <linux/device.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of_device.h> #include <linux/perf_event.h> #include <linux/platform_device.h> #include <linux/spinlock.h> #include <linux/smp.h> #include <linux/sysfs.h> #include <linux/types.h> #include <asm/arm_dsu_pmu.h> #include <asm/local64.h> /* PMU event codes */ #define DSU_PMU_EVT_CYCLES 0x11 #define DSU_PMU_EVT_CHAIN 0x1e #define DSU_PMU_MAX_COMMON_EVENTS 0x40 #define DSU_PMU_MAX_HW_CNTRS 32 #define DSU_PMU_HW_COUNTER_MASK (DSU_PMU_MAX_HW_CNTRS - 1) #define CLUSTERPMCR_E BIT(0) #define CLUSTERPMCR_P BIT(1) #define CLUSTERPMCR_C BIT(2) #define CLUSTERPMCR_N_SHIFT 11 #define CLUSTERPMCR_N_MASK 0x1f #define CLUSTERPMCR_IDCODE_SHIFT 16 #define CLUSTERPMCR_IDCODE_MASK 0xff #define CLUSTERPMCR_IMP_SHIFT 24 #define CLUSTERPMCR_IMP_MASK 0xff #define CLUSTERPMCR_RES_MASK 0x7e8 #define CLUSTERPMCR_RES_VAL 0x40 #define DSU_ACTIVE_CPU_MASK 0x0 #define DSU_ASSOCIATED_CPU_MASK 0x1 /* * We use the index of the counters as they appear in the counter * bit maps in the PMU registers (e.g CLUSTERPMSELR). * i.e, * counter 0 - Bit 0 * counter 1 - Bit 1 * ... * Cycle counter - Bit 31 */ #define DSU_PMU_IDX_CYCLE_COUNTER 31 /* All event counters are 32bit, with a 64bit Cycle counter */ #define DSU_PMU_COUNTER_WIDTH(idx) \ (((idx) == DSU_PMU_IDX_CYCLE_COUNTER) ? 64 : 32) #define DSU_PMU_COUNTER_MASK(idx) \ GENMASK_ULL((DSU_PMU_COUNTER_WIDTH((idx)) - 1), 0) #define DSU_EXT_ATTR(_name, _func, _config) \ (&((struct dev_ext_attribute[]) { \ { \ .attr = __ATTR(_name, 0444, _func, NULL), \ .var = (void *)_config \ } \ })[0].attr.attr) #define DSU_EVENT_ATTR(_name, _config) \ DSU_EXT_ATTR(_name, dsu_pmu_sysfs_event_show, (unsigned long)_config) #define DSU_FORMAT_ATTR(_name, _config) \ DSU_EXT_ATTR(_name, dsu_pmu_sysfs_format_show, (char *)_config) #define DSU_CPUMASK_ATTR(_name, _config) \ DSU_EXT_ATTR(_name, dsu_pmu_cpumask_show, (unsigned long)_config) struct dsu_hw_events { DECLARE_BITMAP(used_mask, DSU_PMU_MAX_HW_CNTRS); struct perf_event *events[DSU_PMU_MAX_HW_CNTRS]; }; /* * struct dsu_pmu - DSU PMU descriptor * * @pmu_lock : Protects accesses to DSU PMU register from normal vs * interrupt handler contexts. * @hw_events : Holds the event counter state. * @associated_cpus : CPUs attached to the DSU. * @active_cpu : CPU to which the PMU is bound for accesses. * @cpuhp_node : Node for CPU hotplug notifier link. * @num_counters : Number of event counters implemented by the PMU, * excluding the cycle counter. * @irq : Interrupt line for counter overflow. * @cpmceid_bitmap : Bitmap for the availability of architected common * events (event_code < 0x40). */ struct dsu_pmu { struct pmu pmu; struct device *dev; raw_spinlock_t pmu_lock; struct dsu_hw_events hw_events; cpumask_t associated_cpus; cpumask_t active_cpu; struct hlist_node cpuhp_node; s8 num_counters; int irq; DECLARE_BITMAP(cpmceid_bitmap, DSU_PMU_MAX_COMMON_EVENTS); }; static unsigned long dsu_pmu_cpuhp_state; static inline struct dsu_pmu *to_dsu_pmu(struct pmu *pmu) { return container_of(pmu, struct dsu_pmu, pmu); } static ssize_t dsu_pmu_sysfs_event_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dev_ext_attribute *eattr = container_of(attr, struct dev_ext_attribute, attr); return snprintf(buf, PAGE_SIZE, "event=0x%lx\n", (unsigned long)eattr->var); } static ssize_t dsu_pmu_sysfs_format_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dev_ext_attribute *eattr = container_of(attr, struct dev_ext_attribute, attr); return snprintf(buf, PAGE_SIZE, "%s\n", (char *)eattr->var); } static ssize_t dsu_pmu_cpumask_show(struct device *dev, struct device_attribute *attr, char *buf) { struct pmu *pmu = dev_get_drvdata(dev); struct dsu_pmu *dsu_pmu = to_dsu_pmu(pmu); struct dev_ext_attribute *eattr = container_of(attr, struct dev_ext_attribute, attr); unsigned long mask_id = (unsigned long)eattr->var; const cpumask_t *cpumask; switch (mask_id) { case DSU_ACTIVE_CPU_MASK: cpumask = &dsu_pmu->active_cpu; break; case DSU_ASSOCIATED_CPU_MASK: cpumask = &dsu_pmu->associated_cpus; break; default: return 0; } return cpumap_print_to_pagebuf(true, buf, cpumask); } static struct attribute *dsu_pmu_format_attrs[] = { DSU_FORMAT_ATTR(event, "config:0-31"), NULL, }; static const struct attribute_group dsu_pmu_format_attr_group = { .name = "format", .attrs = dsu_pmu_format_attrs, }; static struct attribute *dsu_pmu_event_attrs[] = { DSU_EVENT_ATTR(cycles, 0x11), DSU_EVENT_ATTR(bus_access, 0x19), DSU_EVENT_ATTR(memory_error, 0x1a), DSU_EVENT_ATTR(bus_cycles, 0x1d), DSU_EVENT_ATTR(l3d_cache_allocate, 0x29), DSU_EVENT_ATTR(l3d_cache_refill, 0x2a), DSU_EVENT_ATTR(l3d_cache, 0x2b), DSU_EVENT_ATTR(l3d_cache_wb, 0x2c), NULL, }; static umode_t dsu_pmu_event_attr_is_visible(struct kobject *kobj, struct attribute *attr, int unused) { struct pmu *pmu = dev_get_drvdata(kobj_to_dev(kobj)); struct dsu_pmu *dsu_pmu = to_dsu_pmu(pmu); struct dev_ext_attribute *eattr = container_of(attr, struct dev_ext_attribute, attr.attr); unsigned long evt = (unsigned long)eattr->var; return test_bit(evt, dsu_pmu->cpmceid_bitmap) ? attr->mode : 0; } static const struct attribute_group dsu_pmu_events_attr_group = { .name = "events", .attrs = dsu_pmu_event_attrs, .is_visible = dsu_pmu_event_attr_is_visible, }; static struct attribute *dsu_pmu_cpumask_attrs[] = { DSU_CPUMASK_ATTR(cpumask, DSU_ACTIVE_CPU_MASK), DSU_CPUMASK_ATTR(associated_cpus, DSU_ASSOCIATED_CPU_MASK), NULL, }; static const struct attribute_group dsu_pmu_cpumask_attr_group = { .attrs = dsu_pmu_cpumask_attrs, }; static const struct attribute_group *dsu_pmu_attr_groups[] = { &dsu_pmu_cpumask_attr_group, &dsu_pmu_events_attr_group, &dsu_pmu_format_attr_group, NULL, }; static int dsu_pmu_get_online_cpu_any_but(struct dsu_pmu *dsu_pmu, int cpu) { struct cpumask online_supported; cpumask_and(&online_supported, &dsu_pmu->associated_cpus, cpu_online_mask); return cpumask_any_but(&online_supported, cpu); } static inline bool dsu_pmu_counter_valid(struct dsu_pmu *dsu_pmu, u32 idx) { return (idx < dsu_pmu->num_counters) || (idx == DSU_PMU_IDX_CYCLE_COUNTER); } static inline u64 dsu_pmu_read_counter(struct perf_event *event) { u64 val; unsigned long flags; struct dsu_pmu *dsu_pmu = to_dsu_pmu(event->pmu); int idx = event->hw.idx; if (WARN_ON(!cpumask_test_cpu(smp_processor_id(), &dsu_pmu->associated_cpus))) return 0; if (!dsu_pmu_counter_valid(dsu_pmu, idx)) { dev_err(event->pmu->dev, "Trying reading invalid counter %d\n", idx); return 0; } raw_spin_lock_irqsave(&dsu_pmu->pmu_lock, flags); if (idx == DSU_PMU_IDX_CYCLE_COUNTER) val = __dsu_pmu_read_pmccntr(); else val = __dsu_pmu_read_counter(idx); raw_spin_unlock_irqrestore(&dsu_pmu->pmu_lock, flags); return val; } static void dsu_pmu_write_counter(struct perf_event *event, u64 val) { unsigned long flags; struct dsu_pmu *dsu_pmu = to_dsu_pmu(event->pmu); int idx = event->hw.idx; if (WARN_ON(!cpumask_test_cpu(smp_processor_id(), &dsu_pmu->associated_cpus))) return; if (!dsu_pmu_counter_valid(dsu_pmu, idx)) { dev_err(event->pmu->dev, "writing to invalid counter %d\n", idx); return; } raw_spin_lock_irqsave(&dsu_pmu->pmu_lock, flags); if (idx == DSU_PMU_IDX_CYCLE_COUNTER) __dsu_pmu_write_pmccntr(val); else __dsu_pmu_write_counter(idx, val); raw_spin_unlock_irqrestore(&dsu_pmu->pmu_lock, flags); } static int dsu_pmu_get_event_idx(struct dsu_hw_events *hw_events, struct perf_event *event) { int idx; unsigned long evtype = event->attr.config; struct dsu_pmu *dsu_pmu = to_dsu_pmu(event->pmu); unsigned long *used_mask = hw_events->used_mask; if (evtype == DSU_PMU_EVT_CYCLES) { if (test_and_set_bit(DSU_PMU_IDX_CYCLE_COUNTER, used_mask)) return -EAGAIN; return DSU_PMU_IDX_CYCLE_COUNTER; } idx = find_first_zero_bit(used_mask, dsu_pmu->num_counters); if (idx >= dsu_pmu->num_counters) return -EAGAIN; set_bit(idx, hw_events->used_mask); return idx; } static void dsu_pmu_enable_counter(struct dsu_pmu *dsu_pmu, int idx) { __dsu_pmu_counter_interrupt_enable(idx); __dsu_pmu_enable_counter(idx); } static void dsu_pmu_disable_counter(struct dsu_pmu *dsu_pmu, int idx) { __dsu_pmu_disable_counter(idx); __dsu_pmu_counter_interrupt_disable(idx); } static inline void dsu_pmu_set_event(struct dsu_pmu *dsu_pmu, struct perf_event *event) { int idx = event->hw.idx; unsigned long flags; if (!dsu_pmu_counter_valid(dsu_pmu, idx)) { dev_err(event->pmu->dev, "Trying to set invalid counter %d\n", idx); return; } raw_spin_lock_irqsave(&dsu_pmu->pmu_lock, flags); __dsu_pmu_set_event(idx, event->hw.config_base); raw_spin_unlock_irqrestore(&dsu_pmu->pmu_lock, flags); } static void dsu_pmu_event_update(struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; u64 delta, prev_count, new_count; do { /* We may also be called from the irq handler */ prev_count = local64_read(&hwc->prev_count); new_count = dsu_pmu_read_counter(event); } while (local64_cmpxchg(&hwc->prev_count, prev_count, new_count) != prev_count); delta = (new_count - prev_count) & DSU_PMU_COUNTER_MASK(hwc->idx); local64_add(delta, &event->count); } static void dsu_pmu_read(struct perf_event *event) { dsu_pmu_event_update(event); } static inline u32 dsu_pmu_get_reset_overflow(void) { return __dsu_pmu_get_reset_overflow(); } /** * dsu_pmu_set_event_period: Set the period for the counter. * * All DSU PMU event counters, except the cycle counter are 32bit * counters. To handle cases of extreme interrupt latency, we program * the counter with half of the max count for the counters. */ static void dsu_pmu_set_event_period(struct perf_event *event) { int idx = event->hw.idx; u64 val = DSU_PMU_COUNTER_MASK(idx) >> 1; local64_set(&event->hw.prev_count, val); dsu_pmu_write_counter(event, val); } static irqreturn_t dsu_pmu_handle_irq(int irq_num, void *dev) { int i; bool handled = false; struct dsu_pmu *dsu_pmu = dev; struct dsu_hw_events *hw_events = &dsu_pmu->hw_events; unsigned long overflow; overflow = dsu_pmu_get_reset_overflow(); if (!overflow) return IRQ_NONE; for_each_set_bit(i, &overflow, DSU_PMU_MAX_HW_CNTRS) { struct perf_event *event = hw_events->events[i]; if (!event) continue; dsu_pmu_event_update(event); dsu_pmu_set_event_period(event); handled = true; } return IRQ_RETVAL(handled); } static void dsu_pmu_start(struct perf_event *event, int pmu_flags) { struct dsu_pmu *dsu_pmu = to_dsu_pmu(event->pmu); /* We always reprogram the counter */ if (pmu_flags & PERF_EF_RELOAD) WARN_ON(!(event->hw.state & PERF_HES_UPTODATE)); dsu_pmu_set_event_period(event); if (event->hw.idx != DSU_PMU_IDX_CYCLE_COUNTER) dsu_pmu_set_event(dsu_pmu, event); event->hw.state = 0; dsu_pmu_enable_counter(dsu_pmu, event->hw.idx); } static void dsu_pmu_stop(struct perf_event *event, int pmu_flags) { struct dsu_pmu *dsu_pmu = to_dsu_pmu(event->pmu); if (event->hw.state & PERF_HES_STOPPED) return; dsu_pmu_disable_counter(dsu_pmu, event->hw.idx); dsu_pmu_event_update(event); event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; } static int dsu_pmu_add(struct perf_event *event, int flags) { struct dsu_pmu *dsu_pmu = to_dsu_pmu(event->pmu); struct dsu_hw_events *hw_events = &dsu_pmu->hw_events; struct hw_perf_event *hwc = &event->hw; int idx; if (WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(), &dsu_pmu->associated_cpus))) return -ENOENT; idx = dsu_pmu_get_event_idx(hw_events, event); if (idx < 0) return idx; hwc->idx = idx; hw_events->events[idx] = event; hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; if (flags & PERF_EF_START) dsu_pmu_start(event, PERF_EF_RELOAD); perf_event_update_userpage(event); return 0; } static void dsu_pmu_del(struct perf_event *event, int flags) { struct dsu_pmu *dsu_pmu = to_dsu_pmu(event->pmu); struct dsu_hw_events *hw_events = &dsu_pmu->hw_events; struct hw_perf_event *hwc = &event->hw; int idx = hwc->idx; dsu_pmu_stop(event, PERF_EF_UPDATE); hw_events->events[idx] = NULL; clear_bit(idx, hw_events->used_mask); perf_event_update_userpage(event); } static void dsu_pmu_enable(struct pmu *pmu) { u32 pmcr; unsigned long flags; struct dsu_pmu *dsu_pmu = to_dsu_pmu(pmu); /* If no counters are added, skip enabling the PMU */ if (bitmap_empty(dsu_pmu->hw_events.used_mask, DSU_PMU_MAX_HW_CNTRS)) return; raw_spin_lock_irqsave(&dsu_pmu->pmu_lock, flags); pmcr = __dsu_pmu_read_pmcr(); pmcr |= CLUSTERPMCR_E; __dsu_pmu_write_pmcr(pmcr); raw_spin_unlock_irqrestore(&dsu_pmu->pmu_lock, flags); } static void dsu_pmu_disable(struct pmu *pmu) { u32 pmcr; unsigned long flags; struct dsu_pmu *dsu_pmu = to_dsu_pmu(pmu); raw_spin_lock_irqsave(&dsu_pmu->pmu_lock, flags); pmcr = __dsu_pmu_read_pmcr(); pmcr &= ~CLUSTERPMCR_E; __dsu_pmu_write_pmcr(pmcr); raw_spin_unlock_irqrestore(&dsu_pmu->pmu_lock, flags); } static bool dsu_pmu_validate_event(struct pmu *pmu, struct dsu_hw_events *hw_events, struct perf_event *event) { if (is_software_event(event)) return true; /* Reject groups spanning multiple HW PMUs. */ if (event->pmu != pmu) return false; return dsu_pmu_get_event_idx(hw_events, event) >= 0; } /* * Make sure the group of events can be scheduled at once * on the PMU. */ static bool dsu_pmu_validate_group(struct perf_event *event) { struct perf_event *sibling, *leader = event->group_leader; struct dsu_hw_events fake_hw; if (event->group_leader == event) return true; memset(fake_hw.used_mask, 0, sizeof(fake_hw.used_mask)); if (!dsu_pmu_validate_event(event->pmu, &fake_hw, leader)) return false; for_each_sibling_event(sibling, leader) { if (!dsu_pmu_validate_event(event->pmu, &fake_hw, sibling)) return false; } return dsu_pmu_validate_event(event->pmu, &fake_hw, event); } static int dsu_pmu_event_init(struct perf_event *event) { struct dsu_pmu *dsu_pmu = to_dsu_pmu(event->pmu); if (event->attr.type != event->pmu->type) return -ENOENT; /* We don't support sampling */ if (is_sampling_event(event)) { dev_dbg(dsu_pmu->pmu.dev, "Can't support sampling events\n"); return -EOPNOTSUPP; } /* We cannot support task bound events */ if (event->cpu < 0 || event->attach_state & PERF_ATTACH_TASK) { dev_dbg(dsu_pmu->pmu.dev, "Can't support per-task counters\n"); return -EINVAL; } if (has_branch_stack(event)) { dev_dbg(dsu_pmu->pmu.dev, "Can't support filtering\n"); return -EINVAL; } if (!cpumask_test_cpu(event->cpu, &dsu_pmu->associated_cpus)) { dev_dbg(dsu_pmu->pmu.dev, "Requested cpu is not associated with the DSU\n"); return -EINVAL; } /* * Choose the current active CPU to read the events. We don't want * to migrate the event contexts, irq handling etc to the requested * CPU. As long as the requested CPU is within the same DSU, we * are fine. */ event->cpu = cpumask_first(&dsu_pmu->active_cpu); if (event->cpu >= nr_cpu_ids) return -EINVAL; if (!dsu_pmu_validate_group(event)) return -EINVAL; event->hw.config_base = event->attr.config; return 0; } static struct dsu_pmu *dsu_pmu_alloc(struct platform_device *pdev) { struct dsu_pmu *dsu_pmu; dsu_pmu = devm_kzalloc(&pdev->dev, sizeof(*dsu_pmu), GFP_KERNEL); if (!dsu_pmu) return ERR_PTR(-ENOMEM); raw_spin_lock_init(&dsu_pmu->pmu_lock); /* * Initialise the number of counters to -1, until we probe * the real number on a connected CPU. */ dsu_pmu->num_counters = -1; return dsu_pmu; } /** * dsu_pmu_dt_get_cpus: Get the list of CPUs in the cluster. */ static int dsu_pmu_dt_get_cpus(struct device_node *dev, cpumask_t *mask) { int i = 0, n, cpu; struct device_node *cpu_node; n = of_count_phandle_with_args(dev, "cpus", NULL); if (n <= 0) return -ENODEV; for (; i < n; i++) { cpu_node = of_parse_phandle(dev, "cpus", i); if (!cpu_node) break; cpu = of_cpu_node_to_id(cpu_node); of_node_put(cpu_node); /* * We have to ignore the failures here and continue scanning * the list to handle cases where the nr_cpus could be capped * in the running kernel. */ if (cpu < 0) continue; cpumask_set_cpu(cpu, mask); } return 0; } /* * dsu_pmu_probe_pmu: Probe the PMU details on a CPU in the cluster. */ static void dsu_pmu_probe_pmu(struct dsu_pmu *dsu_pmu) { u64 num_counters; u32 cpmceid[2]; num_counters = (__dsu_pmu_read_pmcr() >> CLUSTERPMCR_N_SHIFT) & CLUSTERPMCR_N_MASK; /* We can only support up to 31 independent counters */ if (WARN_ON(num_counters > 31)) num_counters = 31; dsu_pmu->num_counters = num_counters; if (!dsu_pmu->num_counters) return; cpmceid[0] = __dsu_pmu_read_pmceid(0); cpmceid[1] = __dsu_pmu_read_pmceid(1); bitmap_from_arr32(dsu_pmu->cpmceid_bitmap, cpmceid, DSU_PMU_MAX_COMMON_EVENTS); } static void dsu_pmu_set_active_cpu(int cpu, struct dsu_pmu *dsu_pmu) { cpumask_set_cpu(cpu, &dsu_pmu->active_cpu); if (irq_set_affinity_hint(dsu_pmu->irq, &dsu_pmu->active_cpu)) pr_warn("Failed to set irq affinity to %d\n", cpu); } /* * dsu_pmu_init_pmu: Initialise the DSU PMU configurations if * we haven't done it already. */ static void dsu_pmu_init_pmu(struct dsu_pmu *dsu_pmu) { if (dsu_pmu->num_counters == -1) dsu_pmu_probe_pmu(dsu_pmu); /* Reset the interrupt overflow mask */ dsu_pmu_get_reset_overflow(); } static int dsu_pmu_device_probe(struct platform_device *pdev) { int irq, rc; struct dsu_pmu *dsu_pmu; char *name; static atomic_t pmu_idx = ATOMIC_INIT(-1); dsu_pmu = dsu_pmu_alloc(pdev); if (IS_ERR(dsu_pmu)) return PTR_ERR(dsu_pmu); rc = dsu_pmu_dt_get_cpus(pdev->dev.of_node, &dsu_pmu->associated_cpus); if (rc) { dev_warn(&pdev->dev, "Failed to parse the CPUs\n"); return rc; } irq = platform_get_irq(pdev, 0); if (irq < 0) return -EINVAL; name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "%s_%d", PMUNAME, atomic_inc_return(&pmu_idx)); if (!name) return -ENOMEM; rc = devm_request_irq(&pdev->dev, irq, dsu_pmu_handle_irq, IRQF_NOBALANCING, name, dsu_pmu); if (rc) { dev_warn(&pdev->dev, "Failed to request IRQ %d\n", irq); return rc; } dsu_pmu->irq = irq; platform_set_drvdata(pdev, dsu_pmu); rc = cpuhp_state_add_instance(dsu_pmu_cpuhp_state, &dsu_pmu->cpuhp_node); if (rc) return rc; dsu_pmu->pmu = (struct pmu) { .task_ctx_nr = perf_invalid_context, .module = THIS_MODULE, .pmu_enable = dsu_pmu_enable, .pmu_disable = dsu_pmu_disable, .event_init = dsu_pmu_event_init, .add = dsu_pmu_add, .del = dsu_pmu_del, .start = dsu_pmu_start, .stop = dsu_pmu_stop, .read = dsu_pmu_read, .attr_groups = dsu_pmu_attr_groups, .capabilities = PERF_PMU_CAP_NO_EXCLUDE, }; rc = perf_pmu_register(&dsu_pmu->pmu, name, -1); if (rc) { cpuhp_state_remove_instance(dsu_pmu_cpuhp_state, &dsu_pmu->cpuhp_node); irq_set_affinity_hint(dsu_pmu->irq, NULL); } return rc; } static int dsu_pmu_device_remove(struct platform_device *pdev) { struct dsu_pmu *dsu_pmu = platform_get_drvdata(pdev); perf_pmu_unregister(&dsu_pmu->pmu); cpuhp_state_remove_instance(dsu_pmu_cpuhp_state, &dsu_pmu->cpuhp_node); irq_set_affinity_hint(dsu_pmu->irq, NULL); return 0; } static const struct of_device_id dsu_pmu_of_match[] = { { .compatible = "arm,dsu-pmu", }, {}, }; static struct platform_driver dsu_pmu_driver = { .driver = { .name = DRVNAME, .of_match_table = of_match_ptr(dsu_pmu_of_match), .suppress_bind_attrs = true, }, .probe = dsu_pmu_device_probe, .remove = dsu_pmu_device_remove, }; static int dsu_pmu_cpu_online(unsigned int cpu, struct hlist_node *node) { struct dsu_pmu *dsu_pmu = hlist_entry_safe(node, struct dsu_pmu, cpuhp_node); if (!cpumask_test_cpu(cpu, &dsu_pmu->associated_cpus)) return 0; /* If the PMU is already managed, there is nothing to do */ if (!cpumask_empty(&dsu_pmu->active_cpu)) return 0; dsu_pmu_init_pmu(dsu_pmu); dsu_pmu_set_active_cpu(cpu, dsu_pmu); return 0; } static int dsu_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node) { int dst; struct dsu_pmu *dsu_pmu = hlist_entry_safe(node, struct dsu_pmu, cpuhp_node); if (!cpumask_test_and_clear_cpu(cpu, &dsu_pmu->active_cpu)) return 0; dst = dsu_pmu_get_online_cpu_any_but(dsu_pmu, cpu); /* If there are no active CPUs in the DSU, leave IRQ disabled */ if (dst >= nr_cpu_ids) { irq_set_affinity_hint(dsu_pmu->irq, NULL); return 0; } perf_pmu_migrate_context(&dsu_pmu->pmu, cpu, dst); dsu_pmu_set_active_cpu(dst, dsu_pmu); return 0; } static int __init dsu_pmu_init(void) { int ret; ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME, dsu_pmu_cpu_online, dsu_pmu_cpu_teardown); if (ret < 0) return ret; dsu_pmu_cpuhp_state = ret; return platform_driver_register(&dsu_pmu_driver); } static void __exit dsu_pmu_exit(void) { platform_driver_unregister(&dsu_pmu_driver); cpuhp_remove_multi_state(dsu_pmu_cpuhp_state); } module_init(dsu_pmu_init); module_exit(dsu_pmu_exit); MODULE_DEVICE_TABLE(of, dsu_pmu_of_match); MODULE_DESCRIPTION("Perf driver for ARM DynamIQ Shared Unit"); MODULE_AUTHOR("Suzuki K Poulose <suzuki.poulose@arm.com>"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1