Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Liam Breck | 2839 | 32.53% | 6 | 7.23% |
Andrew F. Davis | 1340 | 15.35% | 11 | 13.25% |
Chris Lapa | 1084 | 12.42% | 11 | 13.25% |
Pali Rohár | 715 | 8.19% | 14 | 16.87% |
Matt Ranostay | 540 | 6.19% | 3 | 3.61% |
Lars-Peter Clausen | 510 | 5.84% | 7 | 8.43% |
Dan Murphy | 462 | 5.29% | 2 | 2.41% |
Rodolfo Giometti | 252 | 2.89% | 1 | 1.20% |
Pavel Machek | 178 | 2.04% | 1 | 1.20% |
Grazvydas Ignotas | 173 | 1.98% | 3 | 3.61% |
Syed Rafiuddin | 127 | 1.46% | 1 | 1.20% |
H. Nikolaus Schaller | 100 | 1.15% | 4 | 4.82% |
Liu Xiang | 81 | 0.93% | 1 | 1.20% |
Krzysztof Kozlowski | 80 | 0.92% | 3 | 3.61% |
Puthikorn Voravootivat | 79 | 0.91% | 3 | 3.61% |
Alexandre Belloni | 53 | 0.61% | 1 | 1.20% |
Saranya Gopal | 40 | 0.46% | 1 | 1.20% |
Arthur Demchenkov | 22 | 0.25% | 1 | 1.20% |
Dmitry Osipenko | 22 | 0.25% | 1 | 1.20% |
Marek Belisko | 19 | 0.22% | 1 | 1.20% |
Himangi Saraogi | 3 | 0.03% | 1 | 1.20% |
Tejun Heo | 2 | 0.02% | 1 | 1.20% |
Neil Brown | 2 | 0.02% | 2 | 2.41% |
Sebastian Reichel | 2 | 0.02% | 1 | 1.20% |
Thomas Weber | 1 | 0.01% | 1 | 1.20% |
Harvey Harrison | 1 | 0.01% | 1 | 1.20% |
Total | 8727 | 83 |
/* * BQ27xxx battery driver * * Copyright (C) 2008 Rodolfo Giometti <giometti@linux.it> * Copyright (C) 2008 Eurotech S.p.A. <info@eurotech.it> * Copyright (C) 2010-2011 Lars-Peter Clausen <lars@metafoo.de> * Copyright (C) 2011 Pali Rohár <pali@kernel.org> * Copyright (C) 2017 Liam Breck <kernel@networkimprov.net> * * Based on a previous work by Copyright (C) 2008 Texas Instruments, Inc. * * This package is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. * * Datasheets: * https://www.ti.com/product/bq27000 * https://www.ti.com/product/bq27200 * https://www.ti.com/product/bq27010 * https://www.ti.com/product/bq27210 * https://www.ti.com/product/bq27500 * https://www.ti.com/product/bq27510-g1 * https://www.ti.com/product/bq27510-g2 * https://www.ti.com/product/bq27510-g3 * https://www.ti.com/product/bq27520-g1 * https://www.ti.com/product/bq27520-g2 * https://www.ti.com/product/bq27520-g3 * https://www.ti.com/product/bq27520-g4 * https://www.ti.com/product/bq27530-g1 * https://www.ti.com/product/bq27531-g1 * https://www.ti.com/product/bq27541-g1 * https://www.ti.com/product/bq27542-g1 * https://www.ti.com/product/bq27546-g1 * https://www.ti.com/product/bq27742-g1 * https://www.ti.com/product/bq27545-g1 * https://www.ti.com/product/bq27421-g1 * https://www.ti.com/product/bq27425-g1 * https://www.ti.com/product/bq27426 * https://www.ti.com/product/bq27411-g1 * https://www.ti.com/product/bq27441-g1 * https://www.ti.com/product/bq27621-g1 * https://www.ti.com/product/bq27z561 * https://www.ti.com/product/bq28z610 */ #include <linux/device.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/param.h> #include <linux/jiffies.h> #include <linux/workqueue.h> #include <linux/delay.h> #include <linux/platform_device.h> #include <linux/power_supply.h> #include <linux/slab.h> #include <linux/of.h> #include <linux/power/bq27xxx_battery.h> #define BQ27XXX_MANUFACTURER "Texas Instruments" /* BQ27XXX Flags */ #define BQ27XXX_FLAG_DSC BIT(0) #define BQ27XXX_FLAG_SOCF BIT(1) /* State-of-Charge threshold final */ #define BQ27XXX_FLAG_SOC1 BIT(2) /* State-of-Charge threshold 1 */ #define BQ27XXX_FLAG_CFGUP BIT(4) #define BQ27XXX_FLAG_FC BIT(9) #define BQ27XXX_FLAG_OTD BIT(14) #define BQ27XXX_FLAG_OTC BIT(15) #define BQ27XXX_FLAG_UT BIT(14) #define BQ27XXX_FLAG_OT BIT(15) /* BQ27000 has different layout for Flags register */ #define BQ27000_FLAG_EDVF BIT(0) /* Final End-of-Discharge-Voltage flag */ #define BQ27000_FLAG_EDV1 BIT(1) /* First End-of-Discharge-Voltage flag */ #define BQ27000_FLAG_CI BIT(4) /* Capacity Inaccurate flag */ #define BQ27000_FLAG_FC BIT(5) #define BQ27000_FLAG_CHGS BIT(7) /* Charge state flag */ /* BQ27Z561 has different layout for Flags register */ #define BQ27Z561_FLAG_FDC BIT(4) /* Battery fully discharged */ #define BQ27Z561_FLAG_FC BIT(5) /* Battery fully charged */ #define BQ27Z561_FLAG_DIS_CH BIT(6) /* Battery is discharging */ /* control register params */ #define BQ27XXX_SEALED 0x20 #define BQ27XXX_SET_CFGUPDATE 0x13 #define BQ27XXX_SOFT_RESET 0x42 #define BQ27XXX_RESET 0x41 #define BQ27XXX_RS (20) /* Resistor sense mOhm */ #define BQ27XXX_POWER_CONSTANT (29200) /* 29.2 µV^2 * 1000 */ #define BQ27XXX_CURRENT_CONSTANT (3570) /* 3.57 µV * 1000 */ #define INVALID_REG_ADDR 0xff /* * bq27xxx_reg_index - Register names * * These are indexes into a device's register mapping array. */ enum bq27xxx_reg_index { BQ27XXX_REG_CTRL = 0, /* Control */ BQ27XXX_REG_TEMP, /* Temperature */ BQ27XXX_REG_INT_TEMP, /* Internal Temperature */ BQ27XXX_REG_VOLT, /* Voltage */ BQ27XXX_REG_AI, /* Average Current */ BQ27XXX_REG_FLAGS, /* Flags */ BQ27XXX_REG_TTE, /* Time-to-Empty */ BQ27XXX_REG_TTF, /* Time-to-Full */ BQ27XXX_REG_TTES, /* Time-to-Empty Standby */ BQ27XXX_REG_TTECP, /* Time-to-Empty at Constant Power */ BQ27XXX_REG_NAC, /* Nominal Available Capacity */ BQ27XXX_REG_FCC, /* Full Charge Capacity */ BQ27XXX_REG_CYCT, /* Cycle Count */ BQ27XXX_REG_AE, /* Available Energy */ BQ27XXX_REG_SOC, /* State-of-Charge */ BQ27XXX_REG_DCAP, /* Design Capacity */ BQ27XXX_REG_AP, /* Average Power */ BQ27XXX_DM_CTRL, /* Block Data Control */ BQ27XXX_DM_CLASS, /* Data Class */ BQ27XXX_DM_BLOCK, /* Data Block */ BQ27XXX_DM_DATA, /* Block Data */ BQ27XXX_DM_CKSUM, /* Block Data Checksum */ BQ27XXX_REG_MAX, /* sentinel */ }; #define BQ27XXX_DM_REG_ROWS \ [BQ27XXX_DM_CTRL] = 0x61, \ [BQ27XXX_DM_CLASS] = 0x3e, \ [BQ27XXX_DM_BLOCK] = 0x3f, \ [BQ27XXX_DM_DATA] = 0x40, \ [BQ27XXX_DM_CKSUM] = 0x60 /* Register mappings */ static u8 bq27000_regs[BQ27XXX_REG_MAX] = { [BQ27XXX_REG_CTRL] = 0x00, [BQ27XXX_REG_TEMP] = 0x06, [BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR, [BQ27XXX_REG_VOLT] = 0x08, [BQ27XXX_REG_AI] = 0x14, [BQ27XXX_REG_FLAGS] = 0x0a, [BQ27XXX_REG_TTE] = 0x16, [BQ27XXX_REG_TTF] = 0x18, [BQ27XXX_REG_TTES] = 0x1c, [BQ27XXX_REG_TTECP] = 0x26, [BQ27XXX_REG_NAC] = 0x0c, [BQ27XXX_REG_FCC] = 0x12, [BQ27XXX_REG_CYCT] = 0x2a, [BQ27XXX_REG_AE] = 0x22, [BQ27XXX_REG_SOC] = 0x0b, [BQ27XXX_REG_DCAP] = 0x76, [BQ27XXX_REG_AP] = 0x24, [BQ27XXX_DM_CTRL] = INVALID_REG_ADDR, [BQ27XXX_DM_CLASS] = INVALID_REG_ADDR, [BQ27XXX_DM_BLOCK] = INVALID_REG_ADDR, [BQ27XXX_DM_DATA] = INVALID_REG_ADDR, [BQ27XXX_DM_CKSUM] = INVALID_REG_ADDR, }, bq27010_regs[BQ27XXX_REG_MAX] = { [BQ27XXX_REG_CTRL] = 0x00, [BQ27XXX_REG_TEMP] = 0x06, [BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR, [BQ27XXX_REG_VOLT] = 0x08, [BQ27XXX_REG_AI] = 0x14, [BQ27XXX_REG_FLAGS] = 0x0a, [BQ27XXX_REG_TTE] = 0x16, [BQ27XXX_REG_TTF] = 0x18, [BQ27XXX_REG_TTES] = 0x1c, [BQ27XXX_REG_TTECP] = 0x26, [BQ27XXX_REG_NAC] = 0x0c, [BQ27XXX_REG_FCC] = 0x12, [BQ27XXX_REG_CYCT] = 0x2a, [BQ27XXX_REG_AE] = INVALID_REG_ADDR, [BQ27XXX_REG_SOC] = 0x0b, [BQ27XXX_REG_DCAP] = 0x76, [BQ27XXX_REG_AP] = INVALID_REG_ADDR, [BQ27XXX_DM_CTRL] = INVALID_REG_ADDR, [BQ27XXX_DM_CLASS] = INVALID_REG_ADDR, [BQ27XXX_DM_BLOCK] = INVALID_REG_ADDR, [BQ27XXX_DM_DATA] = INVALID_REG_ADDR, [BQ27XXX_DM_CKSUM] = INVALID_REG_ADDR, }, bq2750x_regs[BQ27XXX_REG_MAX] = { [BQ27XXX_REG_CTRL] = 0x00, [BQ27XXX_REG_TEMP] = 0x06, [BQ27XXX_REG_INT_TEMP] = 0x28, [BQ27XXX_REG_VOLT] = 0x08, [BQ27XXX_REG_AI] = 0x14, [BQ27XXX_REG_FLAGS] = 0x0a, [BQ27XXX_REG_TTE] = 0x16, [BQ27XXX_REG_TTF] = INVALID_REG_ADDR, [BQ27XXX_REG_TTES] = 0x1a, [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR, [BQ27XXX_REG_NAC] = 0x0c, [BQ27XXX_REG_FCC] = 0x12, [BQ27XXX_REG_CYCT] = 0x2a, [BQ27XXX_REG_AE] = INVALID_REG_ADDR, [BQ27XXX_REG_SOC] = 0x2c, [BQ27XXX_REG_DCAP] = 0x3c, [BQ27XXX_REG_AP] = INVALID_REG_ADDR, BQ27XXX_DM_REG_ROWS, }, #define bq2751x_regs bq27510g3_regs #define bq2752x_regs bq27510g3_regs bq27500_regs[BQ27XXX_REG_MAX] = { [BQ27XXX_REG_CTRL] = 0x00, [BQ27XXX_REG_TEMP] = 0x06, [BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR, [BQ27XXX_REG_VOLT] = 0x08, [BQ27XXX_REG_AI] = 0x14, [BQ27XXX_REG_FLAGS] = 0x0a, [BQ27XXX_REG_TTE] = 0x16, [BQ27XXX_REG_TTF] = 0x18, [BQ27XXX_REG_TTES] = 0x1c, [BQ27XXX_REG_TTECP] = 0x26, [BQ27XXX_REG_NAC] = 0x0c, [BQ27XXX_REG_FCC] = 0x12, [BQ27XXX_REG_CYCT] = 0x2a, [BQ27XXX_REG_AE] = 0x22, [BQ27XXX_REG_SOC] = 0x2c, [BQ27XXX_REG_DCAP] = 0x3c, [BQ27XXX_REG_AP] = 0x24, BQ27XXX_DM_REG_ROWS, }, #define bq27510g1_regs bq27500_regs #define bq27510g2_regs bq27500_regs bq27510g3_regs[BQ27XXX_REG_MAX] = { [BQ27XXX_REG_CTRL] = 0x00, [BQ27XXX_REG_TEMP] = 0x06, [BQ27XXX_REG_INT_TEMP] = 0x28, [BQ27XXX_REG_VOLT] = 0x08, [BQ27XXX_REG_AI] = 0x14, [BQ27XXX_REG_FLAGS] = 0x0a, [BQ27XXX_REG_TTE] = 0x16, [BQ27XXX_REG_TTF] = INVALID_REG_ADDR, [BQ27XXX_REG_TTES] = 0x1a, [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR, [BQ27XXX_REG_NAC] = 0x0c, [BQ27XXX_REG_FCC] = 0x12, [BQ27XXX_REG_CYCT] = 0x1e, [BQ27XXX_REG_AE] = INVALID_REG_ADDR, [BQ27XXX_REG_SOC] = 0x20, [BQ27XXX_REG_DCAP] = 0x2e, [BQ27XXX_REG_AP] = INVALID_REG_ADDR, BQ27XXX_DM_REG_ROWS, }, bq27520g1_regs[BQ27XXX_REG_MAX] = { [BQ27XXX_REG_CTRL] = 0x00, [BQ27XXX_REG_TEMP] = 0x06, [BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR, [BQ27XXX_REG_VOLT] = 0x08, [BQ27XXX_REG_AI] = 0x14, [BQ27XXX_REG_FLAGS] = 0x0a, [BQ27XXX_REG_TTE] = 0x16, [BQ27XXX_REG_TTF] = 0x18, [BQ27XXX_REG_TTES] = 0x1c, [BQ27XXX_REG_TTECP] = 0x26, [BQ27XXX_REG_NAC] = 0x0c, [BQ27XXX_REG_FCC] = 0x12, [BQ27XXX_REG_CYCT] = INVALID_REG_ADDR, [BQ27XXX_REG_AE] = 0x22, [BQ27XXX_REG_SOC] = 0x2c, [BQ27XXX_REG_DCAP] = 0x3c, [BQ27XXX_REG_AP] = 0x24, BQ27XXX_DM_REG_ROWS, }, bq27520g2_regs[BQ27XXX_REG_MAX] = { [BQ27XXX_REG_CTRL] = 0x00, [BQ27XXX_REG_TEMP] = 0x06, [BQ27XXX_REG_INT_TEMP] = 0x36, [BQ27XXX_REG_VOLT] = 0x08, [BQ27XXX_REG_AI] = 0x14, [BQ27XXX_REG_FLAGS] = 0x0a, [BQ27XXX_REG_TTE] = 0x16, [BQ27XXX_REG_TTF] = 0x18, [BQ27XXX_REG_TTES] = 0x1c, [BQ27XXX_REG_TTECP] = 0x26, [BQ27XXX_REG_NAC] = 0x0c, [BQ27XXX_REG_FCC] = 0x12, [BQ27XXX_REG_CYCT] = 0x2a, [BQ27XXX_REG_AE] = 0x22, [BQ27XXX_REG_SOC] = 0x2c, [BQ27XXX_REG_DCAP] = 0x3c, [BQ27XXX_REG_AP] = 0x24, BQ27XXX_DM_REG_ROWS, }, bq27520g3_regs[BQ27XXX_REG_MAX] = { [BQ27XXX_REG_CTRL] = 0x00, [BQ27XXX_REG_TEMP] = 0x06, [BQ27XXX_REG_INT_TEMP] = 0x36, [BQ27XXX_REG_VOLT] = 0x08, [BQ27XXX_REG_AI] = 0x14, [BQ27XXX_REG_FLAGS] = 0x0a, [BQ27XXX_REG_TTE] = 0x16, [BQ27XXX_REG_TTF] = INVALID_REG_ADDR, [BQ27XXX_REG_TTES] = 0x1c, [BQ27XXX_REG_TTECP] = 0x26, [BQ27XXX_REG_NAC] = 0x0c, [BQ27XXX_REG_FCC] = 0x12, [BQ27XXX_REG_CYCT] = 0x2a, [BQ27XXX_REG_AE] = 0x22, [BQ27XXX_REG_SOC] = 0x2c, [BQ27XXX_REG_DCAP] = 0x3c, [BQ27XXX_REG_AP] = 0x24, BQ27XXX_DM_REG_ROWS, }, bq27520g4_regs[BQ27XXX_REG_MAX] = { [BQ27XXX_REG_CTRL] = 0x00, [BQ27XXX_REG_TEMP] = 0x06, [BQ27XXX_REG_INT_TEMP] = 0x28, [BQ27XXX_REG_VOLT] = 0x08, [BQ27XXX_REG_AI] = 0x14, [BQ27XXX_REG_FLAGS] = 0x0a, [BQ27XXX_REG_TTE] = 0x16, [BQ27XXX_REG_TTF] = INVALID_REG_ADDR, [BQ27XXX_REG_TTES] = 0x1c, [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR, [BQ27XXX_REG_NAC] = 0x0c, [BQ27XXX_REG_FCC] = 0x12, [BQ27XXX_REG_CYCT] = 0x1e, [BQ27XXX_REG_AE] = INVALID_REG_ADDR, [BQ27XXX_REG_SOC] = 0x20, [BQ27XXX_REG_DCAP] = INVALID_REG_ADDR, [BQ27XXX_REG_AP] = INVALID_REG_ADDR, BQ27XXX_DM_REG_ROWS, }, bq27521_regs[BQ27XXX_REG_MAX] = { [BQ27XXX_REG_CTRL] = 0x02, [BQ27XXX_REG_TEMP] = 0x0a, [BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR, [BQ27XXX_REG_VOLT] = 0x0c, [BQ27XXX_REG_AI] = 0x0e, [BQ27XXX_REG_FLAGS] = 0x08, [BQ27XXX_REG_TTE] = INVALID_REG_ADDR, [BQ27XXX_REG_TTF] = INVALID_REG_ADDR, [BQ27XXX_REG_TTES] = INVALID_REG_ADDR, [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR, [BQ27XXX_REG_NAC] = INVALID_REG_ADDR, [BQ27XXX_REG_FCC] = INVALID_REG_ADDR, [BQ27XXX_REG_CYCT] = INVALID_REG_ADDR, [BQ27XXX_REG_AE] = INVALID_REG_ADDR, [BQ27XXX_REG_SOC] = INVALID_REG_ADDR, [BQ27XXX_REG_DCAP] = INVALID_REG_ADDR, [BQ27XXX_REG_AP] = INVALID_REG_ADDR, [BQ27XXX_DM_CTRL] = INVALID_REG_ADDR, [BQ27XXX_DM_CLASS] = INVALID_REG_ADDR, [BQ27XXX_DM_BLOCK] = INVALID_REG_ADDR, [BQ27XXX_DM_DATA] = INVALID_REG_ADDR, [BQ27XXX_DM_CKSUM] = INVALID_REG_ADDR, }, bq27530_regs[BQ27XXX_REG_MAX] = { [BQ27XXX_REG_CTRL] = 0x00, [BQ27XXX_REG_TEMP] = 0x06, [BQ27XXX_REG_INT_TEMP] = 0x32, [BQ27XXX_REG_VOLT] = 0x08, [BQ27XXX_REG_AI] = 0x14, [BQ27XXX_REG_FLAGS] = 0x0a, [BQ27XXX_REG_TTE] = 0x16, [BQ27XXX_REG_TTF] = INVALID_REG_ADDR, [BQ27XXX_REG_TTES] = INVALID_REG_ADDR, [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR, [BQ27XXX_REG_NAC] = 0x0c, [BQ27XXX_REG_FCC] = 0x12, [BQ27XXX_REG_CYCT] = 0x2a, [BQ27XXX_REG_AE] = INVALID_REG_ADDR, [BQ27XXX_REG_SOC] = 0x2c, [BQ27XXX_REG_DCAP] = INVALID_REG_ADDR, [BQ27XXX_REG_AP] = 0x24, BQ27XXX_DM_REG_ROWS, }, #define bq27531_regs bq27530_regs bq27541_regs[BQ27XXX_REG_MAX] = { [BQ27XXX_REG_CTRL] = 0x00, [BQ27XXX_REG_TEMP] = 0x06, [BQ27XXX_REG_INT_TEMP] = 0x28, [BQ27XXX_REG_VOLT] = 0x08, [BQ27XXX_REG_AI] = 0x14, [BQ27XXX_REG_FLAGS] = 0x0a, [BQ27XXX_REG_TTE] = 0x16, [BQ27XXX_REG_TTF] = INVALID_REG_ADDR, [BQ27XXX_REG_TTES] = INVALID_REG_ADDR, [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR, [BQ27XXX_REG_NAC] = 0x0c, [BQ27XXX_REG_FCC] = 0x12, [BQ27XXX_REG_CYCT] = 0x2a, [BQ27XXX_REG_AE] = INVALID_REG_ADDR, [BQ27XXX_REG_SOC] = 0x2c, [BQ27XXX_REG_DCAP] = 0x3c, [BQ27XXX_REG_AP] = 0x24, BQ27XXX_DM_REG_ROWS, }, #define bq27542_regs bq27541_regs #define bq27546_regs bq27541_regs #define bq27742_regs bq27541_regs bq27545_regs[BQ27XXX_REG_MAX] = { [BQ27XXX_REG_CTRL] = 0x00, [BQ27XXX_REG_TEMP] = 0x06, [BQ27XXX_REG_INT_TEMP] = 0x28, [BQ27XXX_REG_VOLT] = 0x08, [BQ27XXX_REG_AI] = 0x14, [BQ27XXX_REG_FLAGS] = 0x0a, [BQ27XXX_REG_TTE] = 0x16, [BQ27XXX_REG_TTF] = INVALID_REG_ADDR, [BQ27XXX_REG_TTES] = INVALID_REG_ADDR, [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR, [BQ27XXX_REG_NAC] = 0x0c, [BQ27XXX_REG_FCC] = 0x12, [BQ27XXX_REG_CYCT] = 0x2a, [BQ27XXX_REG_AE] = INVALID_REG_ADDR, [BQ27XXX_REG_SOC] = 0x2c, [BQ27XXX_REG_DCAP] = INVALID_REG_ADDR, [BQ27XXX_REG_AP] = 0x24, BQ27XXX_DM_REG_ROWS, }, bq27421_regs[BQ27XXX_REG_MAX] = { [BQ27XXX_REG_CTRL] = 0x00, [BQ27XXX_REG_TEMP] = 0x02, [BQ27XXX_REG_INT_TEMP] = 0x1e, [BQ27XXX_REG_VOLT] = 0x04, [BQ27XXX_REG_AI] = 0x10, [BQ27XXX_REG_FLAGS] = 0x06, [BQ27XXX_REG_TTE] = INVALID_REG_ADDR, [BQ27XXX_REG_TTF] = INVALID_REG_ADDR, [BQ27XXX_REG_TTES] = INVALID_REG_ADDR, [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR, [BQ27XXX_REG_NAC] = 0x08, [BQ27XXX_REG_FCC] = 0x0e, [BQ27XXX_REG_CYCT] = INVALID_REG_ADDR, [BQ27XXX_REG_AE] = INVALID_REG_ADDR, [BQ27XXX_REG_SOC] = 0x1c, [BQ27XXX_REG_DCAP] = 0x3c, [BQ27XXX_REG_AP] = 0x18, BQ27XXX_DM_REG_ROWS, }, #define bq27411_regs bq27421_regs #define bq27425_regs bq27421_regs #define bq27426_regs bq27421_regs #define bq27441_regs bq27421_regs #define bq27621_regs bq27421_regs bq27z561_regs[BQ27XXX_REG_MAX] = { [BQ27XXX_REG_CTRL] = 0x00, [BQ27XXX_REG_TEMP] = 0x06, [BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR, [BQ27XXX_REG_VOLT] = 0x08, [BQ27XXX_REG_AI] = 0x14, [BQ27XXX_REG_FLAGS] = 0x0a, [BQ27XXX_REG_TTE] = 0x16, [BQ27XXX_REG_TTF] = 0x18, [BQ27XXX_REG_TTES] = INVALID_REG_ADDR, [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR, [BQ27XXX_REG_NAC] = INVALID_REG_ADDR, [BQ27XXX_REG_FCC] = 0x12, [BQ27XXX_REG_CYCT] = 0x2a, [BQ27XXX_REG_AE] = 0x22, [BQ27XXX_REG_SOC] = 0x2c, [BQ27XXX_REG_DCAP] = 0x3c, [BQ27XXX_REG_AP] = 0x22, BQ27XXX_DM_REG_ROWS, }, bq28z610_regs[BQ27XXX_REG_MAX] = { [BQ27XXX_REG_CTRL] = 0x00, [BQ27XXX_REG_TEMP] = 0x06, [BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR, [BQ27XXX_REG_VOLT] = 0x08, [BQ27XXX_REG_AI] = 0x14, [BQ27XXX_REG_FLAGS] = 0x0a, [BQ27XXX_REG_TTE] = 0x16, [BQ27XXX_REG_TTF] = 0x18, [BQ27XXX_REG_TTES] = INVALID_REG_ADDR, [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR, [BQ27XXX_REG_NAC] = INVALID_REG_ADDR, [BQ27XXX_REG_FCC] = 0x12, [BQ27XXX_REG_CYCT] = 0x2a, [BQ27XXX_REG_AE] = 0x22, [BQ27XXX_REG_SOC] = 0x2c, [BQ27XXX_REG_DCAP] = 0x3c, [BQ27XXX_REG_AP] = 0x22, BQ27XXX_DM_REG_ROWS, }; static enum power_supply_property bq27000_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG, POWER_SUPPLY_PROP_TIME_TO_FULL_NOW, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_CYCLE_COUNT, POWER_SUPPLY_PROP_ENERGY_NOW, POWER_SUPPLY_PROP_POWER_AVG, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_MANUFACTURER, }; static enum power_supply_property bq27010_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG, POWER_SUPPLY_PROP_TIME_TO_FULL_NOW, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_CYCLE_COUNT, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_MANUFACTURER, }; #define bq2750x_props bq27510g3_props #define bq2751x_props bq27510g3_props #define bq2752x_props bq27510g3_props static enum power_supply_property bq27500_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, POWER_SUPPLY_PROP_TIME_TO_FULL_NOW, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_CYCLE_COUNT, POWER_SUPPLY_PROP_ENERGY_NOW, POWER_SUPPLY_PROP_POWER_AVG, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_MANUFACTURER, }; #define bq27510g1_props bq27500_props #define bq27510g2_props bq27500_props static enum power_supply_property bq27510g3_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_CYCLE_COUNT, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_MANUFACTURER, }; static enum power_supply_property bq27520g1_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, POWER_SUPPLY_PROP_TIME_TO_FULL_NOW, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_ENERGY_NOW, POWER_SUPPLY_PROP_POWER_AVG, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_MANUFACTURER, }; #define bq27520g2_props bq27500_props static enum power_supply_property bq27520g3_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_CYCLE_COUNT, POWER_SUPPLY_PROP_ENERGY_NOW, POWER_SUPPLY_PROP_POWER_AVG, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_MANUFACTURER, }; static enum power_supply_property bq27520g4_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_CYCLE_COUNT, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_MANUFACTURER, }; static enum power_supply_property bq27521_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TECHNOLOGY, }; static enum power_supply_property bq27530_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_POWER_AVG, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_CYCLE_COUNT, POWER_SUPPLY_PROP_MANUFACTURER, }; #define bq27531_props bq27530_props static enum power_supply_property bq27541_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_CYCLE_COUNT, POWER_SUPPLY_PROP_POWER_AVG, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_MANUFACTURER, }; #define bq27542_props bq27541_props #define bq27546_props bq27541_props #define bq27742_props bq27541_props static enum power_supply_property bq27545_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_CYCLE_COUNT, POWER_SUPPLY_PROP_POWER_AVG, POWER_SUPPLY_PROP_MANUFACTURER, }; static enum power_supply_property bq27421_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_MANUFACTURER, }; #define bq27411_props bq27421_props #define bq27425_props bq27421_props #define bq27426_props bq27421_props #define bq27441_props bq27421_props #define bq27621_props bq27421_props static enum power_supply_property bq27z561_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, POWER_SUPPLY_PROP_TIME_TO_FULL_NOW, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_CYCLE_COUNT, POWER_SUPPLY_PROP_POWER_AVG, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_MANUFACTURER, }; static enum power_supply_property bq28z610_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, POWER_SUPPLY_PROP_TIME_TO_FULL_NOW, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_CYCLE_COUNT, POWER_SUPPLY_PROP_POWER_AVG, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_MANUFACTURER, }; struct bq27xxx_dm_reg { u8 subclass_id; u8 offset; u8 bytes; u16 min, max; }; enum bq27xxx_dm_reg_id { BQ27XXX_DM_DESIGN_CAPACITY = 0, BQ27XXX_DM_DESIGN_ENERGY, BQ27XXX_DM_TERMINATE_VOLTAGE, }; #define bq27000_dm_regs 0 #define bq27010_dm_regs 0 #define bq2750x_dm_regs 0 #define bq2751x_dm_regs 0 #define bq2752x_dm_regs 0 #if 0 /* not yet tested */ static struct bq27xxx_dm_reg bq27500_dm_regs[] = { [BQ27XXX_DM_DESIGN_CAPACITY] = { 48, 10, 2, 0, 65535 }, [BQ27XXX_DM_DESIGN_ENERGY] = { }, /* missing on chip */ [BQ27XXX_DM_TERMINATE_VOLTAGE] = { 80, 48, 2, 1000, 32767 }, }; #else #define bq27500_dm_regs 0 #endif /* todo create data memory definitions from datasheets and test on chips */ #define bq27510g1_dm_regs 0 #define bq27510g2_dm_regs 0 #define bq27510g3_dm_regs 0 #define bq27520g1_dm_regs 0 #define bq27520g2_dm_regs 0 #define bq27520g3_dm_regs 0 #define bq27520g4_dm_regs 0 #define bq27521_dm_regs 0 #define bq27530_dm_regs 0 #define bq27531_dm_regs 0 #define bq27541_dm_regs 0 #define bq27542_dm_regs 0 #define bq27546_dm_regs 0 #define bq27742_dm_regs 0 #if 0 /* not yet tested */ static struct bq27xxx_dm_reg bq27545_dm_regs[] = { [BQ27XXX_DM_DESIGN_CAPACITY] = { 48, 23, 2, 0, 32767 }, [BQ27XXX_DM_DESIGN_ENERGY] = { 48, 25, 2, 0, 32767 }, [BQ27XXX_DM_TERMINATE_VOLTAGE] = { 80, 67, 2, 2800, 3700 }, }; #else #define bq27545_dm_regs 0 #endif static struct bq27xxx_dm_reg bq27411_dm_regs[] = { [BQ27XXX_DM_DESIGN_CAPACITY] = { 82, 10, 2, 0, 32767 }, [BQ27XXX_DM_DESIGN_ENERGY] = { 82, 12, 2, 0, 32767 }, [BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 16, 2, 2800, 3700 }, }; static struct bq27xxx_dm_reg bq27421_dm_regs[] = { [BQ27XXX_DM_DESIGN_CAPACITY] = { 82, 10, 2, 0, 8000 }, [BQ27XXX_DM_DESIGN_ENERGY] = { 82, 12, 2, 0, 32767 }, [BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 16, 2, 2500, 3700 }, }; static struct bq27xxx_dm_reg bq27425_dm_regs[] = { [BQ27XXX_DM_DESIGN_CAPACITY] = { 82, 12, 2, 0, 32767 }, [BQ27XXX_DM_DESIGN_ENERGY] = { 82, 14, 2, 0, 32767 }, [BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 18, 2, 2800, 3700 }, }; static struct bq27xxx_dm_reg bq27426_dm_regs[] = { [BQ27XXX_DM_DESIGN_CAPACITY] = { 82, 6, 2, 0, 8000 }, [BQ27XXX_DM_DESIGN_ENERGY] = { 82, 8, 2, 0, 32767 }, [BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 10, 2, 2500, 3700 }, }; #if 0 /* not yet tested */ #define bq27441_dm_regs bq27421_dm_regs #else #define bq27441_dm_regs 0 #endif #if 0 /* not yet tested */ static struct bq27xxx_dm_reg bq27621_dm_regs[] = { [BQ27XXX_DM_DESIGN_CAPACITY] = { 82, 3, 2, 0, 8000 }, [BQ27XXX_DM_DESIGN_ENERGY] = { 82, 5, 2, 0, 32767 }, [BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 9, 2, 2500, 3700 }, }; #else #define bq27621_dm_regs 0 #endif #define bq27z561_dm_regs 0 #define bq28z610_dm_regs 0 #define BQ27XXX_O_ZERO 0x00000001 #define BQ27XXX_O_OTDC 0x00000002 /* has OTC/OTD overtemperature flags */ #define BQ27XXX_O_UTOT 0x00000004 /* has OT overtemperature flag */ #define BQ27XXX_O_CFGUP 0x00000008 #define BQ27XXX_O_RAM 0x00000010 #define BQ27Z561_O_BITS 0x00000020 #define BQ27XXX_DATA(ref, key, opt) { \ .opts = (opt), \ .unseal_key = key, \ .regs = ref##_regs, \ .dm_regs = ref##_dm_regs, \ .props = ref##_props, \ .props_size = ARRAY_SIZE(ref##_props) } static struct { u32 opts; u32 unseal_key; u8 *regs; struct bq27xxx_dm_reg *dm_regs; enum power_supply_property *props; size_t props_size; } bq27xxx_chip_data[] = { [BQ27000] = BQ27XXX_DATA(bq27000, 0 , BQ27XXX_O_ZERO), [BQ27010] = BQ27XXX_DATA(bq27010, 0 , BQ27XXX_O_ZERO), [BQ2750X] = BQ27XXX_DATA(bq2750x, 0 , BQ27XXX_O_OTDC), [BQ2751X] = BQ27XXX_DATA(bq2751x, 0 , BQ27XXX_O_OTDC), [BQ2752X] = BQ27XXX_DATA(bq2752x, 0 , BQ27XXX_O_OTDC), [BQ27500] = BQ27XXX_DATA(bq27500, 0x04143672, BQ27XXX_O_OTDC), [BQ27510G1] = BQ27XXX_DATA(bq27510g1, 0 , BQ27XXX_O_OTDC), [BQ27510G2] = BQ27XXX_DATA(bq27510g2, 0 , BQ27XXX_O_OTDC), [BQ27510G3] = BQ27XXX_DATA(bq27510g3, 0 , BQ27XXX_O_OTDC), [BQ27520G1] = BQ27XXX_DATA(bq27520g1, 0 , BQ27XXX_O_OTDC), [BQ27520G2] = BQ27XXX_DATA(bq27520g2, 0 , BQ27XXX_O_OTDC), [BQ27520G3] = BQ27XXX_DATA(bq27520g3, 0 , BQ27XXX_O_OTDC), [BQ27520G4] = BQ27XXX_DATA(bq27520g4, 0 , BQ27XXX_O_OTDC), [BQ27521] = BQ27XXX_DATA(bq27521, 0 , 0), [BQ27530] = BQ27XXX_DATA(bq27530, 0 , BQ27XXX_O_UTOT), [BQ27531] = BQ27XXX_DATA(bq27531, 0 , BQ27XXX_O_UTOT), [BQ27541] = BQ27XXX_DATA(bq27541, 0 , BQ27XXX_O_OTDC), [BQ27542] = BQ27XXX_DATA(bq27542, 0 , BQ27XXX_O_OTDC), [BQ27546] = BQ27XXX_DATA(bq27546, 0 , BQ27XXX_O_OTDC), [BQ27742] = BQ27XXX_DATA(bq27742, 0 , BQ27XXX_O_OTDC), [BQ27545] = BQ27XXX_DATA(bq27545, 0x04143672, BQ27XXX_O_OTDC), [BQ27411] = BQ27XXX_DATA(bq27411, 0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM), [BQ27421] = BQ27XXX_DATA(bq27421, 0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM), [BQ27425] = BQ27XXX_DATA(bq27425, 0x04143672, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP), [BQ27426] = BQ27XXX_DATA(bq27426, 0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM), [BQ27441] = BQ27XXX_DATA(bq27441, 0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM), [BQ27621] = BQ27XXX_DATA(bq27621, 0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM), [BQ27Z561] = BQ27XXX_DATA(bq27z561, 0 , BQ27Z561_O_BITS), [BQ28Z610] = BQ27XXX_DATA(bq28z610, 0 , BQ27Z561_O_BITS), }; static DEFINE_MUTEX(bq27xxx_list_lock); static LIST_HEAD(bq27xxx_battery_devices); #define BQ27XXX_MSLEEP(i) usleep_range((i)*1000, (i)*1000+500) #define BQ27XXX_DM_SZ 32 /** * struct bq27xxx_dm_buf - chip data memory buffer * @class: data memory subclass_id * @block: data memory block number * @data: data from/for the block * @has_data: true if data has been filled by read * @dirty: true if data has changed since last read/write * * Encapsulates info required to manage chip data memory blocks. */ struct bq27xxx_dm_buf { u8 class; u8 block; u8 data[BQ27XXX_DM_SZ]; bool has_data, dirty; }; #define BQ27XXX_DM_BUF(di, i) { \ .class = (di)->dm_regs[i].subclass_id, \ .block = (di)->dm_regs[i].offset / BQ27XXX_DM_SZ, \ } static inline u16 *bq27xxx_dm_reg_ptr(struct bq27xxx_dm_buf *buf, struct bq27xxx_dm_reg *reg) { if (buf->class == reg->subclass_id && buf->block == reg->offset / BQ27XXX_DM_SZ) return (u16 *) (buf->data + reg->offset % BQ27XXX_DM_SZ); return NULL; } static const char * const bq27xxx_dm_reg_name[] = { [BQ27XXX_DM_DESIGN_CAPACITY] = "design-capacity", [BQ27XXX_DM_DESIGN_ENERGY] = "design-energy", [BQ27XXX_DM_TERMINATE_VOLTAGE] = "terminate-voltage", }; static bool bq27xxx_dt_to_nvm = true; module_param_named(dt_monitored_battery_updates_nvm, bq27xxx_dt_to_nvm, bool, 0444); MODULE_PARM_DESC(dt_monitored_battery_updates_nvm, "Devicetree monitored-battery config updates data memory on NVM/flash chips.\n" "Users must set this =0 when installing a different type of battery!\n" "Default is =1." #ifndef CONFIG_BATTERY_BQ27XXX_DT_UPDATES_NVM "\nSetting this affects future kernel updates, not the current configuration." #endif ); static int poll_interval_param_set(const char *val, const struct kernel_param *kp) { struct bq27xxx_device_info *di; unsigned int prev_val = *(unsigned int *) kp->arg; int ret; ret = param_set_uint(val, kp); if (ret < 0 || prev_val == *(unsigned int *) kp->arg) return ret; mutex_lock(&bq27xxx_list_lock); list_for_each_entry(di, &bq27xxx_battery_devices, list) { cancel_delayed_work_sync(&di->work); schedule_delayed_work(&di->work, 0); } mutex_unlock(&bq27xxx_list_lock); return ret; } static const struct kernel_param_ops param_ops_poll_interval = { .get = param_get_uint, .set = poll_interval_param_set, }; static unsigned int poll_interval = 360; module_param_cb(poll_interval, ¶m_ops_poll_interval, &poll_interval, 0644); MODULE_PARM_DESC(poll_interval, "battery poll interval in seconds - 0 disables polling"); /* * Common code for BQ27xxx devices */ static inline int bq27xxx_read(struct bq27xxx_device_info *di, int reg_index, bool single) { int ret; if (!di || di->regs[reg_index] == INVALID_REG_ADDR) return -EINVAL; ret = di->bus.read(di, di->regs[reg_index], single); if (ret < 0) dev_dbg(di->dev, "failed to read register 0x%02x (index %d)\n", di->regs[reg_index], reg_index); return ret; } static inline int bq27xxx_write(struct bq27xxx_device_info *di, int reg_index, u16 value, bool single) { int ret; if (!di || di->regs[reg_index] == INVALID_REG_ADDR) return -EINVAL; if (!di->bus.write) return -EPERM; ret = di->bus.write(di, di->regs[reg_index], value, single); if (ret < 0) dev_dbg(di->dev, "failed to write register 0x%02x (index %d)\n", di->regs[reg_index], reg_index); return ret; } static inline int bq27xxx_read_block(struct bq27xxx_device_info *di, int reg_index, u8 *data, int len) { int ret; if (!di || di->regs[reg_index] == INVALID_REG_ADDR) return -EINVAL; if (!di->bus.read_bulk) return -EPERM; ret = di->bus.read_bulk(di, di->regs[reg_index], data, len); if (ret < 0) dev_dbg(di->dev, "failed to read_bulk register 0x%02x (index %d)\n", di->regs[reg_index], reg_index); return ret; } static inline int bq27xxx_write_block(struct bq27xxx_device_info *di, int reg_index, u8 *data, int len) { int ret; if (!di || di->regs[reg_index] == INVALID_REG_ADDR) return -EINVAL; if (!di->bus.write_bulk) return -EPERM; ret = di->bus.write_bulk(di, di->regs[reg_index], data, len); if (ret < 0) dev_dbg(di->dev, "failed to write_bulk register 0x%02x (index %d)\n", di->regs[reg_index], reg_index); return ret; } static int bq27xxx_battery_seal(struct bq27xxx_device_info *di) { int ret; ret = bq27xxx_write(di, BQ27XXX_REG_CTRL, BQ27XXX_SEALED, false); if (ret < 0) { dev_err(di->dev, "bus error on seal: %d\n", ret); return ret; } return 0; } static int bq27xxx_battery_unseal(struct bq27xxx_device_info *di) { int ret; if (di->unseal_key == 0) { dev_err(di->dev, "unseal failed due to missing key\n"); return -EINVAL; } ret = bq27xxx_write(di, BQ27XXX_REG_CTRL, (u16)(di->unseal_key >> 16), false); if (ret < 0) goto out; ret = bq27xxx_write(di, BQ27XXX_REG_CTRL, (u16)di->unseal_key, false); if (ret < 0) goto out; return 0; out: dev_err(di->dev, "bus error on unseal: %d\n", ret); return ret; } static u8 bq27xxx_battery_checksum_dm_block(struct bq27xxx_dm_buf *buf) { u16 sum = 0; int i; for (i = 0; i < BQ27XXX_DM_SZ; i++) sum += buf->data[i]; sum &= 0xff; return 0xff - sum; } static int bq27xxx_battery_read_dm_block(struct bq27xxx_device_info *di, struct bq27xxx_dm_buf *buf) { int ret; buf->has_data = false; ret = bq27xxx_write(di, BQ27XXX_DM_CLASS, buf->class, true); if (ret < 0) goto out; ret = bq27xxx_write(di, BQ27XXX_DM_BLOCK, buf->block, true); if (ret < 0) goto out; BQ27XXX_MSLEEP(1); ret = bq27xxx_read_block(di, BQ27XXX_DM_DATA, buf->data, BQ27XXX_DM_SZ); if (ret < 0) goto out; ret = bq27xxx_read(di, BQ27XXX_DM_CKSUM, true); if (ret < 0) goto out; if ((u8)ret != bq27xxx_battery_checksum_dm_block(buf)) { ret = -EINVAL; goto out; } buf->has_data = true; buf->dirty = false; return 0; out: dev_err(di->dev, "bus error reading chip memory: %d\n", ret); return ret; } static void bq27xxx_battery_update_dm_block(struct bq27xxx_device_info *di, struct bq27xxx_dm_buf *buf, enum bq27xxx_dm_reg_id reg_id, unsigned int val) { struct bq27xxx_dm_reg *reg = &di->dm_regs[reg_id]; const char *str = bq27xxx_dm_reg_name[reg_id]; u16 *prev = bq27xxx_dm_reg_ptr(buf, reg); if (prev == NULL) { dev_warn(di->dev, "buffer does not match %s dm spec\n", str); return; } if (reg->bytes != 2) { dev_warn(di->dev, "%s dm spec has unsupported byte size\n", str); return; } if (!buf->has_data) return; if (be16_to_cpup(prev) == val) { dev_info(di->dev, "%s has %u\n", str, val); return; } #ifdef CONFIG_BATTERY_BQ27XXX_DT_UPDATES_NVM if (!(di->opts & BQ27XXX_O_RAM) && !bq27xxx_dt_to_nvm) { #else if (!(di->opts & BQ27XXX_O_RAM)) { #endif /* devicetree and NVM differ; defer to NVM */ dev_warn(di->dev, "%s has %u; update to %u disallowed " #ifdef CONFIG_BATTERY_BQ27XXX_DT_UPDATES_NVM "by dt_monitored_battery_updates_nvm=0" #else "for flash/NVM data memory" #endif "\n", str, be16_to_cpup(prev), val); return; } dev_info(di->dev, "update %s to %u\n", str, val); *prev = cpu_to_be16(val); buf->dirty = true; } static int bq27xxx_battery_cfgupdate_priv(struct bq27xxx_device_info *di, bool active) { const int limit = 100; u16 cmd = active ? BQ27XXX_SET_CFGUPDATE : BQ27XXX_SOFT_RESET; int ret, try = limit; ret = bq27xxx_write(di, BQ27XXX_REG_CTRL, cmd, false); if (ret < 0) return ret; do { BQ27XXX_MSLEEP(25); ret = bq27xxx_read(di, BQ27XXX_REG_FLAGS, false); if (ret < 0) return ret; } while (!!(ret & BQ27XXX_FLAG_CFGUP) != active && --try); if (!try && di->chip != BQ27425) { // 425 has a bug dev_err(di->dev, "timed out waiting for cfgupdate flag %d\n", active); return -EINVAL; } if (limit - try > 3) dev_warn(di->dev, "cfgupdate %d, retries %d\n", active, limit - try); return 0; } static inline int bq27xxx_battery_set_cfgupdate(struct bq27xxx_device_info *di) { int ret = bq27xxx_battery_cfgupdate_priv(di, true); if (ret < 0 && ret != -EINVAL) dev_err(di->dev, "bus error on set_cfgupdate: %d\n", ret); return ret; } static inline int bq27xxx_battery_soft_reset(struct bq27xxx_device_info *di) { int ret = bq27xxx_battery_cfgupdate_priv(di, false); if (ret < 0 && ret != -EINVAL) dev_err(di->dev, "bus error on soft_reset: %d\n", ret); return ret; } static int bq27xxx_battery_write_dm_block(struct bq27xxx_device_info *di, struct bq27xxx_dm_buf *buf) { bool cfgup = di->opts & BQ27XXX_O_CFGUP; int ret; if (!buf->dirty) return 0; if (cfgup) { ret = bq27xxx_battery_set_cfgupdate(di); if (ret < 0) return ret; } ret = bq27xxx_write(di, BQ27XXX_DM_CTRL, 0, true); if (ret < 0) goto out; ret = bq27xxx_write(di, BQ27XXX_DM_CLASS, buf->class, true); if (ret < 0) goto out; ret = bq27xxx_write(di, BQ27XXX_DM_BLOCK, buf->block, true); if (ret < 0) goto out; BQ27XXX_MSLEEP(1); ret = bq27xxx_write_block(di, BQ27XXX_DM_DATA, buf->data, BQ27XXX_DM_SZ); if (ret < 0) goto out; ret = bq27xxx_write(di, BQ27XXX_DM_CKSUM, bq27xxx_battery_checksum_dm_block(buf), true); if (ret < 0) goto out; /* DO NOT read BQ27XXX_DM_CKSUM here to verify it! That may cause NVM * corruption on the '425 chip (and perhaps others), which can damage * the chip. */ if (cfgup) { BQ27XXX_MSLEEP(1); ret = bq27xxx_battery_soft_reset(di); if (ret < 0) return ret; } else { BQ27XXX_MSLEEP(100); /* flash DM updates in <100ms */ } buf->dirty = false; return 0; out: if (cfgup) bq27xxx_battery_soft_reset(di); dev_err(di->dev, "bus error writing chip memory: %d\n", ret); return ret; } static void bq27xxx_battery_set_config(struct bq27xxx_device_info *di, struct power_supply_battery_info *info) { struct bq27xxx_dm_buf bd = BQ27XXX_DM_BUF(di, BQ27XXX_DM_DESIGN_CAPACITY); struct bq27xxx_dm_buf bt = BQ27XXX_DM_BUF(di, BQ27XXX_DM_TERMINATE_VOLTAGE); bool updated; if (bq27xxx_battery_unseal(di) < 0) return; if (info->charge_full_design_uah != -EINVAL && info->energy_full_design_uwh != -EINVAL) { bq27xxx_battery_read_dm_block(di, &bd); /* assume design energy & capacity are in same block */ bq27xxx_battery_update_dm_block(di, &bd, BQ27XXX_DM_DESIGN_CAPACITY, info->charge_full_design_uah / 1000); bq27xxx_battery_update_dm_block(di, &bd, BQ27XXX_DM_DESIGN_ENERGY, info->energy_full_design_uwh / 1000); } if (info->voltage_min_design_uv != -EINVAL) { bool same = bd.class == bt.class && bd.block == bt.block; if (!same) bq27xxx_battery_read_dm_block(di, &bt); bq27xxx_battery_update_dm_block(di, same ? &bd : &bt, BQ27XXX_DM_TERMINATE_VOLTAGE, info->voltage_min_design_uv / 1000); } updated = bd.dirty || bt.dirty; bq27xxx_battery_write_dm_block(di, &bd); bq27xxx_battery_write_dm_block(di, &bt); bq27xxx_battery_seal(di); if (updated && !(di->opts & BQ27XXX_O_CFGUP)) { bq27xxx_write(di, BQ27XXX_REG_CTRL, BQ27XXX_RESET, false); BQ27XXX_MSLEEP(300); /* reset time is not documented */ } /* assume bq27xxx_battery_update() is called hereafter */ } static void bq27xxx_battery_settings(struct bq27xxx_device_info *di) { struct power_supply_battery_info info = {}; unsigned int min, max; if (power_supply_get_battery_info(di->bat, &info) < 0) return; if (!di->dm_regs) { dev_warn(di->dev, "data memory update not supported for chip\n"); return; } if (info.energy_full_design_uwh != info.charge_full_design_uah) { if (info.energy_full_design_uwh == -EINVAL) dev_warn(di->dev, "missing battery:energy-full-design-microwatt-hours\n"); else if (info.charge_full_design_uah == -EINVAL) dev_warn(di->dev, "missing battery:charge-full-design-microamp-hours\n"); } /* assume min == 0 */ max = di->dm_regs[BQ27XXX_DM_DESIGN_ENERGY].max; if (info.energy_full_design_uwh > max * 1000) { dev_err(di->dev, "invalid battery:energy-full-design-microwatt-hours %d\n", info.energy_full_design_uwh); info.energy_full_design_uwh = -EINVAL; } /* assume min == 0 */ max = di->dm_regs[BQ27XXX_DM_DESIGN_CAPACITY].max; if (info.charge_full_design_uah > max * 1000) { dev_err(di->dev, "invalid battery:charge-full-design-microamp-hours %d\n", info.charge_full_design_uah); info.charge_full_design_uah = -EINVAL; } min = di->dm_regs[BQ27XXX_DM_TERMINATE_VOLTAGE].min; max = di->dm_regs[BQ27XXX_DM_TERMINATE_VOLTAGE].max; if ((info.voltage_min_design_uv < min * 1000 || info.voltage_min_design_uv > max * 1000) && info.voltage_min_design_uv != -EINVAL) { dev_err(di->dev, "invalid battery:voltage-min-design-microvolt %d\n", info.voltage_min_design_uv); info.voltage_min_design_uv = -EINVAL; } if ((info.energy_full_design_uwh != -EINVAL && info.charge_full_design_uah != -EINVAL) || info.voltage_min_design_uv != -EINVAL) bq27xxx_battery_set_config(di, &info); } /* * Return the battery State-of-Charge * Or < 0 if something fails. */ static int bq27xxx_battery_read_soc(struct bq27xxx_device_info *di) { int soc; if (di->opts & BQ27XXX_O_ZERO) soc = bq27xxx_read(di, BQ27XXX_REG_SOC, true); else soc = bq27xxx_read(di, BQ27XXX_REG_SOC, false); if (soc < 0) dev_dbg(di->dev, "error reading State-of-Charge\n"); return soc; } /* * Return a battery charge value in µAh * Or < 0 if something fails. */ static int bq27xxx_battery_read_charge(struct bq27xxx_device_info *di, u8 reg) { int charge; charge = bq27xxx_read(di, reg, false); if (charge < 0) { dev_dbg(di->dev, "error reading charge register %02x: %d\n", reg, charge); return charge; } if (di->opts & BQ27XXX_O_ZERO) charge *= BQ27XXX_CURRENT_CONSTANT / BQ27XXX_RS; else charge *= 1000; return charge; } /* * Return the battery Nominal available capacity in µAh * Or < 0 if something fails. */ static inline int bq27xxx_battery_read_nac(struct bq27xxx_device_info *di) { int flags; if (di->opts & BQ27XXX_O_ZERO) { flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, true); if (flags >= 0 && (flags & BQ27000_FLAG_CI)) return -ENODATA; } return bq27xxx_battery_read_charge(di, BQ27XXX_REG_NAC); } /* * Return the battery Full Charge Capacity in µAh * Or < 0 if something fails. */ static inline int bq27xxx_battery_read_fcc(struct bq27xxx_device_info *di) { return bq27xxx_battery_read_charge(di, BQ27XXX_REG_FCC); } /* * Return the Design Capacity in µAh * Or < 0 if something fails. */ static int bq27xxx_battery_read_dcap(struct bq27xxx_device_info *di) { int dcap; if (di->opts & BQ27XXX_O_ZERO) dcap = bq27xxx_read(di, BQ27XXX_REG_DCAP, true); else dcap = bq27xxx_read(di, BQ27XXX_REG_DCAP, false); if (dcap < 0) { dev_dbg(di->dev, "error reading initial last measured discharge\n"); return dcap; } if (di->opts & BQ27XXX_O_ZERO) dcap = (dcap << 8) * BQ27XXX_CURRENT_CONSTANT / BQ27XXX_RS; else dcap *= 1000; return dcap; } /* * Return the battery Available energy in µWh * Or < 0 if something fails. */ static int bq27xxx_battery_read_energy(struct bq27xxx_device_info *di) { int ae; ae = bq27xxx_read(di, BQ27XXX_REG_AE, false); if (ae < 0) { dev_dbg(di->dev, "error reading available energy\n"); return ae; } if (di->opts & BQ27XXX_O_ZERO) ae *= BQ27XXX_POWER_CONSTANT / BQ27XXX_RS; else ae *= 1000; return ae; } /* * Return the battery temperature in tenths of degree Kelvin * Or < 0 if something fails. */ static int bq27xxx_battery_read_temperature(struct bq27xxx_device_info *di) { int temp; temp = bq27xxx_read(di, BQ27XXX_REG_TEMP, false); if (temp < 0) { dev_err(di->dev, "error reading temperature\n"); return temp; } if (di->opts & BQ27XXX_O_ZERO) temp = 5 * temp / 2; return temp; } /* * Return the battery Cycle count total * Or < 0 if something fails. */ static int bq27xxx_battery_read_cyct(struct bq27xxx_device_info *di) { int cyct; cyct = bq27xxx_read(di, BQ27XXX_REG_CYCT, false); if (cyct < 0) dev_err(di->dev, "error reading cycle count total\n"); return cyct; } /* * Read a time register. * Return < 0 if something fails. */ static int bq27xxx_battery_read_time(struct bq27xxx_device_info *di, u8 reg) { int tval; tval = bq27xxx_read(di, reg, false); if (tval < 0) { dev_dbg(di->dev, "error reading time register %02x: %d\n", reg, tval); return tval; } if (tval == 65535) return -ENODATA; return tval * 60; } /* * Read an average power register. * Return < 0 if something fails. */ static int bq27xxx_battery_read_pwr_avg(struct bq27xxx_device_info *di) { int tval; tval = bq27xxx_read(di, BQ27XXX_REG_AP, false); if (tval < 0) { dev_err(di->dev, "error reading average power register %02x: %d\n", BQ27XXX_REG_AP, tval); return tval; } if (di->opts & BQ27XXX_O_ZERO) return (tval * BQ27XXX_POWER_CONSTANT) / BQ27XXX_RS; else return tval; } /* * Returns true if a battery over temperature condition is detected */ static bool bq27xxx_battery_overtemp(struct bq27xxx_device_info *di, u16 flags) { if (di->opts & BQ27XXX_O_OTDC) return flags & (BQ27XXX_FLAG_OTC | BQ27XXX_FLAG_OTD); if (di->opts & BQ27XXX_O_UTOT) return flags & BQ27XXX_FLAG_OT; return false; } /* * Returns true if a battery under temperature condition is detected */ static bool bq27xxx_battery_undertemp(struct bq27xxx_device_info *di, u16 flags) { if (di->opts & BQ27XXX_O_UTOT) return flags & BQ27XXX_FLAG_UT; return false; } /* * Returns true if a low state of charge condition is detected */ static bool bq27xxx_battery_dead(struct bq27xxx_device_info *di, u16 flags) { if (di->opts & BQ27XXX_O_ZERO) return flags & (BQ27000_FLAG_EDV1 | BQ27000_FLAG_EDVF); else if (di->opts & BQ27Z561_O_BITS) return flags & BQ27Z561_FLAG_FDC; else return flags & (BQ27XXX_FLAG_SOC1 | BQ27XXX_FLAG_SOCF); } static int bq27xxx_battery_read_health(struct bq27xxx_device_info *di) { /* Unlikely but important to return first */ if (unlikely(bq27xxx_battery_overtemp(di, di->cache.flags))) return POWER_SUPPLY_HEALTH_OVERHEAT; if (unlikely(bq27xxx_battery_undertemp(di, di->cache.flags))) return POWER_SUPPLY_HEALTH_COLD; if (unlikely(bq27xxx_battery_dead(di, di->cache.flags))) return POWER_SUPPLY_HEALTH_DEAD; return POWER_SUPPLY_HEALTH_GOOD; } void bq27xxx_battery_update(struct bq27xxx_device_info *di) { struct bq27xxx_reg_cache cache = {0, }; bool has_ci_flag = di->opts & BQ27XXX_O_ZERO; bool has_singe_flag = di->opts & BQ27XXX_O_ZERO; cache.flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, has_singe_flag); if ((cache.flags & 0xff) == 0xff) cache.flags = -1; /* read error */ if (cache.flags >= 0) { cache.temperature = bq27xxx_battery_read_temperature(di); if (has_ci_flag && (cache.flags & BQ27000_FLAG_CI)) { dev_info_once(di->dev, "battery is not calibrated! ignoring capacity values\n"); cache.capacity = -ENODATA; cache.energy = -ENODATA; cache.time_to_empty = -ENODATA; cache.time_to_empty_avg = -ENODATA; cache.time_to_full = -ENODATA; cache.charge_full = -ENODATA; cache.health = -ENODATA; } else { if (di->regs[BQ27XXX_REG_TTE] != INVALID_REG_ADDR) cache.time_to_empty = bq27xxx_battery_read_time(di, BQ27XXX_REG_TTE); if (di->regs[BQ27XXX_REG_TTECP] != INVALID_REG_ADDR) cache.time_to_empty_avg = bq27xxx_battery_read_time(di, BQ27XXX_REG_TTECP); if (di->regs[BQ27XXX_REG_TTF] != INVALID_REG_ADDR) cache.time_to_full = bq27xxx_battery_read_time(di, BQ27XXX_REG_TTF); cache.charge_full = bq27xxx_battery_read_fcc(di); cache.capacity = bq27xxx_battery_read_soc(di); if (di->regs[BQ27XXX_REG_AE] != INVALID_REG_ADDR) cache.energy = bq27xxx_battery_read_energy(di); di->cache.flags = cache.flags; cache.health = bq27xxx_battery_read_health(di); } if (di->regs[BQ27XXX_REG_CYCT] != INVALID_REG_ADDR) cache.cycle_count = bq27xxx_battery_read_cyct(di); if (di->regs[BQ27XXX_REG_AP] != INVALID_REG_ADDR) cache.power_avg = bq27xxx_battery_read_pwr_avg(di); /* We only have to read charge design full once */ if (di->charge_design_full <= 0) di->charge_design_full = bq27xxx_battery_read_dcap(di); } if ((di->cache.capacity != cache.capacity) || (di->cache.flags != cache.flags)) power_supply_changed(di->bat); if (memcmp(&di->cache, &cache, sizeof(cache)) != 0) di->cache = cache; di->last_update = jiffies; } EXPORT_SYMBOL_GPL(bq27xxx_battery_update); static void bq27xxx_battery_poll(struct work_struct *work) { struct bq27xxx_device_info *di = container_of(work, struct bq27xxx_device_info, work.work); bq27xxx_battery_update(di); if (poll_interval > 0) schedule_delayed_work(&di->work, poll_interval * HZ); } /* * Return the battery average current in µA * Note that current can be negative signed as well * Or 0 if something fails. */ static int bq27xxx_battery_current(struct bq27xxx_device_info *di, union power_supply_propval *val) { int curr; int flags; curr = bq27xxx_read(di, BQ27XXX_REG_AI, false); if (curr < 0) { dev_err(di->dev, "error reading current\n"); return curr; } if (di->opts & BQ27XXX_O_ZERO) { flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, true); if (flags & BQ27000_FLAG_CHGS) { dev_dbg(di->dev, "negative current!\n"); curr = -curr; } val->intval = curr * BQ27XXX_CURRENT_CONSTANT / BQ27XXX_RS; } else { /* Other gauges return signed value */ val->intval = (int)((s16)curr) * 1000; } return 0; } static int bq27xxx_battery_status(struct bq27xxx_device_info *di, union power_supply_propval *val) { int status; if (di->opts & BQ27XXX_O_ZERO) { if (di->cache.flags & BQ27000_FLAG_FC) status = POWER_SUPPLY_STATUS_FULL; else if (di->cache.flags & BQ27000_FLAG_CHGS) status = POWER_SUPPLY_STATUS_CHARGING; else if (power_supply_am_i_supplied(di->bat) > 0) status = POWER_SUPPLY_STATUS_NOT_CHARGING; else status = POWER_SUPPLY_STATUS_DISCHARGING; } else if (di->opts & BQ27Z561_O_BITS) { if (di->cache.flags & BQ27Z561_FLAG_FC) status = POWER_SUPPLY_STATUS_FULL; else if (di->cache.flags & BQ27Z561_FLAG_DIS_CH) status = POWER_SUPPLY_STATUS_DISCHARGING; else status = POWER_SUPPLY_STATUS_CHARGING; } else { if (di->cache.flags & BQ27XXX_FLAG_FC) status = POWER_SUPPLY_STATUS_FULL; else if (di->cache.flags & BQ27XXX_FLAG_DSC) status = POWER_SUPPLY_STATUS_DISCHARGING; else status = POWER_SUPPLY_STATUS_CHARGING; } val->intval = status; return 0; } static int bq27xxx_battery_capacity_level(struct bq27xxx_device_info *di, union power_supply_propval *val) { int level; if (di->opts & BQ27XXX_O_ZERO) { if (di->cache.flags & BQ27000_FLAG_FC) level = POWER_SUPPLY_CAPACITY_LEVEL_FULL; else if (di->cache.flags & BQ27000_FLAG_EDV1) level = POWER_SUPPLY_CAPACITY_LEVEL_LOW; else if (di->cache.flags & BQ27000_FLAG_EDVF) level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; else level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; } else if (di->opts & BQ27Z561_O_BITS) { if (di->cache.flags & BQ27Z561_FLAG_FC) level = POWER_SUPPLY_CAPACITY_LEVEL_FULL; else if (di->cache.flags & BQ27Z561_FLAG_FDC) level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; else level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; } else { if (di->cache.flags & BQ27XXX_FLAG_FC) level = POWER_SUPPLY_CAPACITY_LEVEL_FULL; else if (di->cache.flags & BQ27XXX_FLAG_SOC1) level = POWER_SUPPLY_CAPACITY_LEVEL_LOW; else if (di->cache.flags & BQ27XXX_FLAG_SOCF) level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; else level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; } val->intval = level; return 0; } /* * Return the battery Voltage in millivolts * Or < 0 if something fails. */ static int bq27xxx_battery_voltage(struct bq27xxx_device_info *di, union power_supply_propval *val) { int volt; volt = bq27xxx_read(di, BQ27XXX_REG_VOLT, false); if (volt < 0) { dev_err(di->dev, "error reading voltage\n"); return volt; } val->intval = volt * 1000; return 0; } static int bq27xxx_simple_value(int value, union power_supply_propval *val) { if (value < 0) return value; val->intval = value; return 0; } static int bq27xxx_battery_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { int ret = 0; struct bq27xxx_device_info *di = power_supply_get_drvdata(psy); mutex_lock(&di->lock); if (time_is_before_jiffies(di->last_update + 5 * HZ)) { cancel_delayed_work_sync(&di->work); bq27xxx_battery_poll(&di->work.work); } mutex_unlock(&di->lock); if (psp != POWER_SUPPLY_PROP_PRESENT && di->cache.flags < 0) return -ENODEV; switch (psp) { case POWER_SUPPLY_PROP_STATUS: ret = bq27xxx_battery_status(di, val); break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: ret = bq27xxx_battery_voltage(di, val); break; case POWER_SUPPLY_PROP_PRESENT: val->intval = di->cache.flags < 0 ? 0 : 1; break; case POWER_SUPPLY_PROP_CURRENT_NOW: ret = bq27xxx_battery_current(di, val); break; case POWER_SUPPLY_PROP_CAPACITY: ret = bq27xxx_simple_value(di->cache.capacity, val); break; case POWER_SUPPLY_PROP_CAPACITY_LEVEL: ret = bq27xxx_battery_capacity_level(di, val); break; case POWER_SUPPLY_PROP_TEMP: ret = bq27xxx_simple_value(di->cache.temperature, val); if (ret == 0) val->intval -= 2731; /* convert decidegree k to c */ break; case POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW: ret = bq27xxx_simple_value(di->cache.time_to_empty, val); break; case POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG: ret = bq27xxx_simple_value(di->cache.time_to_empty_avg, val); break; case POWER_SUPPLY_PROP_TIME_TO_FULL_NOW: ret = bq27xxx_simple_value(di->cache.time_to_full, val); break; case POWER_SUPPLY_PROP_TECHNOLOGY: val->intval = POWER_SUPPLY_TECHNOLOGY_LION; break; case POWER_SUPPLY_PROP_CHARGE_NOW: ret = bq27xxx_simple_value(bq27xxx_battery_read_nac(di), val); break; case POWER_SUPPLY_PROP_CHARGE_FULL: ret = bq27xxx_simple_value(di->cache.charge_full, val); break; case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: ret = bq27xxx_simple_value(di->charge_design_full, val); break; /* * TODO: Implement these to make registers set from * power_supply_battery_info visible in sysfs. */ case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: return -EINVAL; case POWER_SUPPLY_PROP_CYCLE_COUNT: ret = bq27xxx_simple_value(di->cache.cycle_count, val); break; case POWER_SUPPLY_PROP_ENERGY_NOW: ret = bq27xxx_simple_value(di->cache.energy, val); break; case POWER_SUPPLY_PROP_POWER_AVG: ret = bq27xxx_simple_value(di->cache.power_avg, val); break; case POWER_SUPPLY_PROP_HEALTH: ret = bq27xxx_simple_value(di->cache.health, val); break; case POWER_SUPPLY_PROP_MANUFACTURER: val->strval = BQ27XXX_MANUFACTURER; break; default: return -EINVAL; } return ret; } static void bq27xxx_external_power_changed(struct power_supply *psy) { struct bq27xxx_device_info *di = power_supply_get_drvdata(psy); cancel_delayed_work_sync(&di->work); schedule_delayed_work(&di->work, 0); } int bq27xxx_battery_setup(struct bq27xxx_device_info *di) { struct power_supply_desc *psy_desc; struct power_supply_config psy_cfg = { .of_node = di->dev->of_node, .drv_data = di, }; INIT_DELAYED_WORK(&di->work, bq27xxx_battery_poll); mutex_init(&di->lock); di->regs = bq27xxx_chip_data[di->chip].regs; di->unseal_key = bq27xxx_chip_data[di->chip].unseal_key; di->dm_regs = bq27xxx_chip_data[di->chip].dm_regs; di->opts = bq27xxx_chip_data[di->chip].opts; psy_desc = devm_kzalloc(di->dev, sizeof(*psy_desc), GFP_KERNEL); if (!psy_desc) return -ENOMEM; psy_desc->name = di->name; psy_desc->type = POWER_SUPPLY_TYPE_BATTERY; psy_desc->properties = bq27xxx_chip_data[di->chip].props; psy_desc->num_properties = bq27xxx_chip_data[di->chip].props_size; psy_desc->get_property = bq27xxx_battery_get_property; psy_desc->external_power_changed = bq27xxx_external_power_changed; di->bat = power_supply_register_no_ws(di->dev, psy_desc, &psy_cfg); if (IS_ERR(di->bat)) { if (PTR_ERR(di->bat) == -EPROBE_DEFER) dev_dbg(di->dev, "failed to register battery, deferring probe\n"); else dev_err(di->dev, "failed to register battery\n"); return PTR_ERR(di->bat); } bq27xxx_battery_settings(di); bq27xxx_battery_update(di); mutex_lock(&bq27xxx_list_lock); list_add(&di->list, &bq27xxx_battery_devices); mutex_unlock(&bq27xxx_list_lock); return 0; } EXPORT_SYMBOL_GPL(bq27xxx_battery_setup); void bq27xxx_battery_teardown(struct bq27xxx_device_info *di) { /* * power_supply_unregister call bq27xxx_battery_get_property which * call bq27xxx_battery_poll. * Make sure that bq27xxx_battery_poll will not call * schedule_delayed_work again after unregister (which cause OOPS). */ poll_interval = 0; cancel_delayed_work_sync(&di->work); power_supply_unregister(di->bat); mutex_lock(&bq27xxx_list_lock); list_del(&di->list); mutex_unlock(&bq27xxx_list_lock); mutex_destroy(&di->lock); } EXPORT_SYMBOL_GPL(bq27xxx_battery_teardown); MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>"); MODULE_DESCRIPTION("BQ27xxx battery monitor driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1