Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Vinod Koul | 3088 | 48.77% | 3 | 6.52% |
Pierre-Louis Bossart | 2673 | 42.21% | 29 | 63.04% |
Rander Wang | 416 | 6.57% | 5 | 10.87% |
Shreyas NC | 128 | 2.02% | 2 | 4.35% |
Bard Liao | 19 | 0.30% | 3 | 6.52% |
Paul Gortmaker | 3 | 0.05% | 1 | 2.17% |
Kuninori Morimoto | 2 | 0.03% | 1 | 2.17% |
Julia Lawall | 2 | 0.03% | 1 | 2.17% |
Srinivas Kandagatla | 1 | 0.02% | 1 | 2.17% |
Total | 6332 | 46 |
// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) // Copyright(c) 2015-17 Intel Corporation. /* * Soundwire Intel Master Driver */ #include <linux/acpi.h> #include <linux/debugfs.h> #include <linux/delay.h> #include <linux/module.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/platform_device.h> #include <sound/pcm_params.h> #include <linux/pm_runtime.h> #include <sound/soc.h> #include <linux/soundwire/sdw_registers.h> #include <linux/soundwire/sdw.h> #include <linux/soundwire/sdw_intel.h> #include "cadence_master.h" #include "bus.h" #include "intel.h" /* Intel SHIM Registers Definition */ #define SDW_SHIM_LCAP 0x0 #define SDW_SHIM_LCTL 0x4 #define SDW_SHIM_IPPTR 0x8 #define SDW_SHIM_SYNC 0xC #define SDW_SHIM_CTLSCAP(x) (0x010 + 0x60 * (x)) #define SDW_SHIM_CTLS0CM(x) (0x012 + 0x60 * (x)) #define SDW_SHIM_CTLS1CM(x) (0x014 + 0x60 * (x)) #define SDW_SHIM_CTLS2CM(x) (0x016 + 0x60 * (x)) #define SDW_SHIM_CTLS3CM(x) (0x018 + 0x60 * (x)) #define SDW_SHIM_PCMSCAP(x) (0x020 + 0x60 * (x)) #define SDW_SHIM_PCMSYCHM(x, y) (0x022 + (0x60 * (x)) + (0x2 * (y))) #define SDW_SHIM_PCMSYCHC(x, y) (0x042 + (0x60 * (x)) + (0x2 * (y))) #define SDW_SHIM_PDMSCAP(x) (0x062 + 0x60 * (x)) #define SDW_SHIM_IOCTL(x) (0x06C + 0x60 * (x)) #define SDW_SHIM_CTMCTL(x) (0x06E + 0x60 * (x)) #define SDW_SHIM_WAKEEN 0x190 #define SDW_SHIM_WAKESTS 0x192 #define SDW_SHIM_LCTL_SPA BIT(0) #define SDW_SHIM_LCTL_CPA BIT(8) #define SDW_SHIM_SYNC_SYNCPRD_VAL_24 (24000 / SDW_CADENCE_GSYNC_KHZ - 1) #define SDW_SHIM_SYNC_SYNCPRD_VAL_38_4 (38400 / SDW_CADENCE_GSYNC_KHZ - 1) #define SDW_SHIM_SYNC_SYNCPRD GENMASK(14, 0) #define SDW_SHIM_SYNC_SYNCCPU BIT(15) #define SDW_SHIM_SYNC_CMDSYNC_MASK GENMASK(19, 16) #define SDW_SHIM_SYNC_CMDSYNC BIT(16) #define SDW_SHIM_SYNC_SYNCGO BIT(24) #define SDW_SHIM_PCMSCAP_ISS GENMASK(3, 0) #define SDW_SHIM_PCMSCAP_OSS GENMASK(7, 4) #define SDW_SHIM_PCMSCAP_BSS GENMASK(12, 8) #define SDW_SHIM_PCMSYCM_LCHN GENMASK(3, 0) #define SDW_SHIM_PCMSYCM_HCHN GENMASK(7, 4) #define SDW_SHIM_PCMSYCM_STREAM GENMASK(13, 8) #define SDW_SHIM_PCMSYCM_DIR BIT(15) #define SDW_SHIM_PDMSCAP_ISS GENMASK(3, 0) #define SDW_SHIM_PDMSCAP_OSS GENMASK(7, 4) #define SDW_SHIM_PDMSCAP_BSS GENMASK(12, 8) #define SDW_SHIM_PDMSCAP_CPSS GENMASK(15, 13) #define SDW_SHIM_IOCTL_MIF BIT(0) #define SDW_SHIM_IOCTL_CO BIT(1) #define SDW_SHIM_IOCTL_COE BIT(2) #define SDW_SHIM_IOCTL_DO BIT(3) #define SDW_SHIM_IOCTL_DOE BIT(4) #define SDW_SHIM_IOCTL_BKE BIT(5) #define SDW_SHIM_IOCTL_WPDD BIT(6) #define SDW_SHIM_IOCTL_CIBD BIT(8) #define SDW_SHIM_IOCTL_DIBD BIT(9) #define SDW_SHIM_CTMCTL_DACTQE BIT(0) #define SDW_SHIM_CTMCTL_DODS BIT(1) #define SDW_SHIM_CTMCTL_DOAIS GENMASK(4, 3) #define SDW_SHIM_WAKEEN_ENABLE BIT(0) #define SDW_SHIM_WAKESTS_STATUS BIT(0) /* Intel ALH Register definitions */ #define SDW_ALH_STRMZCFG(x) (0x000 + (0x4 * (x))) #define SDW_ALH_NUM_STREAMS 64 #define SDW_ALH_STRMZCFG_DMAT_VAL 0x3 #define SDW_ALH_STRMZCFG_DMAT GENMASK(7, 0) #define SDW_ALH_STRMZCFG_CHN GENMASK(19, 16) enum intel_pdi_type { INTEL_PDI_IN = 0, INTEL_PDI_OUT = 1, INTEL_PDI_BD = 2, }; #define cdns_to_intel(_cdns) container_of(_cdns, struct sdw_intel, cdns) /* * Read, write helpers for HW registers */ static inline int intel_readl(void __iomem *base, int offset) { return readl(base + offset); } static inline void intel_writel(void __iomem *base, int offset, int value) { writel(value, base + offset); } static inline u16 intel_readw(void __iomem *base, int offset) { return readw(base + offset); } static inline void intel_writew(void __iomem *base, int offset, u16 value) { writew(value, base + offset); } static int intel_wait_bit(void __iomem *base, int offset, u32 mask, u32 target) { int timeout = 10; u32 reg_read; do { reg_read = readl(base + offset); if ((reg_read & mask) == target) return 0; timeout--; usleep_range(50, 100); } while (timeout != 0); return -EAGAIN; } static int intel_clear_bit(void __iomem *base, int offset, u32 value, u32 mask) { writel(value, base + offset); return intel_wait_bit(base, offset, mask, 0); } static int intel_set_bit(void __iomem *base, int offset, u32 value, u32 mask) { writel(value, base + offset); return intel_wait_bit(base, offset, mask, mask); } /* * debugfs */ #ifdef CONFIG_DEBUG_FS #define RD_BUF (2 * PAGE_SIZE) static ssize_t intel_sprintf(void __iomem *mem, bool l, char *buf, size_t pos, unsigned int reg) { int value; if (l) value = intel_readl(mem, reg); else value = intel_readw(mem, reg); return scnprintf(buf + pos, RD_BUF - pos, "%4x\t%4x\n", reg, value); } static int intel_reg_show(struct seq_file *s_file, void *data) { struct sdw_intel *sdw = s_file->private; void __iomem *s = sdw->link_res->shim; void __iomem *a = sdw->link_res->alh; char *buf; ssize_t ret; int i, j; unsigned int links, reg; buf = kzalloc(RD_BUF, GFP_KERNEL); if (!buf) return -ENOMEM; links = intel_readl(s, SDW_SHIM_LCAP) & GENMASK(2, 0); ret = scnprintf(buf, RD_BUF, "Register Value\n"); ret += scnprintf(buf + ret, RD_BUF - ret, "\nShim\n"); for (i = 0; i < links; i++) { reg = SDW_SHIM_LCAP + i * 4; ret += intel_sprintf(s, true, buf, ret, reg); } for (i = 0; i < links; i++) { ret += scnprintf(buf + ret, RD_BUF - ret, "\nLink%d\n", i); ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLSCAP(i)); ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS0CM(i)); ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS1CM(i)); ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS2CM(i)); ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS3CM(i)); ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_PCMSCAP(i)); ret += scnprintf(buf + ret, RD_BUF - ret, "\n PCMSyCH registers\n"); /* * the value 10 is the number of PDIs. We will need a * cleanup to remove hard-coded Intel configurations * from cadence_master.c */ for (j = 0; j < 10; j++) { ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_PCMSYCHM(i, j)); ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_PCMSYCHC(i, j)); } ret += scnprintf(buf + ret, RD_BUF - ret, "\n PDMSCAP, IOCTL, CTMCTL\n"); ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_PDMSCAP(i)); ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_IOCTL(i)); ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTMCTL(i)); } ret += scnprintf(buf + ret, RD_BUF - ret, "\nWake registers\n"); ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_WAKEEN); ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_WAKESTS); ret += scnprintf(buf + ret, RD_BUF - ret, "\nALH STRMzCFG\n"); for (i = 0; i < SDW_ALH_NUM_STREAMS; i++) ret += intel_sprintf(a, true, buf, ret, SDW_ALH_STRMZCFG(i)); seq_printf(s_file, "%s", buf); kfree(buf); return 0; } DEFINE_SHOW_ATTRIBUTE(intel_reg); static void intel_debugfs_init(struct sdw_intel *sdw) { struct dentry *root = sdw->cdns.bus.debugfs; if (!root) return; sdw->debugfs = debugfs_create_dir("intel-sdw", root); debugfs_create_file("intel-registers", 0400, sdw->debugfs, sdw, &intel_reg_fops); sdw_cdns_debugfs_init(&sdw->cdns, sdw->debugfs); } static void intel_debugfs_exit(struct sdw_intel *sdw) { debugfs_remove_recursive(sdw->debugfs); } #else static void intel_debugfs_init(struct sdw_intel *sdw) {} static void intel_debugfs_exit(struct sdw_intel *sdw) {} #endif /* CONFIG_DEBUG_FS */ /* * shim ops */ static int intel_link_power_up(struct sdw_intel *sdw) { unsigned int link_id = sdw->instance; void __iomem *shim = sdw->link_res->shim; u32 *shim_mask = sdw->link_res->shim_mask; struct sdw_bus *bus = &sdw->cdns.bus; struct sdw_master_prop *prop = &bus->prop; int spa_mask, cpa_mask; int link_control; int ret = 0; u32 syncprd; u32 sync_reg; mutex_lock(sdw->link_res->shim_lock); /* * The hardware relies on an internal counter, typically 4kHz, * to generate the SoundWire SSP - which defines a 'safe' * synchronization point between commands and audio transport * and allows for multi link synchronization. The SYNCPRD value * is only dependent on the oscillator clock provided to * the IP, so adjust based on _DSD properties reported in DSDT * tables. The values reported are based on either 24MHz * (CNL/CML) or 38.4 MHz (ICL/TGL+). */ if (prop->mclk_freq % 6000000) syncprd = SDW_SHIM_SYNC_SYNCPRD_VAL_38_4; else syncprd = SDW_SHIM_SYNC_SYNCPRD_VAL_24; if (!*shim_mask) { /* we first need to program the SyncPRD/CPU registers */ dev_dbg(sdw->cdns.dev, "%s: first link up, programming SYNCPRD\n", __func__); /* set SyncPRD period */ sync_reg = intel_readl(shim, SDW_SHIM_SYNC); sync_reg |= (syncprd << SDW_REG_SHIFT(SDW_SHIM_SYNC_SYNCPRD)); /* Set SyncCPU bit */ sync_reg |= SDW_SHIM_SYNC_SYNCCPU; intel_writel(shim, SDW_SHIM_SYNC, sync_reg); } /* Link power up sequence */ link_control = intel_readl(shim, SDW_SHIM_LCTL); spa_mask = (SDW_SHIM_LCTL_SPA << link_id); cpa_mask = (SDW_SHIM_LCTL_CPA << link_id); link_control |= spa_mask; ret = intel_set_bit(shim, SDW_SHIM_LCTL, link_control, cpa_mask); if (ret < 0) { dev_err(sdw->cdns.dev, "Failed to power up link: %d\n", ret); goto out; } if (!*shim_mask) { /* SyncCPU will change once link is active */ ret = intel_wait_bit(shim, SDW_SHIM_SYNC, SDW_SHIM_SYNC_SYNCCPU, 0); if (ret < 0) { dev_err(sdw->cdns.dev, "Failed to set SHIM_SYNC: %d\n", ret); goto out; } } *shim_mask |= BIT(link_id); sdw->cdns.link_up = true; out: mutex_unlock(sdw->link_res->shim_lock); return ret; } /* this needs to be called with shim_lock */ static void intel_shim_glue_to_master_ip(struct sdw_intel *sdw) { void __iomem *shim = sdw->link_res->shim; unsigned int link_id = sdw->instance; u16 ioctl; /* Switch to MIP from Glue logic */ ioctl = intel_readw(shim, SDW_SHIM_IOCTL(link_id)); ioctl &= ~(SDW_SHIM_IOCTL_DOE); intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); usleep_range(10, 15); ioctl &= ~(SDW_SHIM_IOCTL_DO); intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); usleep_range(10, 15); ioctl |= (SDW_SHIM_IOCTL_MIF); intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); usleep_range(10, 15); ioctl &= ~(SDW_SHIM_IOCTL_BKE); ioctl &= ~(SDW_SHIM_IOCTL_COE); intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); usleep_range(10, 15); /* at this point Master IP has full control of the I/Os */ } /* this needs to be called with shim_lock */ static void intel_shim_master_ip_to_glue(struct sdw_intel *sdw) { unsigned int link_id = sdw->instance; void __iomem *shim = sdw->link_res->shim; u16 ioctl; /* Glue logic */ ioctl = intel_readw(shim, SDW_SHIM_IOCTL(link_id)); ioctl |= SDW_SHIM_IOCTL_BKE; ioctl |= SDW_SHIM_IOCTL_COE; intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); usleep_range(10, 15); ioctl &= ~(SDW_SHIM_IOCTL_MIF); intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); usleep_range(10, 15); /* at this point Integration Glue has full control of the I/Os */ } static int intel_shim_init(struct sdw_intel *sdw, bool clock_stop) { void __iomem *shim = sdw->link_res->shim; unsigned int link_id = sdw->instance; int ret = 0; u16 ioctl = 0, act = 0; mutex_lock(sdw->link_res->shim_lock); /* Initialize Shim */ ioctl |= SDW_SHIM_IOCTL_BKE; intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); usleep_range(10, 15); ioctl |= SDW_SHIM_IOCTL_WPDD; intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); usleep_range(10, 15); ioctl |= SDW_SHIM_IOCTL_DO; intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); usleep_range(10, 15); ioctl |= SDW_SHIM_IOCTL_DOE; intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); usleep_range(10, 15); intel_shim_glue_to_master_ip(sdw); act |= 0x1 << SDW_REG_SHIFT(SDW_SHIM_CTMCTL_DOAIS); act |= SDW_SHIM_CTMCTL_DACTQE; act |= SDW_SHIM_CTMCTL_DODS; intel_writew(shim, SDW_SHIM_CTMCTL(link_id), act); usleep_range(10, 15); mutex_unlock(sdw->link_res->shim_lock); return ret; } static void intel_shim_wake(struct sdw_intel *sdw, bool wake_enable) { void __iomem *shim = sdw->link_res->shim; unsigned int link_id = sdw->instance; u16 wake_en, wake_sts; mutex_lock(sdw->link_res->shim_lock); wake_en = intel_readw(shim, SDW_SHIM_WAKEEN); if (wake_enable) { /* Enable the wakeup */ wake_en |= (SDW_SHIM_WAKEEN_ENABLE << link_id); intel_writew(shim, SDW_SHIM_WAKEEN, wake_en); } else { /* Disable the wake up interrupt */ wake_en &= ~(SDW_SHIM_WAKEEN_ENABLE << link_id); intel_writew(shim, SDW_SHIM_WAKEEN, wake_en); /* Clear wake status */ wake_sts = intel_readw(shim, SDW_SHIM_WAKESTS); wake_sts |= (SDW_SHIM_WAKEEN_ENABLE << link_id); intel_writew(shim, SDW_SHIM_WAKESTS_STATUS, wake_sts); } mutex_unlock(sdw->link_res->shim_lock); } static int __maybe_unused intel_link_power_down(struct sdw_intel *sdw) { int link_control, spa_mask, cpa_mask; unsigned int link_id = sdw->instance; void __iomem *shim = sdw->link_res->shim; u32 *shim_mask = sdw->link_res->shim_mask; int ret = 0; mutex_lock(sdw->link_res->shim_lock); intel_shim_master_ip_to_glue(sdw); /* Link power down sequence */ link_control = intel_readl(shim, SDW_SHIM_LCTL); spa_mask = ~(SDW_SHIM_LCTL_SPA << link_id); cpa_mask = (SDW_SHIM_LCTL_CPA << link_id); link_control &= spa_mask; ret = intel_clear_bit(shim, SDW_SHIM_LCTL, link_control, cpa_mask); if (!(*shim_mask & BIT(link_id))) dev_err(sdw->cdns.dev, "%s: Unbalanced power-up/down calls\n", __func__); *shim_mask &= ~BIT(link_id); mutex_unlock(sdw->link_res->shim_lock); if (ret < 0) return ret; sdw->cdns.link_up = false; return 0; } static void intel_shim_sync_arm(struct sdw_intel *sdw) { void __iomem *shim = sdw->link_res->shim; u32 sync_reg; mutex_lock(sdw->link_res->shim_lock); /* update SYNC register */ sync_reg = intel_readl(shim, SDW_SHIM_SYNC); sync_reg |= (SDW_SHIM_SYNC_CMDSYNC << sdw->instance); intel_writel(shim, SDW_SHIM_SYNC, sync_reg); mutex_unlock(sdw->link_res->shim_lock); } static int intel_shim_sync_go_unlocked(struct sdw_intel *sdw) { void __iomem *shim = sdw->link_res->shim; u32 sync_reg; int ret; /* Read SYNC register */ sync_reg = intel_readl(shim, SDW_SHIM_SYNC); /* * Set SyncGO bit to synchronously trigger a bank switch for * all the masters. A write to SYNCGO bit clears CMDSYNC bit for all * the Masters. */ sync_reg |= SDW_SHIM_SYNC_SYNCGO; ret = intel_clear_bit(shim, SDW_SHIM_SYNC, sync_reg, SDW_SHIM_SYNC_SYNCGO); if (ret < 0) dev_err(sdw->cdns.dev, "SyncGO clear failed: %d\n", ret); return ret; } /* * PDI routines */ static void intel_pdi_init(struct sdw_intel *sdw, struct sdw_cdns_stream_config *config) { void __iomem *shim = sdw->link_res->shim; unsigned int link_id = sdw->instance; int pcm_cap, pdm_cap; /* PCM Stream Capability */ pcm_cap = intel_readw(shim, SDW_SHIM_PCMSCAP(link_id)); config->pcm_bd = (pcm_cap & SDW_SHIM_PCMSCAP_BSS) >> SDW_REG_SHIFT(SDW_SHIM_PCMSCAP_BSS); config->pcm_in = (pcm_cap & SDW_SHIM_PCMSCAP_ISS) >> SDW_REG_SHIFT(SDW_SHIM_PCMSCAP_ISS); config->pcm_out = (pcm_cap & SDW_SHIM_PCMSCAP_OSS) >> SDW_REG_SHIFT(SDW_SHIM_PCMSCAP_OSS); dev_dbg(sdw->cdns.dev, "PCM cap bd:%d in:%d out:%d\n", config->pcm_bd, config->pcm_in, config->pcm_out); /* PDM Stream Capability */ pdm_cap = intel_readw(shim, SDW_SHIM_PDMSCAP(link_id)); config->pdm_bd = (pdm_cap & SDW_SHIM_PDMSCAP_BSS) >> SDW_REG_SHIFT(SDW_SHIM_PDMSCAP_BSS); config->pdm_in = (pdm_cap & SDW_SHIM_PDMSCAP_ISS) >> SDW_REG_SHIFT(SDW_SHIM_PDMSCAP_ISS); config->pdm_out = (pdm_cap & SDW_SHIM_PDMSCAP_OSS) >> SDW_REG_SHIFT(SDW_SHIM_PDMSCAP_OSS); dev_dbg(sdw->cdns.dev, "PDM cap bd:%d in:%d out:%d\n", config->pdm_bd, config->pdm_in, config->pdm_out); } static int intel_pdi_get_ch_cap(struct sdw_intel *sdw, unsigned int pdi_num, bool pcm) { void __iomem *shim = sdw->link_res->shim; unsigned int link_id = sdw->instance; int count; if (pcm) { count = intel_readw(shim, SDW_SHIM_PCMSYCHC(link_id, pdi_num)); /* * WORKAROUND: on all existing Intel controllers, pdi * number 2 reports channel count as 1 even though it * supports 8 channels. Performing hardcoding for pdi * number 2. */ if (pdi_num == 2) count = 7; } else { count = intel_readw(shim, SDW_SHIM_PDMSCAP(link_id)); count = ((count & SDW_SHIM_PDMSCAP_CPSS) >> SDW_REG_SHIFT(SDW_SHIM_PDMSCAP_CPSS)); } /* zero based values for channel count in register */ count++; return count; } static int intel_pdi_get_ch_update(struct sdw_intel *sdw, struct sdw_cdns_pdi *pdi, unsigned int num_pdi, unsigned int *num_ch, bool pcm) { int i, ch_count = 0; for (i = 0; i < num_pdi; i++) { pdi->ch_count = intel_pdi_get_ch_cap(sdw, pdi->num, pcm); ch_count += pdi->ch_count; pdi++; } *num_ch = ch_count; return 0; } static int intel_pdi_stream_ch_update(struct sdw_intel *sdw, struct sdw_cdns_streams *stream, bool pcm) { intel_pdi_get_ch_update(sdw, stream->bd, stream->num_bd, &stream->num_ch_bd, pcm); intel_pdi_get_ch_update(sdw, stream->in, stream->num_in, &stream->num_ch_in, pcm); intel_pdi_get_ch_update(sdw, stream->out, stream->num_out, &stream->num_ch_out, pcm); return 0; } static int intel_pdi_ch_update(struct sdw_intel *sdw) { /* First update PCM streams followed by PDM streams */ intel_pdi_stream_ch_update(sdw, &sdw->cdns.pcm, true); intel_pdi_stream_ch_update(sdw, &sdw->cdns.pdm, false); return 0; } static void intel_pdi_shim_configure(struct sdw_intel *sdw, struct sdw_cdns_pdi *pdi) { void __iomem *shim = sdw->link_res->shim; unsigned int link_id = sdw->instance; int pdi_conf = 0; /* the Bulk and PCM streams are not contiguous */ pdi->intel_alh_id = (link_id * 16) + pdi->num + 3; if (pdi->num >= 2) pdi->intel_alh_id += 2; /* * Program stream parameters to stream SHIM register * This is applicable for PCM stream only. */ if (pdi->type != SDW_STREAM_PCM) return; if (pdi->dir == SDW_DATA_DIR_RX) pdi_conf |= SDW_SHIM_PCMSYCM_DIR; else pdi_conf &= ~(SDW_SHIM_PCMSYCM_DIR); pdi_conf |= (pdi->intel_alh_id << SDW_REG_SHIFT(SDW_SHIM_PCMSYCM_STREAM)); pdi_conf |= (pdi->l_ch_num << SDW_REG_SHIFT(SDW_SHIM_PCMSYCM_LCHN)); pdi_conf |= (pdi->h_ch_num << SDW_REG_SHIFT(SDW_SHIM_PCMSYCM_HCHN)); intel_writew(shim, SDW_SHIM_PCMSYCHM(link_id, pdi->num), pdi_conf); } static void intel_pdi_alh_configure(struct sdw_intel *sdw, struct sdw_cdns_pdi *pdi) { void __iomem *alh = sdw->link_res->alh; unsigned int link_id = sdw->instance; unsigned int conf; /* the Bulk and PCM streams are not contiguous */ pdi->intel_alh_id = (link_id * 16) + pdi->num + 3; if (pdi->num >= 2) pdi->intel_alh_id += 2; /* Program Stream config ALH register */ conf = intel_readl(alh, SDW_ALH_STRMZCFG(pdi->intel_alh_id)); conf |= (SDW_ALH_STRMZCFG_DMAT_VAL << SDW_REG_SHIFT(SDW_ALH_STRMZCFG_DMAT)); conf |= ((pdi->ch_count - 1) << SDW_REG_SHIFT(SDW_ALH_STRMZCFG_CHN)); intel_writel(alh, SDW_ALH_STRMZCFG(pdi->intel_alh_id), conf); } static int intel_params_stream(struct sdw_intel *sdw, struct snd_pcm_substream *substream, struct snd_soc_dai *dai, struct snd_pcm_hw_params *hw_params, int link_id, int alh_stream_id) { struct sdw_intel_link_res *res = sdw->link_res; struct sdw_intel_stream_params_data params_data; params_data.substream = substream; params_data.dai = dai; params_data.hw_params = hw_params; params_data.link_id = link_id; params_data.alh_stream_id = alh_stream_id; if (res->ops && res->ops->params_stream && res->dev) return res->ops->params_stream(res->dev, ¶ms_data); return -EIO; } static int intel_free_stream(struct sdw_intel *sdw, struct snd_pcm_substream *substream, struct snd_soc_dai *dai, int link_id) { struct sdw_intel_link_res *res = sdw->link_res; struct sdw_intel_stream_free_data free_data; free_data.substream = substream; free_data.dai = dai; free_data.link_id = link_id; if (res->ops && res->ops->free_stream && res->dev) return res->ops->free_stream(res->dev, &free_data); return 0; } /* * bank switch routines */ static int intel_pre_bank_switch(struct sdw_bus *bus) { struct sdw_cdns *cdns = bus_to_cdns(bus); struct sdw_intel *sdw = cdns_to_intel(cdns); /* Write to register only for multi-link */ if (!bus->multi_link) return 0; intel_shim_sync_arm(sdw); return 0; } static int intel_post_bank_switch(struct sdw_bus *bus) { struct sdw_cdns *cdns = bus_to_cdns(bus); struct sdw_intel *sdw = cdns_to_intel(cdns); void __iomem *shim = sdw->link_res->shim; int sync_reg, ret; /* Write to register only for multi-link */ if (!bus->multi_link) return 0; mutex_lock(sdw->link_res->shim_lock); /* Read SYNC register */ sync_reg = intel_readl(shim, SDW_SHIM_SYNC); /* * post_bank_switch() ops is called from the bus in loop for * all the Masters in the steam with the expectation that * we trigger the bankswitch for the only first Master in the list * and do nothing for the other Masters * * So, set the SYNCGO bit only if CMDSYNC bit is set for any Master. */ if (!(sync_reg & SDW_SHIM_SYNC_CMDSYNC_MASK)) { ret = 0; goto unlock; } ret = intel_shim_sync_go_unlocked(sdw); unlock: mutex_unlock(sdw->link_res->shim_lock); if (ret < 0) dev_err(sdw->cdns.dev, "Post bank switch failed: %d\n", ret); return ret; } /* * DAI routines */ static int intel_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { /* * TODO: add pm_runtime support here, the startup callback * will make sure the IP is 'active' */ return 0; } static int intel_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai); struct sdw_intel *sdw = cdns_to_intel(cdns); struct sdw_cdns_dma_data *dma; struct sdw_cdns_pdi *pdi; struct sdw_stream_config sconfig; struct sdw_port_config *pconfig; int ch, dir; int ret; bool pcm = true; dma = snd_soc_dai_get_dma_data(dai, substream); if (!dma) return -EIO; ch = params_channels(params); if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) dir = SDW_DATA_DIR_RX; else dir = SDW_DATA_DIR_TX; if (dma->stream_type == SDW_STREAM_PDM) pcm = false; if (pcm) pdi = sdw_cdns_alloc_pdi(cdns, &cdns->pcm, ch, dir, dai->id); else pdi = sdw_cdns_alloc_pdi(cdns, &cdns->pdm, ch, dir, dai->id); if (!pdi) { ret = -EINVAL; goto error; } /* do run-time configurations for SHIM, ALH and PDI/PORT */ intel_pdi_shim_configure(sdw, pdi); intel_pdi_alh_configure(sdw, pdi); sdw_cdns_config_stream(cdns, ch, dir, pdi); /* Inform DSP about PDI stream number */ ret = intel_params_stream(sdw, substream, dai, params, sdw->instance, pdi->intel_alh_id); if (ret) goto error; sconfig.direction = dir; sconfig.ch_count = ch; sconfig.frame_rate = params_rate(params); sconfig.type = dma->stream_type; if (dma->stream_type == SDW_STREAM_PDM) { sconfig.frame_rate *= 50; sconfig.bps = 1; } else { sconfig.bps = snd_pcm_format_width(params_format(params)); } /* Port configuration */ pconfig = kcalloc(1, sizeof(*pconfig), GFP_KERNEL); if (!pconfig) { ret = -ENOMEM; goto error; } pconfig->num = pdi->num; pconfig->ch_mask = (1 << ch) - 1; ret = sdw_stream_add_master(&cdns->bus, &sconfig, pconfig, 1, dma->stream); if (ret) dev_err(cdns->dev, "add master to stream failed:%d\n", ret); kfree(pconfig); error: return ret; } static int intel_prepare(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct sdw_cdns_dma_data *dma; dma = snd_soc_dai_get_dma_data(dai, substream); if (!dma) { dev_err(dai->dev, "failed to get dma data in %s", __func__); return -EIO; } return sdw_prepare_stream(dma->stream); } static int intel_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *dai) { struct sdw_cdns_dma_data *dma; int ret; dma = snd_soc_dai_get_dma_data(dai, substream); if (!dma) { dev_err(dai->dev, "failed to get dma data in %s", __func__); return -EIO; } switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: case SNDRV_PCM_TRIGGER_RESUME: ret = sdw_enable_stream(dma->stream); break; case SNDRV_PCM_TRIGGER_PAUSE_PUSH: case SNDRV_PCM_TRIGGER_SUSPEND: case SNDRV_PCM_TRIGGER_STOP: ret = sdw_disable_stream(dma->stream); break; default: ret = -EINVAL; break; } if (ret) dev_err(dai->dev, "%s trigger %d failed: %d", __func__, cmd, ret); return ret; } static int intel_hw_free(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai); struct sdw_intel *sdw = cdns_to_intel(cdns); struct sdw_cdns_dma_data *dma; int ret; dma = snd_soc_dai_get_dma_data(dai, substream); if (!dma) return -EIO; ret = sdw_deprepare_stream(dma->stream); if (ret) { dev_err(dai->dev, "sdw_deprepare_stream: failed %d", ret); return ret; } ret = sdw_stream_remove_master(&cdns->bus, dma->stream); if (ret < 0) { dev_err(dai->dev, "remove master from stream %s failed: %d\n", dma->stream->name, ret); return ret; } ret = intel_free_stream(sdw, substream, dai, sdw->instance); if (ret < 0) { dev_err(dai->dev, "intel_free_stream: failed %d", ret); return ret; } return 0; } static void intel_shutdown(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { } static int intel_pcm_set_sdw_stream(struct snd_soc_dai *dai, void *stream, int direction) { return cdns_set_sdw_stream(dai, stream, true, direction); } static int intel_pdm_set_sdw_stream(struct snd_soc_dai *dai, void *stream, int direction) { return cdns_set_sdw_stream(dai, stream, false, direction); } static void *intel_get_sdw_stream(struct snd_soc_dai *dai, int direction) { struct sdw_cdns_dma_data *dma; if (direction == SNDRV_PCM_STREAM_PLAYBACK) dma = dai->playback_dma_data; else dma = dai->capture_dma_data; if (!dma) return NULL; return dma->stream; } static const struct snd_soc_dai_ops intel_pcm_dai_ops = { .startup = intel_startup, .hw_params = intel_hw_params, .prepare = intel_prepare, .trigger = intel_trigger, .hw_free = intel_hw_free, .shutdown = intel_shutdown, .set_sdw_stream = intel_pcm_set_sdw_stream, .get_sdw_stream = intel_get_sdw_stream, }; static const struct snd_soc_dai_ops intel_pdm_dai_ops = { .startup = intel_startup, .hw_params = intel_hw_params, .prepare = intel_prepare, .trigger = intel_trigger, .hw_free = intel_hw_free, .shutdown = intel_shutdown, .set_sdw_stream = intel_pdm_set_sdw_stream, .get_sdw_stream = intel_get_sdw_stream, }; static const struct snd_soc_component_driver dai_component = { .name = "soundwire", }; static int intel_create_dai(struct sdw_cdns *cdns, struct snd_soc_dai_driver *dais, enum intel_pdi_type type, u32 num, u32 off, u32 max_ch, bool pcm) { int i; if (num == 0) return 0; /* TODO: Read supported rates/formats from hardware */ for (i = off; i < (off + num); i++) { dais[i].name = devm_kasprintf(cdns->dev, GFP_KERNEL, "SDW%d Pin%d", cdns->instance, i); if (!dais[i].name) return -ENOMEM; if (type == INTEL_PDI_BD || type == INTEL_PDI_OUT) { dais[i].playback.channels_min = 1; dais[i].playback.channels_max = max_ch; dais[i].playback.rates = SNDRV_PCM_RATE_48000; dais[i].playback.formats = SNDRV_PCM_FMTBIT_S16_LE; } if (type == INTEL_PDI_BD || type == INTEL_PDI_IN) { dais[i].capture.channels_min = 1; dais[i].capture.channels_max = max_ch; dais[i].capture.rates = SNDRV_PCM_RATE_48000; dais[i].capture.formats = SNDRV_PCM_FMTBIT_S16_LE; } if (pcm) dais[i].ops = &intel_pcm_dai_ops; else dais[i].ops = &intel_pdm_dai_ops; } return 0; } static int intel_register_dai(struct sdw_intel *sdw) { struct sdw_cdns *cdns = &sdw->cdns; struct sdw_cdns_streams *stream; struct snd_soc_dai_driver *dais; int num_dai, ret, off = 0; /* DAIs are created based on total number of PDIs supported */ num_dai = cdns->pcm.num_pdi + cdns->pdm.num_pdi; dais = devm_kcalloc(cdns->dev, num_dai, sizeof(*dais), GFP_KERNEL); if (!dais) return -ENOMEM; /* Create PCM DAIs */ stream = &cdns->pcm; ret = intel_create_dai(cdns, dais, INTEL_PDI_IN, cdns->pcm.num_in, off, stream->num_ch_in, true); if (ret) return ret; off += cdns->pcm.num_in; ret = intel_create_dai(cdns, dais, INTEL_PDI_OUT, cdns->pcm.num_out, off, stream->num_ch_out, true); if (ret) return ret; off += cdns->pcm.num_out; ret = intel_create_dai(cdns, dais, INTEL_PDI_BD, cdns->pcm.num_bd, off, stream->num_ch_bd, true); if (ret) return ret; /* Create PDM DAIs */ stream = &cdns->pdm; off += cdns->pcm.num_bd; ret = intel_create_dai(cdns, dais, INTEL_PDI_IN, cdns->pdm.num_in, off, stream->num_ch_in, false); if (ret) return ret; off += cdns->pdm.num_in; ret = intel_create_dai(cdns, dais, INTEL_PDI_OUT, cdns->pdm.num_out, off, stream->num_ch_out, false); if (ret) return ret; off += cdns->pdm.num_out; ret = intel_create_dai(cdns, dais, INTEL_PDI_BD, cdns->pdm.num_bd, off, stream->num_ch_bd, false); if (ret) return ret; return snd_soc_register_component(cdns->dev, &dai_component, dais, num_dai); } static int sdw_master_read_intel_prop(struct sdw_bus *bus) { struct sdw_master_prop *prop = &bus->prop; struct fwnode_handle *link; char name[32]; u32 quirk_mask; /* Find master handle */ snprintf(name, sizeof(name), "mipi-sdw-link-%d-subproperties", bus->link_id); link = device_get_named_child_node(bus->dev, name); if (!link) { dev_err(bus->dev, "Master node %s not found\n", name); return -EIO; } fwnode_property_read_u32(link, "intel-sdw-ip-clock", &prop->mclk_freq); /* the values reported by BIOS are the 2x clock, not the bus clock */ prop->mclk_freq /= 2; fwnode_property_read_u32(link, "intel-quirk-mask", &quirk_mask); if (quirk_mask & SDW_INTEL_QUIRK_MASK_BUS_DISABLE) prop->hw_disabled = true; return 0; } static int intel_prop_read(struct sdw_bus *bus) { /* Initialize with default handler to read all DisCo properties */ sdw_master_read_prop(bus); /* read Intel-specific properties */ sdw_master_read_intel_prop(bus); return 0; } static struct sdw_master_ops sdw_intel_ops = { .read_prop = sdw_master_read_prop, .xfer_msg = cdns_xfer_msg, .xfer_msg_defer = cdns_xfer_msg_defer, .reset_page_addr = cdns_reset_page_addr, .set_bus_conf = cdns_bus_conf, .pre_bank_switch = intel_pre_bank_switch, .post_bank_switch = intel_post_bank_switch, }; static int intel_init(struct sdw_intel *sdw) { bool clock_stop; /* Initialize shim and controller */ intel_link_power_up(sdw); clock_stop = sdw_cdns_is_clock_stop(&sdw->cdns); intel_shim_init(sdw, clock_stop); if (clock_stop) return 0; return sdw_cdns_init(&sdw->cdns); } /* * probe and init */ static int intel_master_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct sdw_intel *sdw; struct sdw_cdns *cdns; struct sdw_bus *bus; int ret; sdw = devm_kzalloc(dev, sizeof(*sdw), GFP_KERNEL); if (!sdw) return -ENOMEM; cdns = &sdw->cdns; bus = &cdns->bus; sdw->instance = pdev->id; sdw->link_res = dev_get_platdata(dev); cdns->dev = dev; cdns->registers = sdw->link_res->registers; cdns->instance = sdw->instance; cdns->msg_count = 0; bus->link_id = pdev->id; sdw_cdns_probe(cdns); /* Set property read ops */ sdw_intel_ops.read_prop = intel_prop_read; bus->ops = &sdw_intel_ops; /* set driver data, accessed by snd_soc_dai_get_drvdata() */ dev_set_drvdata(dev, cdns); ret = sdw_bus_master_add(bus, dev, dev->fwnode); if (ret) { dev_err(dev, "sdw_bus_master_add fail: %d\n", ret); return ret; } if (bus->prop.hw_disabled) dev_info(dev, "SoundWire master %d is disabled, will be ignored\n", bus->link_id); return 0; } int intel_master_startup(struct platform_device *pdev) { struct sdw_cdns_stream_config config; struct device *dev = &pdev->dev; struct sdw_cdns *cdns = dev_get_drvdata(dev); struct sdw_intel *sdw = cdns_to_intel(cdns); struct sdw_bus *bus = &cdns->bus; int ret; if (bus->prop.hw_disabled) { dev_info(dev, "SoundWire master %d is disabled, ignoring\n", sdw->instance); return 0; } /* Initialize shim, controller and Cadence IP */ ret = intel_init(sdw); if (ret) goto err_init; /* Read the PDI config and initialize cadence PDI */ intel_pdi_init(sdw, &config); ret = sdw_cdns_pdi_init(cdns, config); if (ret) goto err_init; intel_pdi_ch_update(sdw); ret = sdw_cdns_enable_interrupt(cdns, true); if (ret < 0) { dev_err(dev, "cannot enable interrupts\n"); goto err_init; } ret = sdw_cdns_exit_reset(cdns); if (ret < 0) { dev_err(dev, "unable to exit bus reset sequence\n"); goto err_interrupt; } /* Register DAIs */ ret = intel_register_dai(sdw); if (ret) { dev_err(dev, "DAI registration failed: %d\n", ret); snd_soc_unregister_component(dev); goto err_interrupt; } intel_debugfs_init(sdw); return 0; err_interrupt: sdw_cdns_enable_interrupt(cdns, false); err_init: return ret; } static int intel_master_remove(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct sdw_cdns *cdns = dev_get_drvdata(dev); struct sdw_intel *sdw = cdns_to_intel(cdns); struct sdw_bus *bus = &cdns->bus; if (!bus->prop.hw_disabled) { intel_debugfs_exit(sdw); sdw_cdns_enable_interrupt(cdns, false); snd_soc_unregister_component(dev); } sdw_bus_master_delete(bus); return 0; } int intel_master_process_wakeen_event(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct sdw_intel *sdw; struct sdw_bus *bus; void __iomem *shim; u16 wake_sts; sdw = platform_get_drvdata(pdev); bus = &sdw->cdns.bus; if (bus->prop.hw_disabled) { dev_dbg(dev, "SoundWire master %d is disabled, ignoring\n", bus->link_id); return 0; } shim = sdw->link_res->shim; wake_sts = intel_readw(shim, SDW_SHIM_WAKESTS); if (!(wake_sts & BIT(sdw->instance))) return 0; /* disable WAKEEN interrupt ASAP to prevent interrupt flood */ intel_shim_wake(sdw, false); /* * resume the Master, which will generate a bus reset and result in * Slaves re-attaching and be re-enumerated. The SoundWire physical * device which generated the wake will trigger an interrupt, which * will in turn cause the corresponding Linux Slave device to be * resumed and the Slave codec driver to check the status. */ pm_request_resume(dev); return 0; } static struct platform_driver sdw_intel_drv = { .probe = intel_master_probe, .remove = intel_master_remove, .driver = { .name = "intel-sdw", }, }; module_platform_driver(sdw_intel_drv); MODULE_LICENSE("Dual BSD/GPL"); MODULE_ALIAS("platform:intel-sdw"); MODULE_DESCRIPTION("Intel Soundwire Master Driver");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1