Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Keiji Hayashibara | 2341 | 65.45% | 4 | 40.00% |
Kunihiko Hayashi | 1222 | 34.16% | 5 | 50.00% |
Wei Yongjun | 14 | 0.39% | 1 | 10.00% |
Total | 3577 | 10 |
// SPDX-License-Identifier: GPL-2.0 // spi-uniphier.c - Socionext UniPhier SPI controller driver // Copyright 2012 Panasonic Corporation // Copyright 2016-2018 Socionext Inc. #include <linux/kernel.h> #include <linux/bitfield.h> #include <linux/bitops.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/dmaengine.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/spi/spi.h> #include <asm/unaligned.h> #define SSI_TIMEOUT_MS 2000 #define SSI_POLL_TIMEOUT_US 200 #define SSI_MAX_CLK_DIVIDER 254 #define SSI_MIN_CLK_DIVIDER 4 struct uniphier_spi_priv { void __iomem *base; dma_addr_t base_dma_addr; struct clk *clk; struct spi_master *master; struct completion xfer_done; int error; unsigned int tx_bytes; unsigned int rx_bytes; const u8 *tx_buf; u8 *rx_buf; atomic_t dma_busy; bool is_save_param; u8 bits_per_word; u16 mode; u32 speed_hz; }; #define SSI_CTL 0x00 #define SSI_CTL_EN BIT(0) #define SSI_CKS 0x04 #define SSI_CKS_CKRAT_MASK GENMASK(7, 0) #define SSI_CKS_CKPHS BIT(14) #define SSI_CKS_CKINIT BIT(13) #define SSI_CKS_CKDLY BIT(12) #define SSI_TXWDS 0x08 #define SSI_TXWDS_WDLEN_MASK GENMASK(13, 8) #define SSI_TXWDS_TDTF_MASK GENMASK(7, 6) #define SSI_TXWDS_DTLEN_MASK GENMASK(5, 0) #define SSI_RXWDS 0x0c #define SSI_RXWDS_DTLEN_MASK GENMASK(5, 0) #define SSI_FPS 0x10 #define SSI_FPS_FSPOL BIT(15) #define SSI_FPS_FSTRT BIT(14) #define SSI_SR 0x14 #define SSI_SR_BUSY BIT(7) #define SSI_SR_RNE BIT(0) #define SSI_IE 0x18 #define SSI_IE_TCIE BIT(4) #define SSI_IE_RCIE BIT(3) #define SSI_IE_TXRE BIT(2) #define SSI_IE_RXRE BIT(1) #define SSI_IE_RORIE BIT(0) #define SSI_IE_ALL_MASK GENMASK(4, 0) #define SSI_IS 0x1c #define SSI_IS_RXRS BIT(9) #define SSI_IS_RCID BIT(3) #define SSI_IS_RORID BIT(0) #define SSI_IC 0x1c #define SSI_IC_TCIC BIT(4) #define SSI_IC_RCIC BIT(3) #define SSI_IC_RORIC BIT(0) #define SSI_FC 0x20 #define SSI_FC_TXFFL BIT(12) #define SSI_FC_TXFTH_MASK GENMASK(11, 8) #define SSI_FC_RXFFL BIT(4) #define SSI_FC_RXFTH_MASK GENMASK(3, 0) #define SSI_TXDR 0x24 #define SSI_RXDR 0x24 #define SSI_FIFO_DEPTH 8U #define SSI_FIFO_BURST_NUM 1 #define SSI_DMA_RX_BUSY BIT(1) #define SSI_DMA_TX_BUSY BIT(0) static inline unsigned int bytes_per_word(unsigned int bits) { return bits <= 8 ? 1 : (bits <= 16 ? 2 : 4); } static inline void uniphier_spi_irq_enable(struct uniphier_spi_priv *priv, u32 mask) { u32 val; val = readl(priv->base + SSI_IE); val |= mask; writel(val, priv->base + SSI_IE); } static inline void uniphier_spi_irq_disable(struct uniphier_spi_priv *priv, u32 mask) { u32 val; val = readl(priv->base + SSI_IE); val &= ~mask; writel(val, priv->base + SSI_IE); } static void uniphier_spi_set_mode(struct spi_device *spi) { struct uniphier_spi_priv *priv = spi_master_get_devdata(spi->master); u32 val1, val2; /* * clock setting * CKPHS capture timing. 0:rising edge, 1:falling edge * CKINIT clock initial level. 0:low, 1:high * CKDLY clock delay. 0:no delay, 1:delay depending on FSTRT * (FSTRT=0: 1 clock, FSTRT=1: 0.5 clock) * * frame setting * FSPOL frame signal porarity. 0: low, 1: high * FSTRT start frame timing * 0: rising edge of clock, 1: falling edge of clock */ switch (spi->mode & (SPI_CPOL | SPI_CPHA)) { case SPI_MODE_0: /* CKPHS=1, CKINIT=0, CKDLY=1, FSTRT=0 */ val1 = SSI_CKS_CKPHS | SSI_CKS_CKDLY; val2 = 0; break; case SPI_MODE_1: /* CKPHS=0, CKINIT=0, CKDLY=0, FSTRT=1 */ val1 = 0; val2 = SSI_FPS_FSTRT; break; case SPI_MODE_2: /* CKPHS=0, CKINIT=1, CKDLY=1, FSTRT=1 */ val1 = SSI_CKS_CKINIT | SSI_CKS_CKDLY; val2 = SSI_FPS_FSTRT; break; case SPI_MODE_3: /* CKPHS=1, CKINIT=1, CKDLY=0, FSTRT=0 */ val1 = SSI_CKS_CKPHS | SSI_CKS_CKINIT; val2 = 0; break; } if (!(spi->mode & SPI_CS_HIGH)) val2 |= SSI_FPS_FSPOL; writel(val1, priv->base + SSI_CKS); writel(val2, priv->base + SSI_FPS); val1 = 0; if (spi->mode & SPI_LSB_FIRST) val1 |= FIELD_PREP(SSI_TXWDS_TDTF_MASK, 1); writel(val1, priv->base + SSI_TXWDS); writel(val1, priv->base + SSI_RXWDS); } static void uniphier_spi_set_transfer_size(struct spi_device *spi, int size) { struct uniphier_spi_priv *priv = spi_master_get_devdata(spi->master); u32 val; val = readl(priv->base + SSI_TXWDS); val &= ~(SSI_TXWDS_WDLEN_MASK | SSI_TXWDS_DTLEN_MASK); val |= FIELD_PREP(SSI_TXWDS_WDLEN_MASK, size); val |= FIELD_PREP(SSI_TXWDS_DTLEN_MASK, size); writel(val, priv->base + SSI_TXWDS); val = readl(priv->base + SSI_RXWDS); val &= ~SSI_RXWDS_DTLEN_MASK; val |= FIELD_PREP(SSI_RXWDS_DTLEN_MASK, size); writel(val, priv->base + SSI_RXWDS); } static void uniphier_spi_set_baudrate(struct spi_device *spi, unsigned int speed) { struct uniphier_spi_priv *priv = spi_master_get_devdata(spi->master); u32 val, ckdiv; /* * the supported rates are even numbers from 4 to 254. (4,6,8...254) * round up as we look for equal or less speed */ ckdiv = DIV_ROUND_UP(clk_get_rate(priv->clk), speed); ckdiv = round_up(ckdiv, 2); val = readl(priv->base + SSI_CKS); val &= ~SSI_CKS_CKRAT_MASK; val |= ckdiv & SSI_CKS_CKRAT_MASK; writel(val, priv->base + SSI_CKS); } static void uniphier_spi_setup_transfer(struct spi_device *spi, struct spi_transfer *t) { struct uniphier_spi_priv *priv = spi_master_get_devdata(spi->master); u32 val; priv->error = 0; priv->tx_buf = t->tx_buf; priv->rx_buf = t->rx_buf; priv->tx_bytes = priv->rx_bytes = t->len; if (!priv->is_save_param || priv->mode != spi->mode) { uniphier_spi_set_mode(spi); priv->mode = spi->mode; priv->is_save_param = false; } if (!priv->is_save_param || priv->bits_per_word != t->bits_per_word) { uniphier_spi_set_transfer_size(spi, t->bits_per_word); priv->bits_per_word = t->bits_per_word; } if (!priv->is_save_param || priv->speed_hz != t->speed_hz) { uniphier_spi_set_baudrate(spi, t->speed_hz); priv->speed_hz = t->speed_hz; } priv->is_save_param = true; /* reset FIFOs */ val = SSI_FC_TXFFL | SSI_FC_RXFFL; writel(val, priv->base + SSI_FC); } static void uniphier_spi_send(struct uniphier_spi_priv *priv) { int wsize; u32 val = 0; wsize = min(bytes_per_word(priv->bits_per_word), priv->tx_bytes); priv->tx_bytes -= wsize; if (priv->tx_buf) { switch (wsize) { case 1: val = *priv->tx_buf; break; case 2: val = get_unaligned_le16(priv->tx_buf); break; case 4: val = get_unaligned_le32(priv->tx_buf); break; } priv->tx_buf += wsize; } writel(val, priv->base + SSI_TXDR); } static void uniphier_spi_recv(struct uniphier_spi_priv *priv) { int rsize; u32 val; rsize = min(bytes_per_word(priv->bits_per_word), priv->rx_bytes); priv->rx_bytes -= rsize; val = readl(priv->base + SSI_RXDR); if (priv->rx_buf) { switch (rsize) { case 1: *priv->rx_buf = val; break; case 2: put_unaligned_le16(val, priv->rx_buf); break; case 4: put_unaligned_le32(val, priv->rx_buf); break; } priv->rx_buf += rsize; } } static void uniphier_spi_set_fifo_threshold(struct uniphier_spi_priv *priv, unsigned int threshold) { u32 val; val = readl(priv->base + SSI_FC); val &= ~(SSI_FC_TXFTH_MASK | SSI_FC_RXFTH_MASK); val |= FIELD_PREP(SSI_FC_TXFTH_MASK, SSI_FIFO_DEPTH - threshold); val |= FIELD_PREP(SSI_FC_RXFTH_MASK, threshold); writel(val, priv->base + SSI_FC); } static void uniphier_spi_fill_tx_fifo(struct uniphier_spi_priv *priv) { unsigned int fifo_threshold, fill_words; unsigned int bpw = bytes_per_word(priv->bits_per_word); fifo_threshold = DIV_ROUND_UP(priv->rx_bytes, bpw); fifo_threshold = min(fifo_threshold, SSI_FIFO_DEPTH); uniphier_spi_set_fifo_threshold(priv, fifo_threshold); fill_words = fifo_threshold - DIV_ROUND_UP(priv->rx_bytes - priv->tx_bytes, bpw); while (fill_words--) uniphier_spi_send(priv); } static void uniphier_spi_set_cs(struct spi_device *spi, bool enable) { struct uniphier_spi_priv *priv = spi_master_get_devdata(spi->master); u32 val; val = readl(priv->base + SSI_FPS); if (enable) val |= SSI_FPS_FSPOL; else val &= ~SSI_FPS_FSPOL; writel(val, priv->base + SSI_FPS); } static bool uniphier_spi_can_dma(struct spi_master *master, struct spi_device *spi, struct spi_transfer *t) { struct uniphier_spi_priv *priv = spi_master_get_devdata(master); unsigned int bpw = bytes_per_word(priv->bits_per_word); if ((!master->dma_tx && !master->dma_rx) || (!master->dma_tx && t->tx_buf) || (!master->dma_rx && t->rx_buf)) return false; return DIV_ROUND_UP(t->len, bpw) > SSI_FIFO_DEPTH; } static void uniphier_spi_dma_rxcb(void *data) { struct spi_master *master = data; struct uniphier_spi_priv *priv = spi_master_get_devdata(master); int state = atomic_fetch_andnot(SSI_DMA_RX_BUSY, &priv->dma_busy); uniphier_spi_irq_disable(priv, SSI_IE_RXRE); if (!(state & SSI_DMA_TX_BUSY)) spi_finalize_current_transfer(master); } static void uniphier_spi_dma_txcb(void *data) { struct spi_master *master = data; struct uniphier_spi_priv *priv = spi_master_get_devdata(master); int state = atomic_fetch_andnot(SSI_DMA_TX_BUSY, &priv->dma_busy); uniphier_spi_irq_disable(priv, SSI_IE_TXRE); if (!(state & SSI_DMA_RX_BUSY)) spi_finalize_current_transfer(master); } static int uniphier_spi_transfer_one_dma(struct spi_master *master, struct spi_device *spi, struct spi_transfer *t) { struct uniphier_spi_priv *priv = spi_master_get_devdata(master); struct dma_async_tx_descriptor *rxdesc = NULL, *txdesc = NULL; int buswidth; atomic_set(&priv->dma_busy, 0); uniphier_spi_set_fifo_threshold(priv, SSI_FIFO_BURST_NUM); if (priv->bits_per_word <= 8) buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE; else if (priv->bits_per_word <= 16) buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES; else buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES; if (priv->rx_buf) { struct dma_slave_config rxconf = { .direction = DMA_DEV_TO_MEM, .src_addr = priv->base_dma_addr + SSI_RXDR, .src_addr_width = buswidth, .src_maxburst = SSI_FIFO_BURST_NUM, }; dmaengine_slave_config(master->dma_rx, &rxconf); rxdesc = dmaengine_prep_slave_sg( master->dma_rx, t->rx_sg.sgl, t->rx_sg.nents, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!rxdesc) goto out_err_prep; rxdesc->callback = uniphier_spi_dma_rxcb; rxdesc->callback_param = master; uniphier_spi_irq_enable(priv, SSI_IE_RXRE); atomic_or(SSI_DMA_RX_BUSY, &priv->dma_busy); dmaengine_submit(rxdesc); dma_async_issue_pending(master->dma_rx); } if (priv->tx_buf) { struct dma_slave_config txconf = { .direction = DMA_MEM_TO_DEV, .dst_addr = priv->base_dma_addr + SSI_TXDR, .dst_addr_width = buswidth, .dst_maxburst = SSI_FIFO_BURST_NUM, }; dmaengine_slave_config(master->dma_tx, &txconf); txdesc = dmaengine_prep_slave_sg( master->dma_tx, t->tx_sg.sgl, t->tx_sg.nents, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!txdesc) goto out_err_prep; txdesc->callback = uniphier_spi_dma_txcb; txdesc->callback_param = master; uniphier_spi_irq_enable(priv, SSI_IE_TXRE); atomic_or(SSI_DMA_TX_BUSY, &priv->dma_busy); dmaengine_submit(txdesc); dma_async_issue_pending(master->dma_tx); } /* signal that we need to wait for completion */ return (priv->tx_buf || priv->rx_buf); out_err_prep: if (rxdesc) dmaengine_terminate_sync(master->dma_rx); return -EINVAL; } static int uniphier_spi_transfer_one_irq(struct spi_master *master, struct spi_device *spi, struct spi_transfer *t) { struct uniphier_spi_priv *priv = spi_master_get_devdata(master); struct device *dev = master->dev.parent; unsigned long time_left; reinit_completion(&priv->xfer_done); uniphier_spi_fill_tx_fifo(priv); uniphier_spi_irq_enable(priv, SSI_IE_RCIE | SSI_IE_RORIE); time_left = wait_for_completion_timeout(&priv->xfer_done, msecs_to_jiffies(SSI_TIMEOUT_MS)); uniphier_spi_irq_disable(priv, SSI_IE_RCIE | SSI_IE_RORIE); if (!time_left) { dev_err(dev, "transfer timeout.\n"); return -ETIMEDOUT; } return priv->error; } static int uniphier_spi_transfer_one_poll(struct spi_master *master, struct spi_device *spi, struct spi_transfer *t) { struct uniphier_spi_priv *priv = spi_master_get_devdata(master); int loop = SSI_POLL_TIMEOUT_US * 10; while (priv->tx_bytes) { uniphier_spi_fill_tx_fifo(priv); while ((priv->rx_bytes - priv->tx_bytes) > 0) { while (!(readl(priv->base + SSI_SR) & SSI_SR_RNE) && loop--) ndelay(100); if (loop == -1) goto irq_transfer; uniphier_spi_recv(priv); } } return 0; irq_transfer: return uniphier_spi_transfer_one_irq(master, spi, t); } static int uniphier_spi_transfer_one(struct spi_master *master, struct spi_device *spi, struct spi_transfer *t) { struct uniphier_spi_priv *priv = spi_master_get_devdata(master); unsigned long threshold; bool use_dma; /* Terminate and return success for 0 byte length transfer */ if (!t->len) return 0; uniphier_spi_setup_transfer(spi, t); use_dma = master->can_dma ? master->can_dma(master, spi, t) : false; if (use_dma) return uniphier_spi_transfer_one_dma(master, spi, t); /* * If the transfer operation will take longer than * SSI_POLL_TIMEOUT_US, it should use irq. */ threshold = DIV_ROUND_UP(SSI_POLL_TIMEOUT_US * priv->speed_hz, USEC_PER_SEC * BITS_PER_BYTE); if (t->len > threshold) return uniphier_spi_transfer_one_irq(master, spi, t); else return uniphier_spi_transfer_one_poll(master, spi, t); } static int uniphier_spi_prepare_transfer_hardware(struct spi_master *master) { struct uniphier_spi_priv *priv = spi_master_get_devdata(master); writel(SSI_CTL_EN, priv->base + SSI_CTL); return 0; } static int uniphier_spi_unprepare_transfer_hardware(struct spi_master *master) { struct uniphier_spi_priv *priv = spi_master_get_devdata(master); writel(0, priv->base + SSI_CTL); return 0; } static void uniphier_spi_handle_err(struct spi_master *master, struct spi_message *msg) { struct uniphier_spi_priv *priv = spi_master_get_devdata(master); u32 val; /* stop running spi transfer */ writel(0, priv->base + SSI_CTL); /* reset FIFOs */ val = SSI_FC_TXFFL | SSI_FC_RXFFL; writel(val, priv->base + SSI_FC); uniphier_spi_irq_disable(priv, SSI_IE_ALL_MASK); if (atomic_read(&priv->dma_busy) & SSI_DMA_TX_BUSY) { dmaengine_terminate_async(master->dma_tx); atomic_andnot(SSI_DMA_TX_BUSY, &priv->dma_busy); } if (atomic_read(&priv->dma_busy) & SSI_DMA_RX_BUSY) { dmaengine_terminate_async(master->dma_rx); atomic_andnot(SSI_DMA_RX_BUSY, &priv->dma_busy); } } static irqreturn_t uniphier_spi_handler(int irq, void *dev_id) { struct uniphier_spi_priv *priv = dev_id; u32 val, stat; stat = readl(priv->base + SSI_IS); val = SSI_IC_TCIC | SSI_IC_RCIC | SSI_IC_RORIC; writel(val, priv->base + SSI_IC); /* rx fifo overrun */ if (stat & SSI_IS_RORID) { priv->error = -EIO; goto done; } /* rx complete */ if ((stat & SSI_IS_RCID) && (stat & SSI_IS_RXRS)) { while ((readl(priv->base + SSI_SR) & SSI_SR_RNE) && (priv->rx_bytes - priv->tx_bytes) > 0) uniphier_spi_recv(priv); if ((readl(priv->base + SSI_SR) & SSI_SR_RNE) || (priv->rx_bytes != priv->tx_bytes)) { priv->error = -EIO; goto done; } else if (priv->rx_bytes == 0) goto done; /* next tx transfer */ uniphier_spi_fill_tx_fifo(priv); return IRQ_HANDLED; } return IRQ_NONE; done: complete(&priv->xfer_done); return IRQ_HANDLED; } static int uniphier_spi_probe(struct platform_device *pdev) { struct uniphier_spi_priv *priv; struct spi_master *master; struct resource *res; struct dma_slave_caps caps; u32 dma_tx_burst = 0, dma_rx_burst = 0; unsigned long clk_rate; int irq; int ret; master = spi_alloc_master(&pdev->dev, sizeof(*priv)); if (!master) return -ENOMEM; platform_set_drvdata(pdev, master); priv = spi_master_get_devdata(master); priv->master = master; priv->is_save_param = false; priv->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); if (IS_ERR(priv->base)) { ret = PTR_ERR(priv->base); goto out_master_put; } priv->base_dma_addr = res->start; priv->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(priv->clk)) { dev_err(&pdev->dev, "failed to get clock\n"); ret = PTR_ERR(priv->clk); goto out_master_put; } ret = clk_prepare_enable(priv->clk); if (ret) goto out_master_put; irq = platform_get_irq(pdev, 0); if (irq < 0) { ret = irq; goto out_disable_clk; } ret = devm_request_irq(&pdev->dev, irq, uniphier_spi_handler, 0, "uniphier-spi", priv); if (ret) { dev_err(&pdev->dev, "failed to request IRQ\n"); goto out_disable_clk; } init_completion(&priv->xfer_done); clk_rate = clk_get_rate(priv->clk); master->max_speed_hz = DIV_ROUND_UP(clk_rate, SSI_MIN_CLK_DIVIDER); master->min_speed_hz = DIV_ROUND_UP(clk_rate, SSI_MAX_CLK_DIVIDER); master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST; master->dev.of_node = pdev->dev.of_node; master->bus_num = pdev->id; master->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 32); master->set_cs = uniphier_spi_set_cs; master->transfer_one = uniphier_spi_transfer_one; master->prepare_transfer_hardware = uniphier_spi_prepare_transfer_hardware; master->unprepare_transfer_hardware = uniphier_spi_unprepare_transfer_hardware; master->handle_err = uniphier_spi_handle_err; master->can_dma = uniphier_spi_can_dma; master->num_chipselect = 1; master->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX; master->dma_tx = dma_request_chan(&pdev->dev, "tx"); if (IS_ERR_OR_NULL(master->dma_tx)) { if (PTR_ERR(master->dma_tx) == -EPROBE_DEFER) { ret = -EPROBE_DEFER; goto out_disable_clk; } master->dma_tx = NULL; dma_tx_burst = INT_MAX; } else { ret = dma_get_slave_caps(master->dma_tx, &caps); if (ret) { dev_err(&pdev->dev, "failed to get TX DMA capacities: %d\n", ret); goto out_disable_clk; } dma_tx_burst = caps.max_burst; } master->dma_rx = dma_request_chan(&pdev->dev, "rx"); if (IS_ERR_OR_NULL(master->dma_rx)) { if (PTR_ERR(master->dma_rx) == -EPROBE_DEFER) { ret = -EPROBE_DEFER; goto out_disable_clk; } master->dma_rx = NULL; dma_rx_burst = INT_MAX; } else { ret = dma_get_slave_caps(master->dma_rx, &caps); if (ret) { dev_err(&pdev->dev, "failed to get RX DMA capacities: %d\n", ret); goto out_disable_clk; } dma_rx_burst = caps.max_burst; } master->max_dma_len = min(dma_tx_burst, dma_rx_burst); ret = devm_spi_register_master(&pdev->dev, master); if (ret) goto out_disable_clk; return 0; out_disable_clk: clk_disable_unprepare(priv->clk); out_master_put: spi_master_put(master); return ret; } static int uniphier_spi_remove(struct platform_device *pdev) { struct uniphier_spi_priv *priv = platform_get_drvdata(pdev); if (priv->master->dma_tx) dma_release_channel(priv->master->dma_tx); if (priv->master->dma_rx) dma_release_channel(priv->master->dma_rx); clk_disable_unprepare(priv->clk); return 0; } static const struct of_device_id uniphier_spi_match[] = { { .compatible = "socionext,uniphier-scssi" }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, uniphier_spi_match); static struct platform_driver uniphier_spi_driver = { .probe = uniphier_spi_probe, .remove = uniphier_spi_remove, .driver = { .name = "uniphier-spi", .of_match_table = uniphier_spi_match, }, }; module_platform_driver(uniphier_spi_driver); MODULE_AUTHOR("Kunihiko Hayashi <hayashi.kunihiko@socionext.com>"); MODULE_AUTHOR("Keiji Hayashibara <hayashibara.keiji@socionext.com>"); MODULE_DESCRIPTION("Socionext UniPhier SPI controller driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1